[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0586674B2 - - Google Patents

Info

Publication number
JPH0586674B2
JPH0586674B2 JP59042411A JP4241184A JPH0586674B2 JP H0586674 B2 JPH0586674 B2 JP H0586674B2 JP 59042411 A JP59042411 A JP 59042411A JP 4241184 A JP4241184 A JP 4241184A JP H0586674 B2 JPH0586674 B2 JP H0586674B2
Authority
JP
Japan
Prior art keywords
thin film
region
type
source
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59042411A
Other languages
Japanese (ja)
Other versions
JPS60186053A (en
Inventor
Yoshifumi Tsunekawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP59042411A priority Critical patent/JPS60186053A/en
Publication of JPS60186053A publication Critical patent/JPS60186053A/en
Publication of JPH0586674B2 publication Critical patent/JPH0586674B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、薄膜トランジスタ(以下TFTと記
す。)で構成する、相補型薄膜トランジスタ回路
(以下、薄膜CMOS回路と記す。)の共通電極部
の構造に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to the structure of a common electrode portion of a complementary thin film transistor circuit (hereinafter referred to as a thin film CMOS circuit) composed of thin film transistors (hereinafter referred to as TFT). be.

〔従来技術〕[Prior art]

従来のシリコンウエハに形成する、N型MOS
トランジスタおよびP型MOSトランジスタより
構成されるCMOS回路では、各々のトランジス
タを同一ウエハに形成する際、N型ウエハ使用の
時はP型ウエルを、P型ウエハ使用の時はN型ウ
エルを形成した後、ウエハ内のウエル部と、ウエ
ル部以外に、別々にMOSトランジスタを形成し、
共通電極領域を、アルミニウム等の導電体材料で
接続してCMOS構造とするものであつて、この
方法では、必ずウエハとは型の異なるウエハが必
要となり、共通電極領域からの電極の引き出しに
2点のコンタクトを必要とする点、およびトラン
ジスタ間隔縮少の点で限界が生じ、微細化を進め
る上で問題があつた。
N-type MOS formed on conventional silicon wafer
In a CMOS circuit composed of transistors and P-type MOS transistors, when forming each transistor on the same wafer, a P-type well is formed when an N-type wafer is used, and an N-type well is formed when a P-type wafer is used. After that, MOS transistors are formed separately in the well part and the non-well part in the wafer,
The common electrode area is connected with a conductive material such as aluminum to form a CMOS structure. This method always requires a wafer of a different type from the wafer, and two There were limitations in terms of the need for point contacts and the reduction in the distance between transistors, which caused problems in advancing miniaturization.

〔目的〕〔the purpose〕

本発明はこのような問題点を解決するもので、
その目的とするところは、同一半導体に、N型
TFTおよびP型TFTを形成して薄膜CMOS回路
を構成することにより、トランジスタ間隔を減少
させ、かつ共通電極を唯一のコンタクトで取り
CMOS回路の微細化をはかることにある。
The present invention solves these problems,
The purpose is to add N-type to the same semiconductor.
By forming TFTs and P-type TFTs to construct thin film CMOS circuits, the transistor spacing can be reduced and the common electrode can be made as a single contact.
The goal is to miniaturize CMOS circuits.

〔概要〕〔overview〕

N型薄膜トランジスタおよびP型薄膜トランジ
スタで構成する薄膜CMOS回路の共通となる電
極部を、同一半導体に形成し、かつ唯一のコンタ
クトで電極を形成することを、特徴とする。
The present invention is characterized in that a common electrode portion of a thin film CMOS circuit constituted by an N-type thin film transistor and a P-type thin film transistor is formed in the same semiconductor, and the electrode is formed by a unique contact.

〔実施例〕〔Example〕

以下、本発明について、実施例に基づき詳細に
説明する。
Hereinafter, the present invention will be described in detail based on examples.

説明にあたり、回路として基本回路であるイン
バータを使用する。第1図が従来のシリコンウエ
ハに作製したインバータを、第2図がTFTで構
成したインバータを示す。第1図aおよび第2図
aは、インバータの上面図を、第1図bおよび第
2図bは、各々AA′およびBB′で切断した際の断
面図である。
In the explanation, an inverter, which is a basic circuit, will be used as the circuit. FIG. 1 shows an inverter fabricated on a conventional silicon wafer, and FIG. 2 shows an inverter made of TFT. 1a and 2a are top views of the inverter, and FIGS. 1b and 2b are sectional views taken along AA' and BB', respectively.

