JPH0586374A - Decomposition of carbohydrate into combustible gas - Google Patents
Decomposition of carbohydrate into combustible gasInfo
- Publication number
- JPH0586374A JPH0586374A JP3273479A JP27347991A JPH0586374A JP H0586374 A JPH0586374 A JP H0586374A JP 3273479 A JP3273479 A JP 3273479A JP 27347991 A JP27347991 A JP 27347991A JP H0586374 A JPH0586374 A JP H0586374A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- catalyst
- water
- carbohydrate
- cellulose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、炭水化物を可燃性のガ
スに分解する方法、更に詳細には炭水化物を触媒反応に
よりCO2 及びH2 、CO、炭化水素等の可燃性ガス混
合物に分解する方法に関するものである。FIELD OF THE INVENTION The present invention relates to a method for decomposing carbohydrates into combustible gases, and more particularly to decomposing carbohydrates into a combustible gas mixture of CO 2 and H 2 , CO, hydrocarbons and the like. It is about the method.
【0002】[0002]
【従来の技術】一般に、炭化水素を加熱すると、脱水又
は熱分解して水蒸気やCO2 、可燃性ガス類を発生して
炭化する現象がみられる。また、炭水化物を多く含む木
材や草本類を乾留すると、有機酸、有機溶剤、CO2 更
にCO、CH4 、H2 等の可燃性ガスが発生することは
よく知られている。しかし、このようにして得た有機酸
や可燃性ガスは、一部実用に供されているものの、一般
的な工業製品とはなっていない。炭水化物は、有機化合
物であり、分類上炭素と水の化合物であるから適当な触
媒を選択すればCO2 と炭化水素に分解できるものと思
われる。ところで、石油や可燃性天然ガス(以下、石油
類という)の成因に関しては、古くから無機説(非生物
起源)と有機説(生物起源)があり、各々多様な内容が
提案されているが、石油類の成分や賦存状態等をみて、
今日では有機説が大方の支持を得ている。2. Description of the Related Art Generally, when a hydrocarbon is heated, it is dehydrated or thermally decomposed to generate water vapor, CO 2 , and combustible gases, and carbonized. It is well known that when wood or herbs containing a large amount of carbohydrates are subjected to dry distillation, combustible gases such as organic acid, organic solvent, CO 2, CO, CH 4 , and H 2 are generated. However, although the organic acid and the flammable gas obtained in this manner are partially put into practical use, they are not general industrial products. Carbohydrates are organic compounds and are classified as carbon and water compounds, so it is thought that they can be decomposed into CO 2 and hydrocarbons by selecting an appropriate catalyst. By the way, regarding the origin of petroleum and flammable natural gas (hereinafter referred to as petroleum), there have been an inorganic theory (non-biological origin) and an organic theory (biological origin) since ancient times, and various contents have been proposed. Looking at the composition and endowment of petroleum,
The organic theory has gained much support today.
【0003】有機説によれば、石油類はかって陸上に繁
茂していた植物や海水等に棲息していた生物の遺体が原
料であるという。これらが河川によって運ばれたり、そ
のまま堆積物となって、ともに海底に沈積する。酸素の
少ない還元的環境の下では嫌気性バクテリヤ等の作用に
よって生物体は分解され有機物に富んだ堆積層(石油根
源岩)がつくられる。そして、地圧や地熱の作用をうけ
て、地質学的な時間の経過の後にこれらが石油類に変わ
ると考えられている。そして、石油類の原料となる生物
体、とりわけ量的に圧倒的に多い植物体から石油類を製
造する方法は多くの人達によって研究されている。石油
類の成因が判明すれば、これらの探鉱活動に最大の効果
が期待できる。本発明の目的は炭水化物を出発原料とし
て可燃性ガスに分解させる方法を提供するにある。又、
原料であるといわれている植物体の省資源化が可能とな
る。即ち、木材、木綿及びこれらの加工品の使用後の最
終段階で石油類に転化して再利用することができる。し
かしながら、実験室においても未だ純正な植物体物質か
ら石油類が作られたことがないのが現状である。According to the organic theory, petroleum is a raw material of plants that once thrived on land and the bodies of living things that lived in seawater. These are carried by rivers, or they become sediments as they are and are deposited on the seabed together. Under a reducing environment with little oxygen, organisms are decomposed by the action of anaerobic bacteria, etc., and a sedimentary layer (petroleum source rock) rich in organic matter is formed. It is believed that these will be converted to petroleum after a geological time lapse under the influence of geopressure and geothermal heat. A large number of people are studying methods for producing petroleum from organisms, which are raw materials for petroleum, especially plants that are predominant in quantity. If the origin of petroleum is known, the maximum effect can be expected for these exploration activities. An object of the present invention is to provide a method for decomposing a carbohydrate as a starting material into a combustible gas. or,
It is possible to conserve the resources of the plant that is said to be a raw material. That is, wood, cotton, and processed products thereof can be converted into petroleum and reused at the final stage after use. However, even in the laboratory, petroleum has never been produced from genuine plant substances.
【0004】[0004]
【発明が解決しようとする課題】かかる実情において、
発明者らは炭水化物を、基本的にはCH4 、C2 H6 、
等の可燃性天然ガス類似の低級炭化水素とCO2 に分解
する方法について検討した結果、この反応が触媒反応で
あり、触媒としては海水の主要成分と同じ物質が有効で
あることを見出した。更に広範囲に触媒を探索した結
果、海水の溶解成分ばかりでなく、これらの誘導体及び
同族元素等の物質も炭水化物を上記のようなガスに分解
する触媒として有効であることを見出した。そして、こ
れらを触媒として生成したガスの組成は、CO2 の他、
CO、H2 等を多く含むものと、炭化水素類を多く含む
ものがある知見を得、更にそれらの触媒とガス組成の対
応を検討した結果、本発明を完成した。[Problems to be Solved by the Invention]
The inventors have found that carbohydrates, basically CH 4 , C 2 H 6 ,
Lower hydrocarbons and CO 2 in decomposing result of investigation of the combustible natural gas similar etc., the reaction is a catalytic reaction, the catalyst was found to be the same material as the major component of sea water is effective. As a result of searching for catalysts in a wider range, it was found that not only dissolved components of seawater, but also derivatives thereof and substances such as homologous elements are effective as catalysts for decomposing carbohydrates into the above gases. The composition of these were produced as a catalyst gas, other CO 2,
The present invention has been completed as a result of finding that there is a substance containing a large amount of CO, H 2 and the like and a substance containing a large amount of hydrocarbons, and further examining the correspondence between the catalyst and the gas composition.
