JPH0589788A - Dielectric support for travelling wave tube - Google Patents
Dielectric support for travelling wave tubeInfo
- Publication number
- JPH0589788A JPH0589788A JP24866691A JP24866691A JPH0589788A JP H0589788 A JPH0589788 A JP H0589788A JP 24866691 A JP24866691 A JP 24866691A JP 24866691 A JP24866691 A JP 24866691A JP H0589788 A JPH0589788 A JP H0589788A
- Authority
- JP
- Japan
- Prior art keywords
- dielectric
- frequency circuit
- high frequency
- wave tube
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/16—Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
- H01J23/24—Slow-wave structures, e.g. delay systems
- H01J23/26—Helical slow-wave structures; Adjustment therefor
Landscapes
- Microwave Tubes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、進行波管の誘電体支柱
に関し、特に、その帯電防止構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric support for a traveling wave tube, and more particularly to an antistatic structure for the dielectric support.
【0002】[0002]
【従来の技術】進行波管は、高周波と電子ビームを相互
作用させ、高周波を増幅させる高周波回路を有してい
る。ヘリックス形またはリングループ形進行波管では、
高周波回路は、通常3本の誘電体支柱によって真空封止
用金属パイプ内に支えられている。2. Description of the Related Art A traveling wave tube has a high-frequency circuit that interacts a high frequency with an electron beam to amplify the high frequency. In a helix or phosphorus group type traveling wave tube,
The high frequency circuit is usually supported in a vacuum sealing metal pipe by three dielectric columns.
【0003】図3にヘリックス形進行波管の高周波回路
部の構造を示す。高周波回路3は真空封止用金属パイプ
4の中に誘電体支柱5によって支持されている。通常は
3本の誘電体支柱5が120°間隔に配置され、金属パ
イプ4内で高周波回路3を支持している。 従来の誘電
体支柱の例を図4に示す。従来、誘電体支柱材としてア
ルミナ(Al2 O3 )やベリリア(BeO)が使用され
てきたが、最近は進行波管の効率を上げるため、誘電率
の小さいボロンナイトライド(BN)が使用されはじめ
ている。しかしながら、ボロンナイトライドは進行波管
動作中に、高周波回路内を通る電子ビームによって帯電
して電位変化をおこし、それによって電子ビーム軌道の
不安定化をもたらして高周波回路を破損する場合があ
る。FIG. 3 shows the structure of a high frequency circuit section of a helix type traveling wave tube. The high frequency circuit 3 is supported by a dielectric support 5 in a vacuum sealing metal pipe 4. Usually, three dielectric support columns 5 are arranged at 120 ° intervals and support the high frequency circuit 3 in the metal pipe 4. An example of a conventional dielectric strut is shown in FIG. Conventionally, alumina (Al 2 O 3 ) or beryllia (BeO) has been used as a dielectric strut material, but recently, boron nitride (BN) having a small dielectric constant is used to improve the efficiency of the traveling wave tube. It is starting. However, boron nitride may be charged by the electron beam passing through the high-frequency circuit during the traveling-wave tube operation to cause a potential change, which may cause instability of the electron beam trajectory and damage the high-frequency circuit.
【0004】従来、ボロンナイトライドの帯電を防止す
るため、ボロンナイトライドの表面に炭素を薄くコーテ
ィングし、電荷がコーティング層を通って高周波回路ま
たは真空封止用金属パイブに流れるようにした例もあ
る。Conventionally, in order to prevent the electrification of boron nitride, there is also an example in which carbon is thinly coated on the surface of boron nitride so that electric charges flow through a coating layer to a high frequency circuit or a metal pipe for vacuum sealing. is there.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、従来技
術の炭素コーティングは高周波ロスの増大につながり、
進行波管の出力や利得の低下をもたらすという欠点があ
る。However, the carbon coating of the prior art leads to an increase in high frequency loss,
There is a drawback in that the output and gain of the traveling wave tube are reduced.
