[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0590086A - Manufacture of chip type solid electrolytic capacitor - Google Patents

Manufacture of chip type solid electrolytic capacitor

Info

Publication number
JPH0590086A
JPH0590086A JP25097991A JP25097991A JPH0590086A JP H0590086 A JPH0590086 A JP H0590086A JP 25097991 A JP25097991 A JP 25097991A JP 25097991 A JP25097991 A JP 25097991A JP H0590086 A JPH0590086 A JP H0590086A
Authority
JP
Japan
Prior art keywords
anode lead
cathode
anode
lead wire
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25097991A
Other languages
Japanese (ja)
Inventor
Sumio Nishiyama
澄夫 西山
Nobuo Hasegawa
信男 長谷川
Hideto Yamaguchi
秀人 山口
Takashi Ida
隆 伊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25097991A priority Critical patent/JPH0590086A/en
Publication of JPH0590086A publication Critical patent/JPH0590086A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To provide a manufacture of a high-quality, small-sized, and large- capacity chip-type solid electrolytic capacitor which can be mass-produced cheaply and easily. CONSTITUTION:A capacitor element 11 and a cathode conductor layer 16 are covered with armor resin 18 so that an anode lead wire 12 may be led out on one side, and the face, whose phase is opposed to that of the anode lead-out face 12a of this armor resin 18, is removed to expose the cathode conductor layer 16. Then, the oxide at the surface of the anode lead wire 12 is removed by sand blast method, or the like, and also irregularities one made on the surface of this anode lead wire 12 and the surface of the armor resin 18, and next, indications of the polarity of a capacitor, the rating, etc., are expressed and then, the anode lead wire 12 is cut and separated, whereby it is made into individual pieces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はチップ状固体電解コンデ
ンサの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a chip solid electrolytic capacitor.

【0002】[0002]

【従来の技術】近年、電子機器の軽薄短小化と面実装技
術の進展からチップ部品が急増している。チップ状固体
電解コンデンサにおいても小型大容量化が進展する中で
チップ部品自身の一層の小型化が要求されている。
2. Description of the Related Art In recent years, the number of chip parts has increased rapidly due to the miniaturization of electronic equipment and the progress of surface mounting technology. In the chip solid electrolytic capacitor, further miniaturization of the chip component itself is required as the size and capacity of the chip solid electrolytic capacitor are increasing.

【0003】以下に従来のチップ状タンタル固体電解コ
ンデンサについて、図4にもとづいて説明する。この図
4において、1はコンデンサ素子で、このコンデンサ素
子1は弁作用金属であるタンタル金属粉末を成形焼結し
た多孔質の陽極体よりタンタル線からなる陽極導出線2
を導出し、かつこの陽極導出線2の一部と前記多孔質の
陽極体の全面に陽極酸化により誘電体性酸化皮膜を形成
し、その表面に二酸化マンガンなどの電解質層を形成
し、さらにその表面に陰極層4を形成することにより構
成されている。なお、前記陰極層4は浸漬法によりカー
ボン層,銀塗料層を順次積層形成したものである。3は
陽極導出線2に装着したテフロン板で、このテフロン板
3は前記電解質層の形成時に陽極導出線2へ二酸化マン
ガンが這い上がって付着するのを防止する絶縁板であ
る。5は陽極端子で、前記陽極導出線2に溶接により接
続され、そして外装樹脂成形後折り曲げられる。6は陰
極端子で、この陰極端子6は前記コンデンサ素子1に導
電性接着剤7により接続され、そして外装樹脂形成後折
り曲げられる。8はコンデンサ素子1全体をモールド成
形により被覆する外装樹脂である。
A conventional chip-shaped tantalum solid electrolytic capacitor will be described below with reference to FIG. In FIG. 4, reference numeral 1 is a capacitor element, and this capacitor element 1 is an anode lead wire 2 made of a tantalum wire from a porous anode body formed by molding and sintering tantalum metal powder which is a valve metal.
And a dielectric oxide film is formed by anodic oxidation on a part of the anode lead wire 2 and the entire surface of the porous anode body, and an electrolyte layer of manganese dioxide or the like is formed on the surface thereof. It is configured by forming the cathode layer 4 on the surface. The cathode layer 4 is formed by sequentially stacking a carbon layer and a silver coating layer by a dipping method. Reference numeral 3 denotes a Teflon plate attached to the anode lead wire 2, and this Teflon plate 3 is an insulating plate for preventing manganese dioxide from creeping up and adhering to the anode lead wire 2 when the electrolyte layer is formed. Reference numeral 5 denotes an anode terminal, which is connected to the anode lead wire 2 by welding and is bent after molding the exterior resin. Reference numeral 6 denotes a cathode terminal, which is connected to the capacitor element 1 by a conductive adhesive 7 and is bent after the exterior resin is formed. Reference numeral 8 is an exterior resin that covers the entire capacitor element 1 by molding.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うに構成されたチップ状タンタル固体電解コンデンサで
は、コンデンサ素子1から導出した陽極導出線2と陽極
端子5との溶接時等の組立工程や樹脂モールド工程にお
いて、機械的および熱的なストレスがかかることによ
り、漏れ電流が増加する等の特性劣化や不良率の増大が
発生するとともに、さらに前記溶接部分のスペース寸法
やコンデンサ素子1の陰極層4と陰極端子6との接続引
き出し部分を含む折り曲げスペース寸法等が大きいた
め、コンデンサ素子1の大きさ,形状については構造的
な寸法制限があった。また板材を打ち抜いた陽極端子5
および陰極端子6の材料の有効使用量は極めて低いた
め、コンデンサの体積効率や経済性の面で問題点を有し
ていた。
However, in the chip-shaped tantalum solid electrolytic capacitor configured as described above, an assembly process such as welding of the anode lead wire 2 and the anode terminal 5 derived from the capacitor element 1 and a resin mold In the process, due to mechanical and thermal stress, characteristic deterioration such as increase of leakage current and increase of defective rate occur, and further, the space size of the welded portion and the cathode layer 4 of the capacitor element 1 The size and shape of the capacitor element 1 are structurally limited due to the large bending space size including the connection lead-out portion with the cathode terminal 6. Also, the anode terminal 5 punched out of the plate material
Further, since the effective amount of the material used for the cathode terminal 6 is extremely low, there is a problem in terms of volumetric efficiency and economical efficiency of the capacitor.