【0005】[0005]
【課題を解決するための手段】即ち、本発明は炭水化物
を触媒及び水又はかん水存在のもと、高温で可燃性ガス
とCO2 に分解せしめる方法である。触媒としては元素
周期律表におけるIIA族(2A族)のMg,Ca,S
r,Ba,IIB 族(2B族)のZn、及びIIIB族(3B
族)のAl等の各金属の酸化物,水酸化物,炭酸塩,硫
酸塩,亜硫酸塩,硫化物、又はこれらの混合物が用いら
れる。本発明は炭水化物を可燃性ガス混合物に分解する
方法であり、その生成ガスは必要に応じて、公知の技術
でCO2 を除去すれば燃料や化学原料となり、工業上有
用である。本発明は石油類の成因に関する有機説で考え
られるいくつかの化学反応の具体化を試みたものである
が、これによると、生物遺体物質が地下に移動し、地温
で加熱されて石油類に変化したものと考えられる。従っ
て、必ずしも有機物が嫌気性バクテリヤ等の作用で分解
される必要はなく、又反応条件が揃えば化学反応は進行
するので必ずしも地質学的な時間の経過は必要ではな
い。That is, the present invention is a method for decomposing a carbohydrate into a combustible gas and CO 2 at a high temperature in the presence of a catalyst and water or brine. As a catalyst, Mg, Ca, S of IIA group (2A group) in the periodic table of elements
Zn of r, Ba, IIB group (2B group), and IIIB group (3B
The oxides, hydroxides, carbonates, sulphates, sulphites, sulphides or mixtures of these metals such as Al of the group) are used. The present invention is a method for decomposing a carbohydrate into a flammable gas mixture, and the produced gas is industrially useful as a fuel or a chemical raw material if CO 2 is removed by a known technique, if necessary. The present invention attempts to materialize some of the chemical reactions that can be considered in the organic theory of the origin of petroleum, and according to this, biological remnants move underground and are heated to the ground temperature to form petroleum. It is thought to have changed. Therefore, it is not always necessary for the organic matter to be decomposed by the action of anaerobic bacteria or the like, and if the reaction conditions are the same, the chemical reaction proceeds, so that geological time is not necessarily required.
【0006】植物体を石油類に転化させる目的の実験に
おいて、初期に使用した植物体には、植物の基本的な構
成成分であるセルロースを選定した。セルロースは東洋
濾紙(株)製で純度min.99.9%のものであった。ま
ず、石油根源岩とセルロースの反応を検討した。この岩
石の主成分は石英、長石類及びカオリンやモンモリロナ
イト等の粘土鉱物で、いわゆる泥岩である。微量成分と
しては有機物、炭素、硫黄、酸化鉄等であった。根源岩
の粉末と水に懸濁させたセルロースを、オートクレーブ
に仕込み高温・高圧で反応を試みた。この際の圧力は水
蒸気圧である。この種の鉱物は炭化水素の分解や異性化
反応に対しては活性はあるものの、セルロース、その他
の炭水化物との反応については炭化のみの現象がみられ
た。従って炭水化物を石油類に転化する反応に活性な触
媒があるとすれば、それはこの種の鉱物ではなく、この
ものはその触媒の担体にすぎないと推定できる。[0006] In the experiment for the purpose of converting the plant body into petroleum, cellulose, which is a basic constituent component of the plant, was selected as the plant body initially used. Cellulose was manufactured by Toyo Roshi Kaisha, Ltd. and had a purity of 99.9%. First, the reaction between petroleum source rock and cellulose was investigated. The main components of this rock are quartz, feldspar, and clay minerals such as kaolin and montmorillonite, which are so-called mudstones. Minor components were organic substances, carbon, sulfur, iron oxide, etc. Powder of source rock and cellulose suspended in water were charged into an autoclave, and the reaction was tried at high temperature and high pressure. The pressure at this time is the water vapor pressure. Although minerals of this kind are active in the decomposition and isomerization of hydrocarbons, only carbonization was observed in the reaction with cellulose and other carbohydrates. Therefore, if there is a catalyst that is active in the reaction of converting carbohydrates to petroleum, it can be inferred that it is not a mineral of this type and that it is only a carrier for that catalyst.
【0007】そこで、その触媒の探索を試みた結果、元
素周期律表におけるIIA 族のMg,Ca,Sr,Ba,
IIB 族のZn、及びIIIB族のAl等の金属の酸化物,水
酸化物,炭酸塩等の化合物を添加すると、水の臨界温度
以上(375℃)に加熱しても、セルロースは炭化せ
ず、アルデヒド臭の黄褐色で均質の溶液となり同時にガ
ス発生を伴う反応がみられた。このガスの成分は主にC
O2 、H2 、COの他、エチレン、プロピレン、ブテン
類等の多種類の炭化水素であった。主反応はホルムアル
デヒドの生成と次のような分解反応である。 HCHO → CO+H2 この結果は本発明に含まれる炭水化物から可燃性ガスの
製法として重要であるが、飽和炭化水素量は微量であ
り、この点では一般的にみられる可燃性天然ガスの組成
とは異るものであった。この実験において触媒として有
効であった金属化合物のうちCa、Mgは海水の主要成
分である。従って、海水の他成分も含めた検討を行った
が、NaClの単独使用は本発明の方法には無害ではあ
るが特に有効ではない。他の主要成分であるSO4 2- に
ついて検討した結果、前記諸金属の対イオンとして用い
た場合は特別な効果が認められた。一例としてCaSO
4 とセルロースの懸濁液を加熱した場合を揚げる。この
場合はセルロースが酸化され、発生ガス中にCO2 が多
く、CH4 、C2 H6 等の炭化水素類は少ないものであ
った。次にCaSO3 とセルロースの懸濁液との反応を
みると炭化水素類が大量に生成した。Therefore, as a result of trying to find the catalyst, Mg, Ca, Sr, Ba of the IIA group in the periodic table of the elements,
Addition of metal oxides, hydroxides, carbonates and other compounds such as Zn of IIB group and Al of IIIB group does not carbonize cellulose even if heated above the critical temperature of water (375 ° C). , A yellowish brown color of aldehyde odor was obtained, and a reaction accompanied by gas evolution was observed at the same time. The component of this gas is mainly C
In addition to O 2 , H 2 and CO, they were various hydrocarbons such as ethylene, propylene and butenes. The main reactions are the formation of formaldehyde and the following decomposition reactions. HCHO → CO + H 2 This result is important as a method for producing flammable gas from the carbohydrates contained in the present invention, but the amount of saturated hydrocarbon is very small, and in this respect, the composition of flammable natural gas generally found is It was different. Among the metal compounds that were effective as catalysts in this experiment, Ca and Mg are the main components of seawater. Therefore, although studies were conducted to include other components of seawater, the use of NaCl alone is harmless but not particularly effective for the method of the present invention. As a result of examining SO 4 2− which is another main component, a special effect was observed when it was used as a counter ion of the above metals. CaSO as an example
Fry the cellulose suspension with 4 when heated. In this case, the cellulose was oxidized, the generated gas contained a large amount of CO 2 , and the hydrocarbons such as CH 4 and C 2 H 6 were small. Next, looking at the reaction between CaSO 3 and the suspension of cellulose, a large amount of hydrocarbons was produced.