【0006】[0006]
【課題を解決するための手段】本発明の進行波管用誘電
体支柱は、進行波管の陰極電位を基準とした高周波回路
部の電位をE(V)とし、電池電荷をe(Coul)と
し、eE(eV)の1次電子が入射した場合の2次電子
放出比が1に等しいかそれ以上である誘電体を表面にコ
ーティングしてあることを特徴としている。なお、コー
ティングする誘電体としては、アルミナ,べリリアが適
している。In the dielectric support for a traveling-wave tube according to the present invention, the electric potential of the high-frequency circuit portion with respect to the cathode potential of the traveling-wave tube is E (V), and the battery charge is e (Coul). , EE (eV) primary electrons are incident, the surface is coated with a dielectric material having a secondary electron emission ratio equal to or more than 1. Alumina and beryllia are suitable as the dielectric to be coated.
【0007】[0007]
【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の第1の実施例を示す断面図である。
ボロンナイトライドの誘電体支柱1にアルミナ2を薄く
コーティングしてある。図2にボロンナイトライドとア
ルミナの2次電子放出比を示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a first embodiment of the present invention.
Alumina 2 is thinly coated on a boron nitride dielectric pillar 1. FIG. 2 shows the secondary electron emission ratio of boron nitride and alumina.
【0008】今、進行波管の陰極・高周波回路間の電圧
E(v)が10kvであるとすると、陰極より放出され
た電子は10kevの運動エネルギーを持って高周波回
路を通り、一部が誘電体支柱に入射する。誘電体支柱が
ボロンナイトライドのみからなるときには、図2よりわ
かるように、誘電体支柱の2次電子放出比は1以下であ
るため、誘電体支柱は電子を蓄積し負に帯電することに
よって周辺の電位を下げる。それによって高周波回路を
通過する電子ビームの軌道は不安定になる。Now, assuming that the voltage E (v) between the cathode and the high frequency circuit of the traveling wave tube is 10 kv, the electrons emitted from the cathode have a kinetic energy of 10 kev and pass through the high frequency circuit, and a part of it is dielectric. It is incident on the body pillar. When the dielectric strut is composed of only boron nitride, as can be seen from FIG. 2, the secondary strut emission ratio of the dielectric strut is 1 or less, so that the dielectric strut accumulates electrons and becomes negatively charged to the periphery. Lower the potential of. As a result, the trajectory of the electron beam passing through the high frequency circuit becomes unstable.
【0009】一方、誘電体支柱が図1のようにボロンナ
イトライドにアルミナコーティングしてある構造である
場合には、図2より10kevの電子入射でもアルミナ
の2次電子放出比は1より大であるため、誘電体支柱は
負に帯電しない。また、誘電体支柱が正に帯電すること
はあり得るが、正に帯電すると誘電体支柱の電位を上
げ、2次電子を誘電体支柱にひきもどすことになるので
正の帯電量は少なく、高周波回路を通過する電子ビーム
の軌道を乱すほどではない。On the other hand, in the case where the dielectric pillar has a structure in which boron nitride is coated with alumina as shown in FIG. 1, the secondary electron emission ratio of alumina is larger than 1 even when the electron is incident at 10 kev as shown in FIG. As such, the dielectric struts do not become negatively charged. In addition, the dielectric support may be positively charged, but if it is positively charged, the potential of the dielectric support will be raised and secondary electrons will be returned to the dielectric support, so the amount of positive charge is small and high frequency It does not disturb the trajectory of the electron beam passing through the circuit.
【0010】このように、ボロンナイトライドにアルミ
ナがコーティングしてある誘電体支柱では、電子ビーム
の衝突によっても帯電がおさえられ、周辺の電位をあま
り変化させないため、電子ビームの乱れをひきおこさな
い。さらに、アルミナは誘電体であるので炭素コーティ
ングのようなジュール損がなく、進行波管の利得低下や
出力低下をひきおこすことはない。As described above, in the dielectric pillar in which the boron nitride is coated with alumina, the charge is suppressed even by the collision of the electron beam and the peripheral potential is not changed so much that the disturbance of the electron beam is not caused. . Further, since alumina is a dielectric substance, it does not have a Joule loss unlike carbon coating, and does not cause a gain reduction or output reduction of a traveling wave tube.