第1図と第2図で示すCMOS回路の構造上な
らびに作製上の相異点は、薄膜CMOS回路(第
2図b)では、ウエル2を形成することなく、同
一半導体層12に、N型TFTおよびP型TFTの
ソースおよびドレイン領域を形成していること、
さらに、N型トランジスタおよびP型トランジス
タの電極の中で、共通となる電極、図中では、ド
レイン電極とゲート電極であるが、ドレイン電極
を、両トランジスタのドレイン領域より、唯一の
コンタクトにより取り出していることである。
The difference in structure and manufacturing between the CMOS circuits shown in FIG. 1 and FIG. 2 is that in the thin film CMOS circuit (FIG. 2b), an N-type Forming source and drain regions of TFT and P-type TFT;
Furthermore, among the electrodes of the N-type transistor and the P-type transistor, the common electrode (drain electrode and gate electrode in the figure) is taken out from the drain region of both transistors by the only contact. It is that you are.

続いて薄膜CMOS回路の製造法について、説
明を加える。
Next, we will explain the manufacturing method of thin film CMOS circuits.

絶縁基板11上に半導体層12を形成し、適当
な形状にエツチングした後ゲート膜を形成する。
次いで、半導体層形成後の不純物拡散あるいは高
導電性材料によりゲート電極17を形成し、N型
TFTおよびP型TFTのソースおよびドレイン領
域を不純物イオンビームのイオン打ち込み等で形
成する。ソースおよびドレイン領域は、片側の
TFTを、レジスト等でマスクをして、N型TFT
およびP型TFTで別々に形成する。第2図bの
如くソースおよびドレイン領域は、両トランジス
タ共に同一半導体層に形成し、特にドレイン領域
は、両トランジスタ間で十分近接させ、13,1
4,15のような構造とする。次いで層間絶縁層
18を形成した後、導電性材料によりコンタクト
をとり、インバータを形成する。
A semiconductor layer 12 is formed on an insulating substrate 11, etched into a suitable shape, and then a gate film is formed.
Next, a gate electrode 17 is formed by impurity diffusion after the semiconductor layer is formed or by using a highly conductive material, and an N-type gate electrode 17 is formed.
The source and drain regions of the TFT and P-type TFT are formed by ion implantation with an impurity ion beam. The source and drain regions are located on one side.
Mask the TFT with resist, etc., and turn it into an N-type TFT.
and P-type TFT. As shown in FIG. 2b, the source and drain regions of both transistors are formed in the same semiconductor layer, and in particular, the drain regions are made sufficiently close to each other between both transistors.
The structure is as shown in 4.15. Next, after forming an interlayer insulating layer 18, contact is made with a conductive material to form an inverter.

加えて、第3図は、作製法は前述のとおりであ
るが、共通であるドレイン電極を、イオン打ち込
み等で形成したドレイン領域の、P型およびN型
不純物が混在する重なり領域15より取り出した
ことを示す図である。
In addition, in FIG. 3, although the fabrication method is as described above, a common drain electrode is taken out from the overlap region 15 where P-type and N-type impurities coexist in the drain region formed by ion implantation etc. FIG.

第4図は、ソース領域およびドレイン領域の形
成法を除いて上述と同様に作製する。ソース領域
およびドレイン領域は、不純物注入の際、まずソ
ース領域およびドレイン領域全面にN型不純物ま
たはP型不純物を注入し、N型不純物注入の際は
N型TFTを、P型不純物注入の際はP型TFT
を、レジスト等でマスクをして、逆の型の不純物
注入を行ない、N型TFTおよびP型TFTのソー
ス領域およびドレイン領域を形成する。従つて、
接触する領域13,14のうち後から不純物の注
入により形成された側の領域には、N型不純物と
P型不純物の両方が混在している。
The structure shown in FIG. 4 is manufactured in the same manner as described above except for the method of forming the source region and drain region. When implanting impurities into the source and drain regions, first implant N-type impurities or P-type impurities into the entire surface of the source and drain regions. P-type TFT
are masked with a resist or the like, and the opposite type impurity is implanted to form source and drain regions of an N-type TFT and a P-type TFT. Therefore,
Of the contacting regions 13 and 14, the region formed later by impurity implantation contains both N-type impurities and P-type impurities.