【0005】本発明は上記従来の問題点を解決するもの
で、高品質で、かつ小形大容量のチップ状固体電解コン
デンサを安価にして容易に量産することができるチップ
状固体電解コンデンサの製造方法を提供することを目的
とするものである。
The present invention solves the above-mentioned problems of the prior art, and is a method for manufacturing a chip solid electrolytic capacitor which is inexpensive and can be easily mass-produced in a small size and large capacity chip solid electrolytic capacitor. It is intended to provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明のチップ状固体電解コンデンサの製造方法は、
陽極導出線を具備し、かつ弁作用金属からなる陽極体の
表面に誘電体性酸化皮膜,電解質層,陰極層を順次積層
してコンデンサ素子を構成し、このコンデンサ素子の陽
極導出線をフープ材に取り付けた状態でコンデンサ素子
における陰極層の陽極導出線と反対側に位置する部分に
陰極導電体層を分厚く形成し、さらに前記コンデンサ素
子および陰極導電体層を前記陽極導出線が片側に引き出
されるように外装樹脂で被覆し、その後、この外装樹脂
の陽極導出面と相対する面を除去して前記陰極導電体層
を露出させ、さらにその後、サンドブラスト法などによ
り陰極導出線表面の酸化物を除去するとともに、この陽
極導出線の表面および外装樹脂の表面に凹凸を形成し、
次にコンデンサの極性,定格等の表示を施し、その後、
陽極導出線を切断してフープ材より切り離すことにより
個片化し、さらにその後、陽極導出線の切断面を含めた
陽極導出線の表面および外装樹脂の陽極導出面を含めた
その周囲に陽極金属層を形成するとともに、外装樹脂に
おける陰極導電体層を露出させた陰極導出面を含めたそ
の周囲に陰極金属層を形成したものである。
In order to achieve the above object, a method of manufacturing a chip solid electrolytic capacitor of the present invention comprises:
A capacitor element is constructed by sequentially laminating a dielectric oxide film, an electrolyte layer, and a cathode layer on the surface of an anode body which is equipped with an anode lead wire and is made of a valve metal, and the anode lead wire of this capacitor element is a hoop material. The cathode conductor layer is formed thickly in the portion of the capacitor element located on the side opposite to the anode lead wire in the state of being attached to the capacitor element and the cathode conductor layer, and the anode lead wire is drawn out to one side. As described above, the outer surface of the cathode resin is exposed by removing the surface of the outer resin facing the anode lead surface, and then the oxide on the surface of the cathode lead wire is removed by sandblasting or the like. At the same time, unevenness is formed on the surface of this anode lead wire and the surface of the exterior resin,
Next, display the polarity, rating, etc. of the capacitor, and then
The anode lead wire is cut and separated from the hoop material into individual pieces, and then the surface of the anode lead wire including the cut surface of the anode lead wire and the anode metal layer around it including the anode lead surface of the exterior resin. And the cathode metal layer is formed around the cathode lead-out surface in which the cathode conductor layer in the exterior resin is exposed.