【0008】これら二つの反応において生成するガスは
CO2 、CO、H2 の他CH4 等の炭化水素及びアルデ
ヒド類の混合物とみられる水溶性のガスである。又使用
した硫酸塩等は還元され最終的にCaSになり、炭化水
素ガスの生成は終結する。CaSとセルロースの懸濁液
との反応をみると、セルロースのガス化は起こるが、ガ
ス中の炭化水素量は極めて少ないものであった。CaS
O4 等の化合物中のSについて、その酸化度とCH4 生
成量の関係をみるとCaSO4 やCaSO3がCaSに
還元される間にCH4 生成が行われており、CaS
O4 、CaSO3 等はCH4 生成中に変化するので触媒
ではないようにみえる。しかし、これら化合物の酸素は
最終的にはセルロースの酸化に使用されるものの、CH
4 生成中はCaとSの間隔を物理的に保つ等でCH4 生
成触媒として機能しているものと思われる。この反応に
おける炭化水素発生の機構はつまびらかではないが基本
的にはアルデヒド類の生成と次式のような酸化還元の不
均化反応によるものと推定される。 HCHO+HCHO → CH4 +CO2 RCHO+HCHO → RCH3 +CO2 (R:アルデヒド残基)The gas generated in these two reactions is a water-soluble gas which is considered to be a mixture of hydrocarbons such as CO 2 , CO, H 2 and CH 4 and aldehydes. Further, the used sulfate and the like are reduced to finally become CaS, and the production of hydrocarbon gas is terminated. Looking at the reaction between CaS and the suspension of cellulose, although the gasification of cellulose occurred, the amount of hydrocarbons in the gas was extremely small. CaS
The S in the compounds of the O 4 or the like, CH 4 generation has been performed while the CaSO 4 and CaSO 3 is reduced to CaS Looking relationship of the degree of oxidation and CH 4 production amount, CaS
O 4 , CaSO 3, etc., appear to be non-catalytic as they change during CH 4 formation. However, although the oxygen of these compounds is ultimately used for the oxidation of cellulose, CH
It is considered that the catalyst functions as a CH 4 generation catalyst by physically maintaining the distance between Ca and S during the generation of 4 . The mechanism of hydrocarbon generation in this reaction is not trivial, but it is presumed that it is basically due to the formation of aldehydes and the redox disproportionation reaction as shown in the following equation. HCHO + HCHO → CH 4 + CO 2 RCHO + HCHO → RCH 3 + CO 2 (R: aldehyde residue)
【0009】海水の介在で生成した石油類は、まず、そ
の原料といわれる植物体が海水成分を吸着し、海水に溶
解して地下に浸透していく。地下の還元的環境で海水中
のSO4 2- は還元されSO3 2- となる。これはバクテリ
ヤによって還元されるか、又は鉄等を酸化することによ
る。地下の熱的環境に達すると植物体中の炭水化物はM
gSO3 、CaSO3 等を触媒に、岩石類を担体とし
て、加水分解によりアルデヒド型の単糖類に転化されH
CHOの脱離及び不均化反応によりCO2 及び炭化水素
類を生成する。そして、これらは共に地層上部の低温部
分に移動し、CO2 は基本的には水に溶解したり塩基性
の塩類に吸収される。又、海水中にはCa2+、Mg2+等
の金属のイオンがSO4 2- に比較して化学量論的に過剰
にあるため、ここで生成したCO2 の一部は不溶性の炭
酸塩となり固定される。過剰なCO2は炭化水素と行動
を共にする。又、炭化水素類は水への溶解度が低く、比
重も小さいため、上部に帽岩がなければ地上まで移動す
る。以上のように、炭水化物は主に低級炭化水素、即ち
CH4 やC2 H6 等を生成する。植物体中に存在するヘ
ミセルロース等の多糖類もかなり低温ではあるが、セル
ロースと同様な反応を行う。炭水化物より炭素を多く含
む有機化合物、例えば植物体中にセルロースと共に存在
するリグニン等はガス化率が少なく、主に高級炭化水素
になるものと思われる。In the petroleum produced by the interposition of seawater, a plant called a raw material first adsorbs seawater components, dissolves in seawater and permeates underground. SO 4 2− in seawater is reduced to SO 3 2− in an underground reducing environment. This is due to reduction by bacteria or oxidation of iron and the like. When the underground thermal environment is reached, the carbohydrates in the plant are M
HSO is converted to aldehyde type monosaccharides by hydrolysis using gSO 3 , CaSO 3, etc. as catalysts and rocks as carriers.
CO 2 and hydrocarbons are produced by the elimination and disproportionation reaction of CHO. Then, both of them move to the low temperature part in the upper part of the formation, and CO 2 is basically dissolved in water or absorbed by basic salts. In addition, since ions of metals such as Ca 2+ and Mg 2+ are stoichiometrically excessive in seawater as compared with SO 4 2− , a part of CO 2 generated here is insoluble carbonic acid. It becomes salt and is fixed. Excess CO 2 behaves with hydrocarbons. In addition, hydrocarbons have low solubility in water and small specific gravity, so they migrate to the ground if there is no cap rock on the upper part. As described above, carbohydrate mainly produces lower hydrocarbons, that is, CH 4 , C 2 H 6 and the like. Polysaccharides such as hemicellulose existing in plants also react similarly to cellulose, although at a considerably low temperature. Organic compounds containing more carbon than carbohydrates, such as lignin, which exists together with cellulose in plants, have a low gasification rate and are considered to be mainly higher hydrocarbons.