以上のように、本発明によれば、薄膜CMOS
回路のN型TFTおよびP型TFTにおいて、各々
のソース領域およびドレイン領域を同一の半導体
薄膜に形成することで、トランジスタ間隔の大幅
な縮小が可能となり、薄膜CMOS回路自体の微
細化および薄膜CMOS回路を用いた集積回路の
高集積化に多大な効果を有するものである。
As described above, according to the present invention, thin film CMOS
By forming the source and drain regions of each N-type TFT and P-type TFT in the same semiconductor thin film, it is possible to significantly reduce the transistor spacing, allowing for miniaturization of the thin-film CMOS circuit itself and thin-film CMOS circuits. This has a great effect on increasing the degree of integration of integrated circuits using this method.

加えて、ソース領域およびドレイン領域を多結
晶あるいは非晶質の非単結晶層に形成するので、
P型領域とN型領域との接触によるキヤリアの流
れの制限が単結晶に形成する際と比較して緩和さ
れ、共通電極による出力の取り出しが充分にでき
る。
In addition, since the source region and drain region are formed in polycrystalline or amorphous non-single crystal layers,
Restrictions on the flow of carriers due to contact between the P-type region and the N-type region are relaxed compared to when forming a single crystal, and output can be sufficiently extracted by the common electrode.

第4図の構成では、さらにN型TFTとP型
TFTの境界領域の構造が簡略化されるので、第
2図の場合に比べて、さらに進んだ微細化ができ
る。
In the configuration shown in Figure 4, there is also an N-type TFT and a P-type TFT.
Since the structure of the TFT boundary region is simplified, further miniaturization can be achieved compared to the case of FIG. 2.

[発明の効果] 本発明はこのような構成を採用したことにより
以下のような顕著な作用効果を奏するものであ
る。
[Effects of the Invention] By employing such a configuration, the present invention achieves the following remarkable effects.

(a) 非単結晶半導体層にP型TFTとN型TFTの
ソース・ドレイン領域を形成し、出力を得るた
めに各々のドレイン領域を直接接触してPN接
合する領域を形成しても、非単結晶半導体層中
の結晶粒塊に沿つて電流がリークしたり、結晶
中の結晶欠陥中を電流がリークしたりするた
め、PN接合部では単結晶半導体により形成し
た際の顕著なダイオード特性は示されない。従
つて、P型TFTとN型TFTをPN接合で直接
接続でき、P型のソース・ドレイン領域とN型
のソース・ドレイン領域を離間する必要がな
く、さらに各々のドレイン領域にコンンタクト
を別個に設ける必要がなくなるので、非単結晶
薄膜トランジスタでCMOS回路を構成した場
合に、トランジスタ間隔の大幅な縮小が可能と
なり、薄膜CMOS回路自体の微細化および薄
膜CMOS回路を用いた集積回路の高集積化に
極めて顕著な効果を有する。
(a) Even if source/drain regions of a P-type TFT and an N-type TFT are formed in a non-single crystal semiconductor layer, and a PN junction region is formed by directly contacting each drain region to obtain output, the Because current leaks along the crystal grain agglomerates in the single crystal semiconductor layer or through crystal defects in the crystal, the remarkable diode characteristics of the PN junction when formed using a single crystal semiconductor are Not shown. Therefore, a P-type TFT and an N-type TFT can be directly connected through a PN junction, there is no need to separate the P-type source/drain region from the N-type source/drain region, and it is also possible to connect a separate contact to each drain region. Since it is no longer necessary to provide a CMOS circuit with non-single-crystal thin film transistors, it is possible to significantly reduce the distance between transistors, making it possible to miniaturize the thin film CMOS circuit itself and increase the integration density of integrated circuits using thin film CMOS circuits. It has extremely significant effects.

(b) ソース・ドレイン領域を非単結晶半導体薄膜
中に形成するので、P型領域とN型領域との接
触によるキヤリアの流れの制御が単結晶中に形
成する際と比較して緩和され、基板からの電極
の引き出しによるコンタクトが充分に取れる。
(b) Since the source/drain regions are formed in a non-single crystal semiconductor thin film, the control of carrier flow due to contact between the P-type region and the N-type region is relaxed compared to when the source/drain regions are formed in a single crystal; Sufficient contact can be made by drawing out the electrode from the substrate.