【0007】[0007]

【作用】上記した製造方法によれば、コンデンサ素子に
おける陰極層陽極導出線と反対側に位置する部分に陰極
導電体層を分厚く形成しているため、外装樹脂形成後に
陰極導出面を除去すれば、所定の寸法許容差内に容易に
陰極導電体層を露出させることができ、その結果、コン
デンサ素子の電解質層,陰極層等に全く影響を与えるこ
となく、コンデンサ素子とコンデンサの端子となる陰極
金属層との電気的接続が可能となる。また、陽極導出線
と陽極端子の溶接部分のスペース寸法およびコンデンサ
素子と陰極端子との接続引き出し部分を含む折り曲げス
ペース寸法が不要となり、より大きなコンデンサ素子が
収納可能となる。さらには樹脂外装されたコンデンサ素
子を個片化する前にコンデンサの極性,定格等の表示が
施されるため、次工程での整列が容易となり、また、個
片化の後に陽極金属層と陰極金属層が形成されるため、
陽極導出線の切断面にも陽極金属層が被覆され、これに
より、陽極導出線と陽極金属層との接合がより確実とな
るため、電気的特性,歩留まりにおいて優れているとと
もに、体積効率の高いチップ状固体電解コンデンサを容
易に得ることができるものである。
According to the above-described manufacturing method, since the cathode conductor layer is formed thickly in the portion of the capacitor element located on the side opposite to the cathode layer anode lead-out line, the cathode lead-out surface can be removed after the exterior resin is formed. , The cathode conductor layer can be easily exposed within a predetermined dimensional tolerance, and as a result, the cathode becomes the capacitor element and the terminal of the capacitor without affecting the electrolyte layer and the cathode layer of the capacitor element at all. Electrical connection with the metal layer is possible. Further, the space size of the welding portion between the anode lead wire and the anode terminal and the bending space size including the connection lead-out portion between the capacitor element and the cathode terminal are not required, and a larger capacitor element can be accommodated. Furthermore, since the polarity, rating, etc. of the capacitor are displayed before separating the resin-coated capacitor element into individual pieces, the alignment in the next process becomes easy, and after the individual pieces are separated, the anode metal layer and the cathode are separated. Since a metal layer is formed,
The cut surface of the anode lead-out wire is also covered with the anode metal layer, so that the connection between the anode lead-out wire and the anode metal layer becomes more reliable, so that the electrical characteristics and yield are excellent, and the volume efficiency is high. The chip solid electrolytic capacitor can be easily obtained.

【0008】[0008]