【0010】本発明の炭水化物の分解反応ではアルデヒ
ド類及びその誘導体とみられる水溶性ガスを生成するの
が特徴である。本発明の方法において、触媒に硫黄酸化
物の金属塩を用いない反応ではアルデヒドが分解しH2
とCOを多く生成するのを特徴とし、又、触媒に硫黄酸
化物の金属塩を用いる反応では上述の如く、アルデヒド
の不均化反応とみられる炭化水素を多く生成するのを特
徴とする。しかし、後者の反応においてもH2 とCOを
生成するが、これは実験方法のうち、加熱速度が早すぎ
る等のためと思われる。更に通常の可燃性天然ガス中に
は含有しない二重結合を有する炭化水素の生成がみられ
るが、これは加熱速度の他の担体の種類にも因るようで
ある。本発明の方法で、担体として、炭化水素類の異性
化及び分解反応に活性のある粘土鉱物のカオリンを使用
した場合、エチレン等の二重結合を有する炭化水素の生
成を抑制するのがみられる。The characteristic feature of the carbohydrate decomposition reaction of the present invention is that it produces water-soluble gas, which is considered to be aldehydes and their derivatives. In the method of the present invention, in a reaction in which a metal salt of sulfur oxide is not used as a catalyst, the aldehyde is decomposed and H 2
And a large amount of CO are produced, and the reaction using a metal salt of a sulfur oxide as a catalyst is characterized by producing a large amount of hydrocarbons which are considered to be a disproportionation reaction of an aldehyde, as described above. However, H 2 and CO are also generated in the latter reaction, which seems to be due to the fact that the heating rate is too fast in the experimental method. In addition, the formation of hydrocarbons with double bonds, which are not contained in conventional flammable natural gas, is observed, which seems to be due to other types of carriers in the heating rate. In the method of the present invention, when kaolin, which is a clay mineral active in the isomerization and decomposition reaction of hydrocarbons, is used as a carrier, it is observed that the production of hydrocarbons having a double bond such as ethylene is suppressed. ..
【0011】本発明に使用する炭水化物とは、有機化合
物中で分類上、炭素と水の化合物でCm(H2 O)n
〔m,nは整数〕の分子式をもつ一群の物質及びそれら
の誘導があげられ、単糖類、二糖類、多糖類等の糖類及
びこれらの混合物すべてが含まれる。また本発明に使用
する出発原料は、炭水化物を含む物質すべてが含まれる
ことは勿論である。例えば木材、草本類、穀物類、海草
類、植物性プランクトン及びこれらの加工品及び誘導
体、即ちパルプ、各種紙類、木綿や麻等の天然繊維、レ
ーヨンやアセテート等の人造繊維及びフィルム、キビガ
ラ、穀物デンプン、イモ類デンプン等である(以下単に
炭水化物と略称する)。The carbohydrate used in the present invention is a compound of carbon and water, which is classified as Cm (H 2 O) n.
Examples thereof include a group of substances having a molecular formula of [m and n are integers] and their derivatives, and include saccharides such as monosaccharides, disaccharides and polysaccharides, and mixtures thereof. In addition, the starting materials used in the present invention naturally include all substances including carbohydrates. For example, wood, herbs, grains, seaweeds, phytoplankton and processed products and derivatives thereof, that is, pulp, various papers, natural fibers such as cotton and hemp, artificial fibers and films such as rayon and acetate, millet, grains. Starch, potato starch, etc. (hereinafter simply referred to as carbohydrate).
【0012】本発明の方法における加熱温度は通常20
0〜400℃の範囲で実施される。例えば庶糖を出発原
料としてCaSO3 触媒を用いて実施した場合は200
℃位から充分可燃性ガスが得られた。またジャガイモデ
ンプンを出発原料としてCaSO3 触媒を用いて実施し
た場合は250℃位から分解し可燃性ガスが得られた。
植物界の構造多糖として広く存在するセルロースは炭水
化物の中で分解に対して最も強固である。従ってこの場
合、反応系を水の臨界点を越す温度、375℃前後に保
つ必要がある。そのため後記の本発明の実施例により明
らかなように370〜380℃は必要であるが、400
℃以上の加熱は無意味である。生成ガスについては、加
熱後圧力上昇が止まり反応終了を確認した後、反応容器
を冷却して可燃性ガスを採取すればよいが、高温の状態
で抜き取れば反応で生成した全ガス量が得られる。また
例えばグリセリンとCaSO3 の場合では、300℃以
上でアクロレインの他、可燃性ガスが得られた。これは
グリセリンが酸化されて単糖類のトリオースを生成し、
これがガス化したものである。The heating temperature in the method of the present invention is usually 20.
It is carried out in the range of 0 to 400 ° C. For example, 200 when using sucrose as a starting material and a CaSO 3 catalyst.
A flammable gas was sufficiently obtained at around ℃. Further, when the experiment was carried out using a CaSO 3 catalyst using potato starch as a starting material, it decomposed from around 250 ° C. and a flammable gas was obtained.
Cellulose, which is widely used as a structural polysaccharide in the plant kingdom, is the most resistant to decomposition among carbohydrates. Therefore, in this case, it is necessary to keep the temperature of the reaction system above the critical point of water at about 375 ° C. Therefore, as is clear from the examples of the present invention described later, 370 to 380 ° C. is necessary, but 400
Heating above ℃ is meaningless. Regarding the produced gas, it is sufficient to cool the reaction vessel and collect the combustible gas after confirming the completion of the reaction after the pressure rise stops after heating, but if the gas is extracted at a high temperature, the total amount of gas produced in the reaction is Be done. In the case of glycerin and CaSO 3 , for example, flammable gas was obtained at 300 ° C. or higher in addition to acrolein. This is due to the oxidation of glycerin to produce the monosaccharide triose,
This is gasification.
【0013】本発明に使用する触媒としては元素周期律
表におけるIIA 族のMg,Ca,Sr,Ba,IIB 族の
Zn、IIIB族のAl等の金属の酸化物,水酸化物,炭酸
塩,硫酸塩,亜硫酸塩,硫化物及びこれらの混合物等が
あげられる。本発明に使用する触媒としては元素周期律
表における前記金属の一般化合物のうち水酸化物以外の
化合物の水溶液にアルカリ金属の水酸化物を加えて得ら
れる前記金属の水酸化物である。本発明に使用する触媒
としては元素周期律表における前記金属の一般化合物の
うち硫酸塩、亜硫酸塩以外の化合物の水溶液又は懸濁液
にアルカリ金属の硫酸塩又は亜硫酸塩を加えたものであ
る。本発明に使用する触媒としては、元素周期律表にお
ける前記金属の水酸化物に、必要に応じてアルカリ金属
の水酸化物を加えたものにH2 Sを吸収させたものであ
る。これらは前記金属の硫化物又はこれとアルカリ金属
硫化物との混合物である。同様にSO2 を吸収させたも
のは前記金属の亜硫酸塩及びSOx(x=1〜2)の硫
黄低級酸化物の塩ができる。又、CO2 を吸収させたも
のは前記金属の炭酸塩ができる。これら前記金属の硫化
物、硫黄低級酸化物の塩、炭酸塩及びこれらにアルカリ
金属の同塩類が添加された混合物等は、いずれも本発明
に使用する触媒として有効である。Examples of the catalyst used in the present invention include oxides, hydroxides, carbonates of metals such as Group IIA Mg, Ca, Sr, Ba, Group IIB Zn, and Group IIIB Al in the Periodic Table of Elements. Examples thereof include sulfates, sulfites, sulfides and mixtures thereof. The catalyst used in the present invention is the metal hydroxide obtained by adding an alkali metal hydroxide to an aqueous solution of a compound other than the hydroxide among the general compounds of the metal in the periodic table of elements. The catalyst used in the present invention is an aqueous solution or suspension of a compound other than the sulfate and sulfite among the general compounds of the above metals in the Periodic Table of Elements, to which an alkali metal sulfate or sulfite is added. The catalyst used in the present invention is a catalyst obtained by adding an alkali metal hydroxide to the metal hydroxide in the Periodic Table of the Elements, if necessary, and absorbing H 2 S. These are sulfides of the above metals or mixtures of these with alkali metal sulfides. Similarly, a substance that has absorbed SO 2 can be a sulfite salt of the above metal or a sulfur lower oxide salt of SOx (x = 1 to 2). In addition, a carbon dioxide of the above metal can be formed by absorbing CO 2 . The sulfides of these metals, the salts of lower sulfur oxides, the carbonates, and mixtures of these with the same salts of alkali metals are all effective as catalysts for use in the present invention.