【0011】本発明の第2の実施例として、ボロンナイ
トライドの誘電体支柱にアルミナではなくベリリアをコ
ーティングした例をあげることができる。第1の実施例
と同じ進行波管に使用された場合には、図2により第1
の実施例と同様に帯電防止、電子ビーム軌道の乱れ防止
が期待できる上に、ベリリアはアルミナよりも熱伝導率
が高く、誘電率が小さいので、第1の実施例の場合より
も進行波管の放熱効果、効率の上昇が見込まれる。As a second embodiment of the present invention, it is possible to cite an example in which a dielectric pillar of boron nitride is coated with beryllia instead of alumina. When used in the same traveling wave tube as in the first embodiment, the first
In the same manner as in the first embodiment, antistatic property and electron beam orbital disturbance prevention can be expected, and beryllia has a higher thermal conductivity and a lower dielectric constant than alumina. It is expected that the heat dissipation effect and efficiency will be increased.
【0012】なお、アルミナやベリリアの誘電体のコー
ティングは、CVDまたはイオンプレーティングによっ
て行うことができる。The alumina or beryllia dielectric coating can be performed by CVD or ion plating.
【0013】[0013]
【発明の効果】以上説明したように、本発明の進行波管
用誘電体支柱は、進行波管の陰極・高周波回路間の電圧
をE(v)として、eE(ev)の1次電子が入射した
場合の2次電子放出比が1に等しいかそれ以上である誘
電体を表面にコーディングしてあるので、誘電体支柱の
帯電量がおさえられ、高周波回路を通過する電子ビーム
を乱さないという効果を有する。As described above, in the dielectric support for a traveling wave tube of the present invention, the primary electron of eE (ev) is incident with the voltage between the cathode and the high frequency circuit of the traveling wave tube being E (v). In this case, the secondary electron emission ratio is equal to or more than 1, and the surface is coated with a dielectric, so that the charge of the dielectric support is suppressed and the electron beam passing through the high frequency circuit is not disturbed. Have.
【図1】本発明の第1の実施例の誘電体支柱を示す断面
図である。FIG. 1 is a cross-sectional view showing a dielectric pillar according to a first embodiment of the present invention.
【図2】誘電体の2次電子放出比を示す図である。FIG. 2 is a diagram showing a secondary electron emission ratio of a dielectric.
【図3】進行波管の高周波回路部の構造を示す断面図で
ある。FIG. 3 is a cross-sectional view showing the structure of a high frequency circuit section of a traveling wave tube.
【図4】従来の誘電体支柱を示す断面図である。FIG. 4 is a cross-sectional view showing a conventional dielectric strut.
1 BN支柱 2 アルミナコーティング層 3 高周波回路 4 金属パイプ 5,6 誘電体支柱 1 BN support 2 Alumina coating layer 3 High frequency circuit 4 Metal pipe 5,6 Dielectric support
Claims (3)
支柱において、前記進行波管の陰極・高周波回路間の電
圧をE(V),電子電荷をe(Coul)として,eE
(eV)の1次電子が入射した場合の2次電子放出比が
1に等しいかそれ以上である誘電体を表面にコーティン
グしてあること特徴とする進行波管用誘電体支柱。1. A dielectric strut for supporting a high-frequency circuit of a traveling-wave tube, wherein the voltage between the cathode and the high-frequency circuit of the traveling-wave tube is E (V), and the electronic charge is e (Coul), eE
A dielectric column for a traveling-wave tube, characterized in that the surface thereof is coated with a dielectric having a secondary electron emission ratio equal to or more than 1 when primary electrons of (eV) are incident.
る請求項1記載の進行波管用誘電体支柱。2. The dielectric pillar for a traveling wave tube according to claim 1, wherein the dielectric to be coated is alumina.