【実施例】以下、本発明の一実施例について添付図面を
参照しながら説明する。図1は本発明の一実施例におけ
るチップ状タンタル固体電解コンデンサの断面図を示
し、また図2は図1に示すチップ状タンタル固体電解コ
ンデンサのコンデンサ素子に陰極導電体層を分厚く形成
した状態を示したものである。図1,図2において、1
1はコンデンサ素子で、このコンデンサ素子11は、弁
作用金属であるタンタル金属粉末を成形焼結した多孔質
の陽極体よりタンタル線からなる陽極導出線12を導出
し、かつ多孔質の陽極体の表面に陽極酸化により誘電体
性酸化皮膜を形成し、さらにこの表面に二酸化マンガン
などの電解質層を形成し、その後、カーボン層および銀
塗料層よりなる陰極層15を順次積層形成することによ
り構成している。14は陽極導出線12に装着したテフ
ロン板で、このテフロン板14は前記コンデンサ素子1
1の電解質層の形成時に陽極導出線12へ二酸化マンガ
ンが這い上がって付着するのを防止する絶縁板である。
16は陰極導電体層で、この陰極導電体層16はコンデ
ンサ素子11の陰極層15のうち、陽極導出線12の引
き出し面に相対する対向面17と、この対向面17に隣
接する隣接面の陰極層15の一部に形成される。この場
合、陰極導電体層16は銀粉末を主成分とする熱硬化性
樹脂からなる導電材料で、かつ適正な粘度に調整した液
にコンデンサ素子11を浸漬して、恒温槽で乾燥硬化さ
せることにより形成している。なお、この導電材料はP
d,Ni,Cuのいずれか1種、または2〜3種よりな
る金属混合粉体であってもよく、かつ熱硬化性樹脂は1
50〜180℃で硬化するものである。このような浸漬
と硬化を2〜3回繰り返すことにより、図2に示すよう
に分厚く凸状に付着させることができる。またこの陰極
導電体層16は吸水性,吸湿性が小さく、かつ耐湿性の
優れたものが望ましく、一方、ニッケル等の金属板より
なる金属材料であってもよい。すなわち、この導電材料
は後の金属層形成に使用する処理液に影響されないもの
でなくてはならない。上記陰極層15のバインダーとし
てはポリエーテルアミド樹脂系が優れており、さらに陰
極層15を含む陰極導電体層16にシリコーンオイル等
を含浸させることにより、上記処理液のコンデンサ素子
11の内部への浸入を抑えることができる。これは漏れ
電流,損失,容量変化等の特性劣化を軽減する効果を有
するものである。また図1における18は外装樹脂で、
この外装樹脂18は陽極導出線12が片側に引き出され
るように図2の陰極導電体層16を含むコンデンサ素子
11を金型にセットし、そしてトランスファーモールド
方式により樹脂外装するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a cross-sectional view of a chip-shaped tantalum solid electrolytic capacitor in one embodiment of the present invention, and FIG. 2 shows a state where a cathode conductor layer is formed thick on the capacitor element of the chip-shaped tantalum solid electrolytic capacitor shown in FIG. It is shown. 1 and 2, 1
Reference numeral 1 denotes a capacitor element, and this capacitor element 11 has an anode lead wire 12 made of a tantalum wire derived from a porous anode body formed by molding and sintering tantalum metal powder which is a valve-acting metal, and is a porous anode body. A dielectric oxide film is formed on the surface by anodic oxidation, an electrolyte layer of manganese dioxide or the like is further formed on this surface, and then a cathode layer 15 consisting of a carbon layer and a silver coating layer is sequentially laminated to form a structure. ing. Reference numeral 14 is a Teflon plate attached to the anode lead wire 12, and this Teflon plate 14 is the capacitor element 1 described above.
It is an insulating plate that prevents manganese dioxide from creeping up and adhering to the anode lead wire 12 when the electrolyte layer 1 is formed.
Reference numeral 16 denotes a cathode conductor layer. This cathode conductor layer 16 is formed on the cathode layer 15 of the capacitor element 11 which faces the facing surface 17 facing the lead-out surface of the anode lead wire 12 and the adjacent surface adjacent to the facing surface 17. It is formed on a part of the cathode layer 15. In this case, the cathode conductor layer 16 is made of a conductive material composed of a thermosetting resin containing silver powder as a main component, and the capacitor element 11 is dipped in a liquid adjusted to have an appropriate viscosity and dried and hardened in a constant temperature bath. It is formed by. The conductive material is P
It may be any one kind of d, Ni and Cu, or a metal mixed powder composed of 2 to 3 kinds, and the thermosetting resin is 1
It cures at 50 to 180 ° C. By repeating such dipping and curing a couple of times, it is possible to deposit the thick and convex shape as shown in FIG. Further, the cathode conductor layer 16 is preferably one having low water absorption and hygroscopicity and excellent moisture resistance, while it may be a metal material made of a metal plate such as nickel. That is, this conductive material must be unaffected by the processing liquid used to form the metal layer later. Polyetheramide resin is excellent as a binder for the cathode layer 15. Further, by impregnating the cathode conductor layer 16 including the cathode layer 15 with silicone oil or the like, the treatment liquid can be transferred to the inside of the capacitor element 11. Intrusion can be suppressed. This has the effect of reducing characteristic deterioration such as leakage current, loss, and capacity change. Further, 18 in FIG. 1 is an exterior resin,
The exterior resin 18 is used to set the capacitor element 11 including the cathode conductor layer 16 shown in FIG. 2 in a mold so that the anode lead wire 12 is drawn out to one side, and apply the resin exterior by the transfer molding method.

【0009】図3(a)(b)(c)(d)(e)
(f)は本発明の一実施例におけるチップ状タンタル固
体電解コンデンサの製造工程を示したもので、図3
(a)はフープ材13に陽極導出線12をそれぞれ取り
付けた多数個のコンデンサ素子群の陽極導出線12が片
側に引き出されるように金型にセットし、そしてトラン
スファーモールド方式により図2の陰極導電体層16を
含むコンデンサ素子11をエポキシ樹脂により樹脂外装
を施した状態を示したものである。この図3(a)にお
いて、12aは陽極導出面を示し、この陽極導出面12
aにおける陽極導出線12の近傍は凹形状を構成してい
る。この凹形状により陽極導出線12が外装樹脂18の
成形体の外形寸法からはみだすことはなくなり、これに
より、露出面積を多く取ることができる。
3 (a) (b) (c) (d) (e)
FIG. 3F shows a manufacturing process of the chip-shaped tantalum solid electrolytic capacitor in one embodiment of the present invention, and FIG.
(A) is set in a mold so that the anode lead-out wires 12 of a large number of capacitor element groups each having the anode lead-out wire 12 attached to the hoop material 13 can be drawn out to one side, and the cathode conductivity of FIG. It shows a state in which the capacitor element 11 including the body layer 16 is resin-coated with an epoxy resin. In FIG. 3A, reference numeral 12 a denotes an anode lead-out surface, and this anode lead-out surface 12
The vicinity of the anode lead wire 12 in a has a concave shape. Due to this concave shape, the anode lead wire 12 does not stick out from the outer dimension of the molded body of the exterior resin 18, and thus a large exposed area can be taken.