【0014】本発明の実施は炭水化物と触媒を水又はか
ん水に溶解又は懸濁させて加熱するが、触媒の使用量は
炭水化物に対し5wt% 以上、水量は単糖類と多糖類に対
しては大きく異なるが通常3〜2000倍量、用いる。
この反応系における水素イオン濃度指数:pHは6以上
で、好ましくは7〜10の塩基性である。使用する触媒
及びかん水を必要に応じて試薬でpH調整する。ここで
云うかん水とは海水、油ガス田排かん水及び一般的な無
機塩類水溶液等である。海水は本発明の実施に必要な触
媒は含有しているので、炭水化物及び必要に応じて担体
を添加して使用する。その他のかん水等は本発明の実施
に必要な触媒、炭水化物、必要に応じて担体を添加して
使用する。In the practice of the present invention, a carbohydrate and a catalyst are dissolved or suspended in water or brine and heated. The amount of the catalyst used is 5 wt% or more with respect to the carbohydrate, and the amount of water is large with respect to the monosaccharide and the polysaccharide. Although different, it is usually used in an amount of 3 to 2000 times.
Hydrogen ion concentration index in this reaction system: pH is 6 or more, and preferably 7 to 10 is basic. The pH of the catalyst and brine used is adjusted with reagents as necessary. The term "brown water" as used herein includes seawater, oil and gas field drainage water, and general inorganic salt aqueous solutions. Since seawater contains the catalyst necessary for carrying out the present invention, carbohydrates and, if necessary, a carrier are added for use. Other brackish water or the like is used after adding a catalyst, a carbohydrate and, if necessary, a carrier necessary for carrying out the present invention.
【0015】本発明に使用する触媒を担持する担体とし
ては、特に用いなくても分解反応は進行するが、この場
合、炭水化物の炭化に基づく、ガス生成量の低下が起こ
る場合がある。本発明に使用する触媒の担体としては、
一般に地層にみられる岩石や鉱物が有効である。特に炭
化水素類の生成を目的として触媒に硫黄化合物の塩類を
使用する場合、その触媒作用を阻害する鉄、マンガン、
クロム等を含むいわゆる有色鉱物を担体として用いるこ
とは好ましくない。本発明に使用する触媒の担体として
は一般的に化学反応に使用するシリカ、アルミナ、カオ
リン又はこれらの混合物である。また、アルミナ、Al
(OH)3 はともに本発明の方法に触媒として或いは担
体として使用できる。次に実施例を示すが、本発明はこ
れらの実施例に限定されるものではない。As the carrier carrying the catalyst used in the present invention, the decomposition reaction proceeds even if it is not particularly used, but in this case, the gas generation amount may decrease due to carbonization of the carbohydrate. The carrier of the catalyst used in the present invention,
Rocks and minerals generally found in the strata are effective. Especially when a salt of a sulfur compound is used as a catalyst for the production of hydrocarbons, iron, manganese, which inhibits its catalytic action,
It is not preferable to use a so-called colored mineral containing chromium or the like as a carrier. The carrier for the catalyst used in the present invention is silica, alumina, kaolin or a mixture thereof which is generally used in chemical reactions. Also, alumina, Al
Both (OH) 3 can be used as catalyst or carrier in the process of the invention. Examples will be shown below, but the present invention is not limited to these examples.
【0016】[0016]
【実施例1】500mlのオートクレーブに、水350ml
にセルロース8.45gをよく混ぜた懸濁液に触媒とし
てAl(OH)3 10gを仕込み攪拌、加熱した。加熱
速度2〜2.3℃/min とした。反応温度、370〜3
80℃で反応を終了させた後、高温の状態で内部ガス全
量を放出し、常温に冷やしてガスを採取した。ここで得
られた最初のガス量は1400mlであった。このガスを
希アルカリ水で洗浄し、CO2 ,その他アルデヒド等の
水溶性ガスを除去した。洗浄後のガス量は540mlとな
り、このガス組成は次のとおりであった。単位:vol
%。 H2 :39.3,CO:46.4,CH4 :2.2,エチレ
ン:3.8,C2 H6 :0.4,プロピレン:4.4,C3 H
8 :0.0,C4 H10類:0.4,ブテン類:2.8,C5 以
上:0.2Example 1 In a 500 ml autoclave, 350 ml of water
10 g of Al (OH) 3 was charged as a catalyst into a suspension in which 8.45 g of cellulose was well mixed and stirred and heated. The heating rate was 2 to 2.3 ° C / min. Reaction temperature, 370-3
After the reaction was completed at 80 ° C., the entire amount of the internal gas was released at a high temperature, and the gas was collected by cooling it to room temperature. The initial amount of gas obtained here was 1400 ml. This gas was washed with diluted alkaline water to remove water-soluble gases such as CO 2 and other aldehydes. The amount of gas after cleaning was 540 ml, and the gas composition was as follows. Unit: vol
%. H 2: 39.3, CO: 46.4 , CH 4: 2.2, Ethylene: 3.8, C 2 H 6: 0.4, propylene: 4.4, C 3 H
8 : 0.0, C 4 H 10 type: 0.4, butenes: 2.8, C 5 or more: 0.2
【0017】[0017]
【実施例2】3%NaClかん水300mlとセルロース
8.45gの懸濁液に、触媒としてCaCO3 10gを
用いて、実施例1と同様に実施した。最初のガス量は1