る請求項1記載の進行波管用誘電体支柱。3. A dielectric support for a traveling wave tube according to claim 1, wherein the dielectric to be coated is beryllia.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24866691A JPH0589788A (en) | 1991-09-27 | 1991-09-27 | Dielectric support for travelling wave tube |
EP92308726A EP0534762A1 (en) | 1991-09-27 | 1992-09-24 | Dielectric support rod for a traveling-wave tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24866691A JPH0589788A (en) | 1991-09-27 | 1991-09-27 | Dielectric support for travelling wave tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0589788A true JPH0589788A (en) | 1993-04-09 |
Family
ID=17181536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24866691A Pending JPH0589788A (en) | 1991-09-27 | 1991-09-27 | Dielectric support for travelling wave tube |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0534762A1 (en) |
JP (1) | JPH0589788A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0702388A1 (en) | 1994-08-17 | 1996-03-20 | Kabushiki Kaisha Toshiba | Slow-wave circuit assembly for traveling-wave tube and method of manufacturing a slow-wave circuit assembly |
JP2006134751A (en) * | 2004-11-08 | 2006-05-25 | Nec Microwave Inc | Electron tube |
JP2010186714A (en) * | 2009-02-13 | 2010-08-26 | Toyota Motor Corp | Plasma igniting device |
CN114538933A (en) * | 2020-11-24 | 2022-05-27 | 娄底市安地亚斯电子陶瓷有限公司 | Method for manufacturing travelling wave tube clamping rod |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2946989B2 (en) * | 1993-02-03 | 1999-09-13 | 日本電気株式会社 | Spiral slow-wave circuit structure and method of manufacturing the same |
FR2883409B1 (en) * | 2005-03-18 | 2007-04-27 | Thales Sa | METHOD FOR MANUFACTURING A TOP WITH REDUCED CHARGE EFFECT |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL191980A (en) * | 1953-12-10 | |||
US3466494A (en) * | 1968-05-01 | 1969-09-09 | Siemens Ag | Traveling wave tube with delay line supports having a lossy layer and an insulation layer |
DE3235753A1 (en) * | 1982-09-27 | 1984-03-29 | Siemens AG, 1000 Berlin und 8000 München | Travelling wave tube having a helical delay line |
FR2629634B1 (en) * | 1984-12-18 | 1990-10-12 | Thomson Csf | PROGRESSIVE WAVE TUBE HAVING A PROPELLER-TYPE DELAY LINE FIXED TO A SLEEVE THROUGH BORON NITRIDE DIELECTRIC SUPPORT |
US5038076A (en) * | 1989-05-04 | 1991-08-06 | Raytheon Company | Slow wave delay line structure having support rods coated by a dielectric material to prevent rod charging |
-
1991
- 1991-09-27 JP JP24866691A patent/JPH0589788A/en active Pending
-
1992
- 1992-09-24 EP EP92308726A patent/EP0534762A1/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0702388A1 (en) | 1994-08-17 | 1996-03-20 | Kabushiki Kaisha Toshiba | Slow-wave circuit assembly for traveling-wave tube and method of manufacturing a slow-wave circuit assembly |
JP2006134751A (en) * | 2004-11-08 | 2006-05-25 | Nec Microwave Inc | Electron tube |
JP2010186714A (en) * | 2009-02-13 | 2010-08-26 | Toyota Motor Corp | Plasma igniting device |
CN114538933A (en) * | 2020-11-24 | 2022-05-27 | 娄底市安地亚斯电子陶瓷有限公司 | Method for manufacturing travelling wave tube clamping rod |
Also Published As
Publication number | Publication date |
---|---|
EP0534762A1 (en) | 1993-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59140375A (en) | Magnetron electrode for use in low pressure chamber of plasma treatment device | |
US5796211A (en) | Microwave vacuum tube devices employing electron sources comprising activated ultrafine diamonds | |
US4716340A (en) | Pre-ionization aided sputter gun | |
JP3546945B2 (en) | Cold cathode device | |
US3702951A (en) | Electrostatic collector for charged particles | |
JPH0589788A (en) | Dielectric support for travelling wave tube | |
US5461282A (en) | Advanced center post electron gun | |
JP3156763B2 (en) | Electrode voltage application method and apparatus for cold cathode mounted electron tube | |
JPS634308B2 (en) | ||
JPS63939A (en) | Collector of traveling wave tube | |
JP3147227B2 (en) | Cold cathode electron gun | |
EP0154623B1 (en) | Dual-mode electron gun with improved shadow grid arrangement | |
JP3225283B2 (en) | Surface treatment equipment | |
JPH11232995A (en) | Method for operating electron tube | |
JPH08319588A (en) | Plasma etching device | |
TW202214889A (en) | Film forming device | |
JP3156464B2 (en) | Insulating ceramics for microwave tubes | |
JP3334694B2 (en) | Traveling wave tube | |
US7071604B2 (en) | Electron source | |
JP3022504B2 (en) | Self-biased collector for linear electron beam microwave tubes. | |
JPS61208799A (en) | Fast atomic beam source unit | |
US5466359A (en) | Method of manufacturing microwave tube collector | |
JPH07207471A (en) | Plasma etching device | |
JPH11256315A (en) | Vapor deposition source and vapor deposition apparatus | |
JP3236928B2 (en) | Dry etching equipment |