【0010】図3(b)は図3(a)の外装樹脂を施し
た成形体を製品規格の外形寸法にカットまたは研削した
状態を示す。図1および図3(b)の16aは陰極導出
面であり、この陰極導出面16aはカットにより表出し
た陰極導電体層15および外装樹脂18の成形体の断面
構造を示している。
FIG. 3 (b) shows a state in which the molded body to which the exterior resin of FIG. 3 (a) is applied is cut or ground to the external dimensions of the product standard. Reference numeral 16a in FIGS. 1 and 3B denotes a cathode lead-out surface, and this cathode lead-out surface 16a shows a cross-sectional structure of a molded body of the cathode conductor layer 15 and the exterior resin 18 which are exposed by cutting.

【0011】図3(c)はブラスト研磨により、陽極導
出線12,陰極導出面16aおよび外装樹脂18の成形
体のそれぞれの表面の粗面化と一部酸化皮膜の除去を行
い、微細な凹凸の形成と表面活性化をさせた後、コンデ
ンサの極性,定格を表示した状態を示す。なお、この表
示は後工程で識別や整列を容易にするために一ヶ所以上
に表示等が施されても何等さしつかえないものである。
In FIG. 3 (c), the surface of each of the molded body of the anode lead wire 12, the cathode lead surface 16a and the exterior resin 18 is roughened and a part of the oxide film is removed by blast polishing to obtain fine irregularities. After the formation and surface activation of the capacitor, the polarity and rating of the capacitor are displayed. It should be noted that this display may be displayed even if it is provided at one or more places in order to facilitate identification and alignment in a later process.

【0012】図3(d)は陽極導出線12を切断して折
り曲げることにより、陽極金属層との接触面積を大きく
とるとともに、陽極導出線12を陽極導出面12aの凹
形状内部に納めることを可能とし、これにより、外観形
状について均整の取れた直方体にまとめることができる
形態とした後、金属層を形成した状態を示したもので、
19は陽極金属層、20は陰極金属層であり、これらの
金属層19,20はアルカリ脱脂,化学エッチングと触
媒付与の前処理をした後、無電解Niメッキにより、陽
極導出線12および陽極導出面12aと、陰極導出面1
6aおよび外装樹脂18の成形体のそれぞれの表面に形
成される。またこれらの金属層19,20の膜厚は0.
5〜4.0μmの範囲において下地との接合強度に優れ
ているものである。なお、陽極導出線12に、陽極導出
面12aの凹形状の内部において圧延または切り込み等
によるウィークポイントを設ければ折り曲げ位置が定ま
り、かつ折り曲げ形状が安定するため、コンデンサ素子
11にストレスを与えないで容易に陽極導出線12を折
り曲げて陽極導出面12aの凹形状の内部に納めること
ができる。
In FIG. 3D, the contact area with the anode metal layer is increased by cutting and bending the anode lead wire 12, and the anode lead wire 12 is housed inside the concave shape of the anode lead surface 12a. It is possible to make it possible to put it into a rectangular parallelepiped with a balanced appearance, and then shows a state in which a metal layer is formed.
Reference numeral 19 is an anode metal layer, and 20 is a cathode metal layer. These metal layers 19 and 20 are subjected to pretreatments such as alkali degreasing, chemical etching and catalyst application, and then are subjected to electroless Ni plating to obtain the anode lead wire 12 and the anode lead wire. Surface 12a and cathode lead-out surface 1
6a and the exterior resin 18 are formed on the respective surfaces of the molded body. The film thickness of these metal layers 19 and 20 is 0.
In the range of 5 to 4.0 μm, the bonding strength with the base is excellent. If the anode lead-out wire 12 is provided with a weak point by rolling or notching inside the concave shape of the anode lead-out surface 12a, the bending position is determined and the bent shape is stable, so that the capacitor element 11 is not stressed. The anode lead-out wire 12 can be easily bent and stored in the concave shape of the anode lead-out surface 12a.