402ml、洗浄後のガス量は502mlであり、このガス
組成は次のとおりであった。単位:vol %。 H2 :40.7,CO:46.1,CH4 :1.0,エチレ
ン:1.3,C2 H6 :4.1,プロピレン:1.6,C3 H
8 :0.0,C4 H10類:0.9,ブテン類:3.0,C5 以
上:1.2Example 2 The same procedure as in Example 1 was carried out using a suspension of 300 ml of 3% NaCl water and 8.45 g of cellulose, using 10 g of CaCO 3 as a catalyst. Initial gas volume is 1
The amount of gas after washing was 402 ml, and the amount of gas after washing was 502 ml, and the gas composition was as follows. Unit: vol%. H 2: 40.7, CO: 46.1 , CH 4: 1.0, Ethylene: 1.3, C 2 H 6: 4.1, propylene: 1.6, C 3 H
8 : 0.0, C 4 H 10 type: 0.9, butene type: 3.0, C 5 or more: 1.2
【0018】[0018]
【実施例3】水300mlと庶糖20gの水溶液に、触媒
としてCa(OH)2 10gを用いて、反応温度220
℃で実施例1と同様に実施例した。最初のガス量は56
0ml、洗浄後のガス量は110mlであり、このガス組成
は次のとおりであった。単位:vol %。 H2 :17.0,CO:75.7,CH4 :1.9,エチレ
ン:0.4,C2 H6 :0.2,プロピレン:3.5,C3 H
8 :0.0,C4 H10類:0.2,ブテン類:0.8,C5 以
上:0.3Example 3 Using an aqueous solution of 300 ml of water and 20 g of sucrose and 10 g of Ca (OH) 2 as a catalyst, a reaction temperature of 220
Example was carried out at the same temperature as in Example 1. The initial amount of gas is 56
0 ml, the amount of gas after washing was 110 ml, and the gas composition was as follows. Unit: vol%. H 2: 17.0, CO: 75.7 , CH 4: 1.9, Ethylene: 0.4, C 2 H 6: 0.2, propylene: 3.5, C 3 H
8 : 0.0, C 4 H 10 type: 0.2, butene type: 0.8, C 5 or more: 0.3
【0019】[0019]
【実施例4】水350mlとセルロース8.45gの懸濁
液に、触媒としてMg(OH)2 1g、担体としてカオ
リン10gを用いた外は、実施例1と同様に実施した。
最初のガス量は1455ml、洗浄後のガス量は410ml
であり、このガス組成は次のとおりであった。単位:vo
l %。 H2 :1 2.6,CO:28.3,CH4 :7.8,エチレ
ン:0.0,C2 H6 :27.3,プロピレン:0.0,C3
H8 :13.4,C4 H10類:3.2,ブテン類:7.4,C
5 以上:0.0Example 4 Example 4 was repeated except that 350 g of water and 8.45 g of cellulose were mixed with 1 g of Mg (OH) 2 as a catalyst and 10 g of kaolin as a carrier.
Initial gas volume is 1455 ml, gas volume after cleaning is 410 ml
And the gas composition was as follows: Unit: vo
l%. H 2 : 1 2.6, CO: 28.3, CH 4 : 7.8, ethylene: 0.0, C 2 H 6 : 27.3, propylene: 0.0, C 3
H 8 : 13.4, C 4 H 10 type: 3.2, butene type: 7.4, C
5 or more: 0.0
【0020】[0020]
【実施例5】水350mlとセルロース8.45gの懸濁
液に、触媒としてCa(OH)2 2g、担体としてカオ
リン10gを用いた外は、実施例1と同様に実施した。
最初のガス量は1555ml、洗浄後のガス量は475ml
であり、このガス組成は次のとおりであった。単位:vo
l %。 H2 :32.7,CO:48.1,CH4 :2.0,エチレ
ン:1.4,C2 H6 :0.5,プロピレン:6.7,C3 H
8 :0.0 ,C4 H10類:0.9,ブテン類:6.6,C5 以
上:1.0Example 5 The procedure of Example 1 was repeated, except that a suspension of 350 ml of water and 8.45 g of cellulose used 2 g of Ca (OH) 2 as a catalyst and 10 g of kaolin as a carrier.
Initial gas volume is 1555 ml, gas volume after cleaning is 475 ml
And the gas composition was as follows: Unit: vo
l%. H 2: 32.7, CO: 48.1 , CH 4: 2.0, Ethylene: 1.4, C 2 H 6: 0.5, propylene: 6.7, C 3 H
8 : 0.0, C 4 H 10 type: 0.9, butene type: 6.6, C 5 or more: 1.0
【0021】[0021]
【実施例6】水400mlとセルロース4.44gの懸濁
液に、触媒としてMg(OH)2 4.2g、とNa2 S
O3 1/2H2 O4.4g、担体としてAl(OH)3 1
0gを用いた外は、実施例1と同様に実施した。最初の
ガス量は830ml、洗浄後のガス量は260mlであり、
このガス組成は次のとおりであった。単位:vol %。 H2 :4.1,CO:4.3,CH4 :69.9,エチレン:
0.7,C2 H6 :14.1,プロピレン:5.7,C
3 H8 :0.0 ,C4 H10類:0.1,ブテン類:0.9,C
5 以上:0.1Example 6 In a suspension of 400 ml of water and 4.44 g of cellulose, 4.2 g of Mg (OH) 2 as a catalyst and Na 2 S were used.
O 3 1 / 2H 2 O 4.4 g, Al (OH) 3 1 as carrier
The same procedure as in Example 1 was carried out except that 0 g was used. The initial amount of gas is 830 ml, the amount of gas after cleaning is 260 ml,
The gas composition was as follows. Unit: vol%. H 2: 4.1, CO: 4.3 , CH 4: 69.9, ethylene:
0.7, C 2 H 6 : 14.1, propylene: 5.7, C
3 H 8 : 0.0, C 4 H 10 class: 0.1, butenes: 0.9, C
5 or more: 0.1
【0022】[0022]
【実施例7】水400mlとセルロース4.32gの懸濁
液に、触媒としてMg(OH)2 4.2g、とNa2 S
O3 1/2H2 O4.4g、担体としてカオリン10gを
用いた外は、実施例1と同様に実施した。最初のガス量
は1230ml、洗浄後のガス量は420mlであり、この
ガス組成は次のとおりであった。単位:vol %。 H2 :8.7,CO:11.4,CH4 :60.3,エチレ
ン:2.1,C2 H6 :11.1,プロピレン:5.1,C3
H8 :0.1,C4 H10類:0.1,ブテン類:1.1,C5
以上:0.1Example 7: A suspension of 400 ml of water and 4.32 g of cellulose, 4.2 g of Mg (OH) 2 as a catalyst, and Na 2 S.