すなわち、非単結晶半導体薄膜中にP型
TFTおよびN型TFTの各々のドレインが接触
する領域を形成しても、上述の如くこの部分で
はリーク電流が大きいので、充分なコンタクト
が取れる。
That is, P-type in the non-single crystal semiconductor thin film.
Even if a region is formed in which the drains of the TFT and the N-type TFT are in contact, sufficient contact can be made because the leakage current is large in this region as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のCMOSインバータの構造を、
第2図は、薄膜CMOSインバータを示す。両図
ともにaが上面図、bが断面図である。第3図
は、第2図において、ドレイン電極のコンタクト
位置を、ドレインの重なり部より取り出した構造
を示す図である。第4図は、ドレインおよびソー
ス領域の形成方法が異なる薄膜CMOSインバー
タの構造を示す。 1……シリコンウエハ、2……ウエル、3……
ソース(右)およびドレイン(左)領域、4……
ソース(左)およびドレイン(右)領域、5……
ゲート膜、6……ゲート電極、7……絶縁膜、8
……出力ライン(ドレイン電極)、9……電源ラ
イン(ソース電極)、10……入力ライン(ゲー
ト電極)、11……絶縁基板、12……半導体層、
13……ソース(右)およびドレイン(左)領
域、14……ソース(左)およびドレイン(右)
領域、15……ドレインの重なり領域、16……
ゲート膜、17……ゲート電極、18……絶縁
膜、19……出力ライン(ドレイン電極)、20
……電源ライン(ソース電極)、21……入力ラ
イン(ゲート電極)。
Figure 1 shows the structure of a conventional CMOS inverter.
FIG. 2 shows a thin film CMOS inverter. In both figures, a is a top view and b is a cross-sectional view. FIG. 3 is a diagram showing a structure in which the contact position of the drain electrode is extracted from the overlapping portion of the drain in FIG. 2. FIG. 4 shows the structure of a thin film CMOS inverter in which the drain and source regions are formed in different ways. 1... Silicon wafer, 2... Well, 3...
Source (right) and drain (left) regions, 4...
Source (left) and drain (right) regions, 5...
Gate film, 6... Gate electrode, 7... Insulating film, 8
... Output line (drain electrode), 9 ... Power supply line (source electrode), 10 ... Input line (gate electrode), 11 ... Insulating substrate, 12 ... Semiconductor layer,
13... Source (right) and drain (left) region, 14... Source (left) and drain (right)
Area, 15... Drain overlap area, 16...
Gate film, 17... Gate electrode, 18... Insulating film, 19... Output line (drain electrode), 20
...Power line (source electrode), 21...Input line (gate electrode).

Claims (1)

【特許請求の範囲】 1 絶縁基板上に設けられた島状の半導体層に形
成された2つの薄膜トランジスタであつて、一方
の薄膜トランジスタは第1導電型領域をソース及
びドレイン領域とし、他方の薄膜トランジスタは
第2導電型領域をソース及びドレイン領域として
なる2つの薄膜トランジスタを備えてなる相補型
薄膜トランジスタ回路であつて、 前記半導体層は非単結晶層からなり、 前記第1導電型領域の一方と前記第2導電型領
域の一方とが直接接触してなる接触領域と、該接
触領域上に形成され当該相補型薄膜トランジスタ
回路の出力を取り出す共通電極とを有する ことを特徴とする相補型薄膜トランジスタ回
路。 2 前記接触領域は、第1導電型の不純物と第2
導電型の不純物の混在した領域を少なくとも一部
に有することを特徴とする特許請求の範囲第1項
記載の相補型薄膜トランジスタ回路。
[Claims] 1. Two thin film transistors formed in an island-shaped semiconductor layer provided on an insulating substrate, one thin film transistor having a first conductivity type region as a source and drain region, and the other thin film transistor having a first conductivity type region as a source and drain region. A complementary thin film transistor circuit comprising two thin film transistors each having a second conductivity type region as a source and a drain region, the semiconductor layer being a non-single crystal layer, one of the first conductivity type regions and the second conductivity type region. A complementary thin film transistor circuit comprising: a contact region that is in direct contact with one of the conductivity type regions; and a common electrode formed on the contact region and from which an output of the complementary thin film transistor circuit is taken out. 2. The contact region includes an impurity of a first conductivity type and an impurity of a second conductivity type.
2. The complementary thin film transistor circuit according to claim 1, wherein at least a portion thereof has a region in which conductive type impurities are mixed.
JP59042411A 1984-03-06 1984-03-06 Thin film complementary mos circuit Granted JPS60186053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59042411A JPS60186053A (en) 1984-03-06 1984-03-06 Thin film complementary mos circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59042411A JPS60186053A (en) 1984-03-06 1984-03-06 Thin film complementary mos circuit

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP6231631A Division JP2562419B2 (en) 1994-09-27 1994-09-27 Method of manufacturing complementary thin film transistor
JP6231630A Division JP2647020B2 (en) 1994-09-27 1994-09-27 Complementary thin film transistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS60186053A JPS60186053A (en) 1985-09-21
JPH0586674B2 true JPH0586674B2 (en) 1993-12-13