【0013】図3(e)は残すべき陽極導出線12を含
む陽極導出面12aおよび陰極導出面16aと、それぞ
れの隣接面の一部にレジスト樹脂を塗布して被覆するこ
とにより、陽極金属層19と陰極金属層20を酸溶解
し、最後にレジスト樹脂層をアルカリ溶解にて除去した
状態を示したもので、陽極導出線12を含む陽極導出面
12aと陰極導出面16aにおけるそれぞれの金属層1
9,20は外装樹脂18の成形体の露出部分により絶縁
帯域を形成し、かつ電気的に完全に分離された両極部分
を構成している。
FIG. 3 (e) shows that the anode lead-out surface 12a and the cathode lead-out surface 16a including the anode lead-out wire 12 to be left and a part of the adjacent surfaces are coated with a resist resin so as to cover the anode metal layer. 19 shows a state in which the cathode metal layer 20 and the cathode metal layer 20 are acid-dissolved, and finally the resist resin layer is removed by alkali dissolution. The respective metal layers on the anode lead-out surface 12a including the anode lead-out wire 12 and the cathode lead-out surface 16a are shown. 1
Reference numerals 9 and 20 form an insulating zone by the exposed portion of the molded body of the exterior resin 18 and constitute bipolar portions that are completely electrically separated.

【0014】図3(f)は両極を半田金属層で被覆した
状態を示したもので、21は陽極側の半田金属層、22
は陰極側の半田金属層で、これらは溶融半田浴中の半田
コーティングにより形成される。次に極性表示等を識別
して整列させ、そしてエージングし、かつスクリーニン
グ処理等を施した後、陽極導出線12をチップ状タンタ
ル固体電解コンデンサの外形寸法となるように切断して
フープ材13より個片化し、それを検査後、完成品とさ
せる。
FIG. 3 (f) shows a state in which both electrodes are covered with a solder metal layer, 21 is a solder metal layer on the anode side, 22
Are solder metal layers on the cathode side, which are formed by solder coating in a molten solder bath. Next, after identifying the polarities and arranging them, aligning them, and subjecting them to aging and screening, etc., the anode lead wire 12 is cut so as to have the outer dimensions of the chip-shaped tantalum solid electrolytic capacitor, and the hoop material 13 is used. Separate into individual pieces and inspect them to make finished products.

【0015】本実施例により4V33μFのチップ状タ
ンタル固体電解コンデンサを試作し、これを試験した結
果を従来品と比較して(表1)に示す。
A 4V 33 μF chip-shaped tantalum solid electrolytic capacitor was prototyped according to this example, and the test results are shown in comparison with the conventional product (Table 1).

【0016】[0016]

【表1】 [Table 1]

【0017】この(表1)から明らかなように、本発明
により構成されたチップ状固体電解コンデンサおよびそ
の製造方法によれば、陽極金属層19と陰極金属層20
の形成時において、組立ストレスがコンデンサ素子11
にかかることはないため、電気的特性ならびに歩留まり
においても優れたものを得ることができる。
As is clear from this (Table 1), according to the chip-shaped solid electrolytic capacitor constituted by the present invention and the manufacturing method thereof, the anode metal layer 19 and the cathode metal layer 20 are provided.
Assembling stress is generated during the formation of the capacitor element 11
Therefore, excellent electrical characteristics and yield can be obtained.

【0018】また図4に示す従来における外部取り出し
用の陽極端子5および陰極端子6を省くことができるた
め、従来における陽極端子5,陰極端子6の板厚100
μmを最大4.0μm程度のメッキ厚に変更でき、これ
により端子材料としての使用量を大幅に削減できるとと
もに、従来における外部取り出し用の陽極端子5の溶接
スペースと陰極端子6の折り曲げスペースをそれぞれ省
けるため、体積のより大きなコンデンサ素子11を所定
寸法の外装樹脂18内に収納することができ、容量の体
積効率を大幅に向上させることができるものである。
Further, since the conventional anode terminal 5 and cathode terminal 6 for external extraction shown in FIG. 4 can be omitted, the plate thickness 100 of the conventional anode terminal 5 and cathode terminal 6 is 100.
μm can be changed to a maximum plating thickness of about 4.0 μm, which can significantly reduce the amount of use as a terminal material, and the conventional welding space for the anode terminal 5 for external extraction and the bending space for the cathode terminal 6 respectively. Since it can be omitted, the capacitor element 11 having a larger volume can be housed in the exterior resin 18 having a predetermined size, and the volumetric efficiency of capacitance can be significantly improved.

【0019】以上のように構成されたチップ状タンタル
固体電解コンデンサの製造方法によれば、コンデンサ素
子11から導出した陽極導出線12と陰極導電体層16
に直接陽極金属層19と陰極金属層20を無電解Niメ
ッキにより形成し、そして半田金属層21,22で仕上
げをするようにしているため、外部端子のない工法によ
り、小形で、かつ大容量で高品質のチップ状タンタル固
体電解コンデンサを安価にして大量に生産できるように
なった。
According to the method of manufacturing the chip-shaped tantalum solid electrolytic capacitor configured as described above, the anode lead wire 12 and the cathode conductor layer 16 led out from the capacitor element 11 are formed.
Since the anode metal layer 19 and the cathode metal layer 20 are directly formed by electroless Ni plating and finished with the solder metal layers 21 and 22, a small size and large capacity can be obtained by a method without external terminals. Has made it possible to mass produce high-quality chip-shaped tantalum solid electrolytic capacitors at low cost.