The same procedure as in Example 1 was carried out except that 4.4 g of O 3 1 / 2H 2 O and 10 g of kaolin were used as the carrier. The initial gas amount was 1230 ml and the gas amount after cleaning was 420 ml, and the gas composition was as follows. Unit: vol%. H 2: 8.7, CO: 11.4 , CH 4: 60.3, ethylene: 2.1, C 2 H 6: 11.1, propylene: 5.1, C 3
H 8 : 0.1, C 4 H 10 type: 0.1, butene type: 1.1, C 5
Above: 0.1
【0023】[0023]
【実施例8】水400mlとセルロース4.25gの懸濁
液に、触媒としてCaSO3 7g、とAl(OH)
3 7.8g、担体としてシリカ6g用いた外は、実施例
1と同様に実施した。最初のガス量は1420ml、洗浄
後のガス量は320mlであり、このガス組成は次のとお
りであった。単位:vol %。 H2 :4.6,CO:6.0,CH4 :72.0,エチレン:
0.0,C2 H6 :11.0,プロピレン:4.1,C
3 H8 :0.0,C4 H10類:0.3,ブテン類:2.0,C
5 以上:0.1Example 8 A suspension of 400 ml of water and 4.25 g of cellulose, 7 g of CaSO 3 as a catalyst, and Al (OH)
3 The same procedure as in Example 1 was carried out except that 7.8 g and silica 6 g as a carrier were used. The initial gas amount was 1420 ml and the gas amount after cleaning was 320 ml, and the gas composition was as follows. Unit: vol%. H 2: 4.6, CO: 6.0 , CH 4: 72.0, ethylene:
0.0, C 2 H 6 : 11.0, propylene: 4.1, C
3 H 8 : 0.0, C 4 H 10 type: 0.3, butene type: 2.0, C
5 or more: 0.1
【0024】[0024]
【実施例9】水400mlとセルロース4.16gの懸濁
液に、触媒としてBaS6.5g、担体としてシリカ1
0gを用いた外は、実施例1と同様に実施した。最初の
ガス量は1000ml、洗浄後のガス量は420mlであ
り、このガス組成は次のとおりであった。単位:vol
%。 H2 :40.5,CO:51.2,CH4 :0.4,エチレ
ン:0.5,C2 H6 :0.1,プロピレン:4.0,C3 H
8 :0.0,C4 H10類:0.4,ブテン類:2.7,C5 以
上:0.2Example 9 A suspension of 400 ml of water and 4.16 g of cellulose, 6.5 g of BaS as a catalyst and 1 silica as a carrier.
The same procedure as in Example 1 was carried out except that 0 g was used. The initial gas amount was 1000 ml and the gas amount after cleaning was 420 ml, and the gas composition was as follows. Unit: vol
%. H 2: 40.5, CO: 51.2 , CH 4: 0.4, Ethylene: 0.5, C 2 H 6: 0.1, propylene: 4.0, C 3 H
8 : 0.0, C 4 H 10 type: 0.4, butene type: 2.7, C 5 or more: 0.2
【0025】[0025]
【実施例10】水400mlとセルロース4.08gの懸
濁液に、触媒としてZnO4gとNa2 SO3 1/2 H2
O4.4g、担体としてシリカ10gを用いた外は、実
施例1と同様に実施した。最初のガス量は660ml、洗
浄後のガス量は150mlであり、このガス組成は次のと
おりであった。単位:vol %。 H2 :10.5,CO:8.7,CH4 :41.7,エチレ
ン:2.8,C2 H6 :15.4,プロピレン:0.0,C3
H8 :10.7,C4 H10類:1.5,ブテン類:6.0,C
5以上:2.7Example 10 In a suspension of 400 ml of water and 4.08 g of cellulose, 4 g of ZnO and Na 2 SO 3 1/2 H 2 as a catalyst were used.
The same procedure as in Example 1 was carried out except that 4.4 g of O and 10 g of silica were used as the carrier. The initial gas amount was 660 ml and the gas amount after cleaning was 150 ml, and the gas composition was as follows. Unit: vol%. H 2: 10.5, CO: 8.7 , CH 4: 41.7, ethylene: 2.8, C 2 H 6: 15.4, propylene: 0.0, C 3
H 8 : 10.7, C 4 H 10 type: 1.5, butene type: 6.0, C
5 or more: 2.7
【0026】[0026]
【発明の効果】本発明によれば、炭水化物を原料として
CO2 及びH2 ,CO,炭化水素等の可燃性ガス混合物
が容易に得られ、必要に応じてCO2 を公知手段で除去
すれば燃料や化学原料となり工業上極めて有用である。According to the present invention, CO 2 and H 2 a carbohydrate as a raw material, CO, combustible gas mixtures, such as hydrocarbons can be easily obtained, by removing by known means of CO 2 as needed It becomes a fuel or chemical raw material and is extremely useful in industry.
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/02 M 8017−4G 27/04 M 6750−4G 27/053 M 6750−4G 27/055 M 6750−4G 27/232 M 6750−4G C10L 3/06 // C01B 3/32 Z 9041−4G Front page continuation (51) Int.Cl. 5 Identification code Office reference number FI Technical display location B01J 23/02 M 8017-4G 27/04 M 6750-4G 27/053 M 6750-4G 27/055 M 6750- 4G 27/232 M 6750-4G C10L 3/06 // C01B 3/32 Z 9041-4G
Claims (4)
200℃以上に加熱することを特徴とする炭水化物を可
燃性のガスに分解する方法。1. A method for decomposing a carbohydrate into a flammable gas, which comprises heating the carbohydrate with a catalyst and water or brine to 200 ° C. or higher.
と水の化合物でCm(H2 O)n〔m,nは整数〕の分
子式を持つ物質もしくはそれらの誘導体又はこれを含有
する物質であることを特徴とする請求項1の炭水化物を
可燃性のガスに分解する方法。2. A carbohydrate is a compound of carbon and water in an organic compound, which is a compound having a molecular formula of Cm (H 2 O) n [m, n is an integer], or a derivative thereof or a substance containing the same. 13. A method of decomposing carbohydrates of claim 1 into combustible gases.
g,Ca,Sr,Ba,IIB 族のZn、IIIB族のAl等
の金属の酸化物,水酸化物,炭酸塩,硫酸塩,亜硫酸
塩,硫化物の1種又は2種以上よりなる請求項1又は2
の炭水化物を可燃性のガスに分解する方法。3. The catalyst is M of IIA group in the periodic table of the elements.
g, Ca, Sr, Ba, Zn of the IIB group, Al of the IIIB group or the like, and oxides, hydroxides, carbonates, sulfates, sulfites, sulfides of one or more kinds. 1 or 2
A method of decomposing the carbohydrates of the product into flammable gas.