Family

ID=12635322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59042411A Granted JPS60186053A (en) 1984-03-06 1984-03-06 Thin film complementary mos circuit

Country Status (1)

Country Link
JP (1) JPS60186053A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412577A (en) * 1987-07-06 1989-01-17 Canon Kk Thin film transistor
JP2940880B2 (en) * 1990-10-09 1999-08-25 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JPH04206971A (en) * 1990-11-30 1992-07-28 Sharp Corp Film semiconductor device
US7253440B1 (en) * 1991-10-16 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having at least first and second thin film transistors
JP2784615B2 (en) 1991-10-16 1998-08-06 株式会社半導体エネルギー研究所 Electro-optical display device and driving method thereof
US7071910B1 (en) 1991-10-16 2006-07-04 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device and method of driving and manufacturing the same
US6441758B1 (en) 1997-11-27 2002-08-27 Semiconductor Energy Laboratory Co., Ltd. D/A conversion circuit and semiconductor device
JP4651773B2 (en) * 1999-04-06 2011-03-16 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6346730B1 (en) 1999-04-06 2002-02-12 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device having a pixel TFT formed in a display region and a drive circuit formed in the periphery of the display region on the same substrate
JP4662647B2 (en) * 2001-03-30 2011-03-30 シャープ株式会社 Display device and manufacturing method thereof
FR2829114B1 (en) 2001-09-04 2004-11-12 Oreal DEVICE FOR PACKAGING AND DISPENSING A LIQUID PRODUCT
JP5844956B2 (en) * 2009-03-05 2016-01-20 ルネサスエレクトロニクス株式会社 Semiconductor device
US20120104402A1 (en) * 2010-11-03 2012-05-03 Pei-Hua Chen Architecture of analog buffer circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113177A (en) * 1976-03-18 1977-09-22 Matsushita Electric Ind Co Ltd Semiconductor device
JPS5721855A (en) * 1980-07-16 1982-02-04 Toshiba Corp Manufacture of complementary mos semiconductor device
JPS5750463A (en) * 1980-09-11 1982-03-24 Toshiba Corp Complementary type mos semiconductor device
JPS5771170A (en) * 1980-10-22 1982-05-01 Toshiba Corp Manufacture of complementary mos semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113177A (en) * 1976-03-18 1977-09-22 Matsushita Electric Ind Co Ltd Semiconductor device
JPS5721855A (en) * 1980-07-16 1982-02-04 Toshiba Corp Manufacture of complementary mos semiconductor device
JPS5750463A (en) * 1980-09-11 1982-03-24 Toshiba Corp Complementary type mos semiconductor device
JPS5771170A (en) * 1980-10-22 1982-05-01 Toshiba Corp Manufacture of complementary mos semiconductor device

Also Published As

Publication number Publication date
JPS60186053A (en) 1985-09-21

Similar Documents

Publication Publication Date Title
US4566025A (en) CMOS Structure incorporating vertical IGFETS
US4213139A (en) Double level polysilicon series transistor cell
US4740826A (en) Vertical inverter
USH1435H (en) SOI CMOS device having body extension for providing sidewall channel stop and bodytie
JPH01102955A (en) Mos semiconductor memory circuit device
US5311050A (en) Semiconductor vertical MOSFET inverter circuit
JP2921468B2 (en) Semiconductor memory device
JPH0586674B2 (en)
US4505026A (en) CMOS Process for fabricating integrated circuits, particularly dynamic memory cells
JPH0228270B2 (en)
US4788158A (en) Method of making vertical inverter
JPH0365902B2 (en)
US4570175A (en) Three-dimensional semiconductor device with thin film monocrystalline member contacting substrate at a plurality of locations
JPS6037623B2 (en) semiconductor storage device
US4404579A (en) Semiconductor device having reduced capacitance and method of fabrication thereof
JP2647020B2 (en) Complementary thin film transistor and method of manufacturing the same
JPH0117264B2 (en)
JPH0241910B2 (en)
JP2562419B2 (en) Method of manufacturing complementary thin film transistor
US6110767A (en) Reversed MOS
JPS63131565A (en) Semiconductor device
JPS5943828B2 (en) Manufacturing method of MOS type integrated circuit
JPH05136382A (en) Complementary gate array
JPH03169080A (en) Field effect transistor
KR930010120B1 (en) Cmos transistor for inverter and making method of the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term