【0020】[0020]

【発明の効果】以上のように本発明のチップ状固体電解
コンデンサの製造方法によれば、コンデンサ素子におけ
る陰極層の陽極導出線と反対側に位置する部分に陰極導
電体層を分厚く形成しているため、外装樹脂形成後に陰
極導出面を除去すれば、所定の寸法許容差内に容易に陰
極導電体層を露出させることができ、その結果、コンデ
ンサ素子の電解質層,陰極層等に全く影響を与えること
なく、コンデンサ素子とコンデンサの端子となる陰極金
属層との電気的接続が可能となる。また、陽極導出線と
陽極端子の溶接部分のスペース寸法およびコンデンサ素
子と陰極端子との接続引き出し部分を含む折り曲げスペ
ース寸法が不要となり、より大きなコンデンサ素子が収
納可能となる。さらには樹脂外装されたコンデンサ素子
を個片化する前にコンデンサの極性,定格等の表示が施
されるため、次工程での整列が容易となり、また、個片
化の後に陽極金属層と陰極金属層が形成されるため、陽
極導出線の切断面にも陽極金属層が被覆され、これによ
り、陽極導出線と陽極金属層との接合がより確実となる
ため、電気的特性,歩留まりにおいて優れているととも
に、体積効率の高いチップ状固体電解コンデンサを容易
に得ることができるものである。
As described above, according to the method for manufacturing the chip solid electrolytic capacitor of the present invention, the cathode conductor layer is formed thickly in the portion of the capacitor element located on the side opposite to the anode lead-out line of the cathode layer. Therefore, if the cathode lead-out surface is removed after forming the exterior resin, the cathode conductor layer can be easily exposed within the specified dimensional tolerance, and as a result, there is no effect on the electrolyte layer, cathode layer, etc. of the capacitor element. It is possible to electrically connect the capacitor element and the cathode metal layer that will be the terminal of the capacitor without applying the voltage. Further, the space size of the welding portion between the anode lead wire and the anode terminal and the bending space size including the connection lead-out portion between the capacitor element and the cathode terminal are not required, and a larger capacitor element can be accommodated. Furthermore, since the polarity, rating, etc. of the capacitor are displayed before separating the resin-coated capacitor element into individual pieces, the alignment in the next process becomes easy, and after the individual pieces are separated, the anode metal layer and the cathode are separated. Since the metal layer is formed, the cut surface of the anode lead wire is also covered with the anode metal layer, which ensures more reliable bonding between the anode lead wire and the anode metal layer, which is excellent in electrical characteristics and yield. In addition, a chip solid electrolytic capacitor having high volume efficiency can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるチップ状タンタル固
体電解コンデンサの断面図
FIG. 1 is a sectional view of a chip-shaped tantalum solid electrolytic capacitor according to an embodiment of the present invention.

【図2】同チップ状タンタル固体電解コンデンサの陰極
導電体層を分厚く形成した状態を示す断面図
FIG. 2 is a cross-sectional view showing a state where the cathode conductor layer of the chip-shaped tantalum solid electrolytic capacitor is formed thickly.

【図3】(a)〜(f)同チップ状タンタル固体電解コ
ンデンサの製造工程を示す斜視図
3A to 3F are perspective views showing a manufacturing process of the chip-shaped tantalum solid electrolytic capacitor.

【図4】従来のチップ状タンタル固体電解コンデンサの
断面図
FIG. 4 is a sectional view of a conventional chip-shaped tantalum solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