項1,2又は3の炭水化物を可燃性のガスに分解する方
法。4. The method for decomposing the carbohydrate according to claim 1, wherein the pH of the reaction system is 6 or more into a flammable gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3273479A JPH0586374A (en) | 1991-09-26 | 1991-09-26 | Decomposition of carbohydrate into combustible gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3273479A JPH0586374A (en) | 1991-09-26 | 1991-09-26 | Decomposition of carbohydrate into combustible gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0586374A true JPH0586374A (en) | 1993-04-06 |
Family
ID=17528486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3273479A Pending JPH0586374A (en) | 1991-09-26 | 1991-09-26 | Decomposition of carbohydrate into combustible gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0586374A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0859202A (en) * | 1994-08-25 | 1996-03-05 | Agency Of Ind Science & Technol | Production of hydrogen from cellulosic biomass |
US6407244B1 (en) | 2000-01-26 | 2002-06-18 | Gemin X Biotechnologies Inc. | Pyrrole-type compounds, compositions, and methods for treating cancer or viral diseases |
JP2003027075A (en) * | 2001-07-12 | 2003-01-29 | Maezawa Ind Inc | Equipment for complex treatment of organic waste material, including combination of biological gas forming unit and biological diesel fuel forming unit, and method for treatment of organic waste material by using the same |
WO2003012012A1 (en) * | 2001-07-31 | 2003-02-13 | Hitoshi Inoue | Method of biomass gasification |
US7425553B2 (en) | 2003-05-30 | 2008-09-16 | Gemin X Pharmaceuticals Canada Inc. | Triheterocyclic compounds, compositions, and methods for treating cancer or viral diseases |
US7491745B2 (en) | 2000-01-26 | 2009-02-17 | Gemin X Pharmaceuticals Canada Inc. | Pyrrole-Type compounds, compositions and methods for treating cancer or viral disease |
RU2493240C2 (en) * | 2008-07-11 | 2013-09-20 | Фуел Теч, Инк. | Method of directed introduction of reagent to control slag forming as result of combustion of coal with increased content of iron and/or calcium |
-
1991
- 1991-09-26 JP JP3273479A patent/JPH0586374A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0859202A (en) * | 1994-08-25 | 1996-03-05 | Agency Of Ind Science & Technol | Production of hydrogen from cellulosic biomass |
US6407244B1 (en) | 2000-01-26 | 2002-06-18 | Gemin X Biotechnologies Inc. | Pyrrole-type compounds, compositions, and methods for treating cancer or viral diseases |
US6602879B2 (en) | 2000-01-26 | 2003-08-05 | Gemin X Biotechnologies Inc. | Pyrrole-type compounds, compositions, and methods for treating cancer or viral diseases |
US7491745B2 (en) | 2000-01-26 | 2009-02-17 | Gemin X Pharmaceuticals Canada Inc. | Pyrrole-Type compounds, compositions and methods for treating cancer or viral disease |
JP2003027075A (en) * | 2001-07-12 | 2003-01-29 | Maezawa Ind Inc | Equipment for complex treatment of organic waste material, including combination of biological gas forming unit and biological diesel fuel forming unit, and method for treatment of organic waste material by using the same |
WO2003012012A1 (en) * | 2001-07-31 | 2003-02-13 | Hitoshi Inoue | Method of biomass gasification |
US9187704B2 (en) | 2001-07-31 | 2015-11-17 | Hitoshi Inoue | Method of biomass gasification |
US7425553B2 (en) | 2003-05-30 | 2008-09-16 | Gemin X Pharmaceuticals Canada Inc. | Triheterocyclic compounds, compositions, and methods for treating cancer or viral diseases |
US7709477B2 (en) | 2003-05-30 | 2010-05-04 | Gemin X Pharmaceuticals Canada Inc. | Methods for treating cancer |
US8420638B2 (en) | 2003-05-30 | 2013-04-16 | Gemin X Pharmaceuticals Canada Inc. | Triheterocyclic compounds and compositions thereof |
RU2493240C2 (en) * | 2008-07-11 | 2013-09-20 | Фуел Теч, Инк. | Method of directed introduction of reagent to control slag forming as result of combustion of coal with increased content of iron and/or calcium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Osman | Mass spectrometry study of lignocellulosic biomass combustion and pyrolysis with NOx removal | |
CN102822093B (en) | Activated carbon and uses thereof | |
Kara et al. | Modeling the effects of adsorbent dose and particle size on the adsorption of reactive textile dyes by fly ash | |
US4297333A (en) | Method of decomposing hypochlorite ion in a basic solution | |
US3701824A (en) | Method of removing odoriferous sulphur compounds from vapours or gas streams | |
DE2120315A1 (en) | ||
JPH0586374A (en) | Decomposition of carbohydrate into combustible gas | |
EA023831B1 (en) | Method for preparing a composition comprising amorphous iron oxyhydroxide | |
US3391988A (en) | Process for the removal of mercaptans from gases | |
JPS596198B2 (en) | Method of removing oil or petroleum hydrocarbons from seawater | |
CN109833904A (en) | A kind of difunction catalyst, preparation method and the application in ethyl alcohol conversion reaction | |
CN109095589A (en) | The composition of dioxanes and its application in a kind of degradation water body | |
RU2447922C1 (en) | Filtration material for cleaning water of iron, manganese and hydrogen sulphide and method of its production | |
US11384305B2 (en) | Carbonized char fuels from biomass | |
KR101423689B1 (en) | THE METHOD FOR THE PRODUCTION OF AROMATIC COMPOUNDS USING SOLID BASE CATALYST FOR HYDROLYSIS OF β-O-4 LINKAGE OF LIGNIN IN NEAR-CRITICAL WATER | |
DE69405537D1 (en) | METHOD FOR RECOVERY OF ENERGY AND CHEMICALS FROM CELLULOSIC LIQUIDS | |
US1819354A (en) | Material preparation | |
RU2281930C2 (en) | Humic acid and humic acid salt production process | |
US1802806A (en) | Process for treating alkaline liquors | |
Dijkgraaf | Oxidation of glucose to glucaric acid by Pt/C catalysts | |
RU2237013C1 (en) | Method of preparing activated carbon from vegetable raw material | |
RU2105715C1 (en) | Method for production of carbon cation exchanger | |
JP5769165B2 (en) | Method for decomposing cellulosic materials | |
Rakhimov | INCREASING THE EFFICIENCY OF THE GAS REFINING PROCESS THROUGH THE RECOVERY OF ALKANOLAMINES | |
JPH10265209A (en) | Activated carbon |