11 コンデンサ素子 12 陽極導出線 12a 陽極導出面 13 フープ材 15 陰極層 16 陰極導電体層 16a 陰極導出面 18 外装樹脂 19 陽極金属層 20 陰極金属層 21 陽極側半田金属層 22 陰極側半田金属層 11 Capacitor Element 12 Anode Lead Wire 12a Anode Lead Surface 13 Hoop Material 15 Cathode Layer 16 Cathode Conductor Layer 16a Cathode Lead Surface 18 Exterior Resin 19 Anode Metal Layer 20 Cathode Metal Layer 21 Anode Side Solder Metal Layer 22 Cathode Side Solder Metal Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊田 隆 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Ida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】陽極導出線を具備し、かつ弁作用金属から
なる陽極体の表面に誘電体性酸化皮膜,電解質層,陰極
層を順次積層してコンデンサ素子を構成し、このコンデ
ンサ素子の陽極導出線をフープ材に取り付けた状態でコ
ンデンサ素子における陰極層の陽極導出線と反対側に位
置する部分に陰極導電体層を分厚く形成し、さらに前記
コンデンサ素子および陰極導電体層を前期陽極導出線が
片側に引き出されるように外装樹脂で被覆し、その後、
この外装樹脂の陽極導出面と相対する面を除去して前記
陰極導電体層を露出させ、そらにその後、サンドブラス
ト法などにより陽極導出線表面の酸化物を除去するとと
もに、この陽極導出線の表面および外装樹脂の表面に凹
凸を形成し、次にコンデンサの極性,定格等の表示を施
し、その後、陽極導出線を切断してフープ材より切り離
すことにより個片化し、さらにその後、陽極導出線の切
断面を含めた陽極導出線の表面および外装樹脂の陽極導
出面を含めたその周囲に陽極金属層を形成するととも
に、外装樹脂における陰極導電体層を露出させた陰極導
出面を含めたその周囲に陰極金属層を形成したチップ状
固体電解コンデンサの製造方法。
1. A capacitor element is constructed by sequentially laminating a dielectric oxide film, an electrolyte layer, and a cathode layer on the surface of an anode body having an anode lead wire and made of a valve metal, and the anode of the capacitor element. With the lead wire attached to the hoop material, a thick cathode conductive layer is formed on the portion of the capacitor element located on the side opposite to the anode lead wire of the capacitor element. Is coated with an exterior resin so that it can be pulled out to one side, and then
The surface of the exterior lead resin facing the anode lead-out surface is removed to expose the cathode conductor layer, and thereafter, the oxide on the surface of the anode lead-out wire is removed by a sandblast method or the like, and the surface of the anode lead-out wire is removed. And the surface of the exterior resin is made uneven, and then the polarity, rating, etc. of the capacitor are given, and then the anode lead wire is cut and separated from the hoop material to separate into individual pieces. Anode metal layer is formed on the surface of the anode lead wire including the cut surface and its periphery including the anode lead surface of the exterior resin, and its periphery including the cathode lead surface where the cathode conductor layer in the exterior resin is exposed. A method for manufacturing a chip-shaped solid electrolytic capacitor in which a cathode metal layer is formed on.
【請求項2】コンデンサの極性,定格等の表示は、外装
樹脂の1ヶ所以上に施した請求項1記載のチップ状固体
電解コンデンサの製造方法。
2. The method for manufacturing a chip solid electrolytic capacitor according to claim 1, wherein the indication of the polarity, rating, etc. of the capacitor is provided at one or more places on the exterior resin.
JP25097991A 1991-09-30 1991-09-30 Manufacture of chip type solid electrolytic capacitor Pending JPH0590086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25097991A JPH0590086A (en) 1991-09-30 1991-09-30 Manufacture of chip type solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25097991A JPH0590086A (en) 1991-09-30 1991-09-30 Manufacture of chip type solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0590086A true JPH0590086A (en) 1993-04-09

Family

ID=17215872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25097991A Pending JPH0590086A (en) 1991-09-30 1991-09-30 Manufacture of chip type solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0590086A (en)

Similar Documents

Publication Publication Date Title
US6563693B2 (en) Solid electrolytic capacitor
CA1077582A (en) Termination means for an electrical device
US7167357B2 (en) Surface mount MELF capacitor
US7179309B2 (en) Surface mount chip capacitor
JPH0590086A (en) Manufacture of chip type solid electrolytic capacitor
JP2002100534A (en) Method of manufacturing solid electrolyte capacitor
JP2002151357A (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
JP3168584B2 (en) Solid electrolytic capacitors
JPH01109711A (en) Composite chip-type solid electrolytic capacitor
JPH0590095A (en) Chip type solid electrolytic capacitor and its manufacture
JPH06224079A (en) Chip-type solid electrolytic capacitor and its manufacture
JPH0590089A (en) Chip type solid electrolytic capacitor and its manufacture
JPH0590085A (en) Manufacture of chip type solid electrolytic capacitor
JPS5860524A (en) Chip-shaped solid electrolytic condenser
JPS5930530Y2 (en) solid electrolytic capacitor
JP2000150305A (en) Solid-state electrolytic capacitor and its manufacture
JPH07226342A (en) Chip-like solid-state electrolytic capacitor
JPH0590088A (en) Chip type solid electrolytic capacitor and its manufacture
JP2000348975A (en) Chip-shaped solid-state electrolytic capacitor and manufacture thereof
JPH05226194A (en) Solid-state chip electrolytic capacitor and its manufacture
JPH07106205A (en) Solid electrolytic capacitor and manufacture thereof
JPH0121545Y2 (en)
JPH06224083A (en) Chip-type solid electrolytic capacitor
JPH06224080A (en) Manufacture of chip-type solid electropolytic capacitor
JPH06224082A (en) Manufacture of chip-type solid electrolytic capacitor