JPH0582786A - MOS type transistor - Google Patents
MOS type transistorInfo
- Publication number
- JPH0582786A JPH0582786A JP3242196A JP24219691A JPH0582786A JP H0582786 A JPH0582786 A JP H0582786A JP 3242196 A JP3242196 A JP 3242196A JP 24219691 A JP24219691 A JP 24219691A JP H0582786 A JPH0582786 A JP H0582786A
- Authority
- JP
- Japan
- Prior art keywords
- region
- gate electrode
- gate
- conductivity type
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 239000004065 semiconductor Substances 0.000 claims abstract description 11
- 239000010410 layer Substances 0.000 claims description 19
- 239000002344 surface layer Substances 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 2
- 108091006146 Channels Proteins 0.000 description 12
- 239000012535 impurity Substances 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 7
- 238000005530 etching Methods 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 108010075750 P-Type Calcium Channels Proteins 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
(57)【要約】
【目的】半導体基板の両主面に対向して設けられた両電
極間に流れる電流を一主面上に絶縁膜を介して設けられ
たゲート電極によりスイッチングする素子のターンオフ
の速度を速くする。
【構成】ゲート電極のチャネル部の上の部分とその他の
部分との導電型を変えてその間のPN接合によりオフ時
にチャネル部の上の部分に電流が流入するのを阻止する
と共に、チャネル部上以外のゲート電極部分にはコイル
を接続してその部分からの電荷の放電を遅らせることに
より、チャネル部上のゲート電極部分の電荷が速やかに
除去されてスイッチング速度が向上する。
(57) [Abstract] [Purpose] Turn-off of an element that switches a current flowing between both electrodes provided facing both main surfaces of a semiconductor substrate by a gate electrode provided on one main surface through an insulating film. Speed up. Constitution: The conductivity type of the portion above the channel portion of the gate electrode and the other portion is changed, and a PN junction therebetween prevents current from flowing into the portion above the channel portion at the time of turning off, By connecting a coil to the gate electrode portion other than that and delaying the discharge of the electric charge from that portion, the electric charge of the gate electrode portion on the channel portion is promptly removed and the switching speed is improved.
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体基板の両主面に対
向して設けられた両電極間に流れる電流を一主面上に絶
縁膜を介して設けられたゲート電極によりスイッチング
するMOS型トランジスタに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS type in which a current flowing between both electrodes provided on both main surfaces of a semiconductor substrate is switched by a gate electrode provided on one main surface via an insulating film. Regarding transistors.
【0002】[0002]
【従来の技術】半導体基板の両主面に設けられた両電極
間を流れる電流を電圧駆動する事の出来る電力用スイッ
チング素子としてMOS電界効果トランジスタ (MOS
FET) あるいは絶縁ゲート型バイポーラトランジスタ
(IGBT) が多く用いられるようになった。2. Description of the Related Art A MOS field effect transistor (MOS) is used as a power switching element capable of voltage-driving a current flowing between both electrodes provided on both main surfaces of a semiconductor substrate.
FET) or insulated gate bipolar transistor
(IGBT) has become popular.
【0003】図2は縦型MOSFETの基本的構造を示
す。すなわち、N+ 層1の上に積層された低不純物濃度
のN- 層2の表面層内に選択的にP領域3が形成され、
さらにそのP領域3の表面層内に選択的にN+ ソース領
域4が形成されていて、P領域3の表面部のうちN- 層
2とN+ ソース領域4とによって挟まれた部分がチャネ
ル部5となる。このチャネル部の上からN- 層の露出部
の上にかけてゲート絶縁膜6を介して多結晶シリコンよ
りなるゲート電極7が設けられている。ゲート電極7の
表面は酸化膜8により覆われているがその一部はエッチ
ングにより除去されており、ゲート接続電極11が接触し
ている。この酸化膜8によりゲート電極7と絶縁された
エミッタ電極9は、P領域3とN+ソース領域4とに共
通に接触しており、またN+ 基板1の反対側表面にはコ
レクタ電極10が接触している。FIG. 2 shows the basic structure of a vertical MOSFET. That is, the P region 3 is selectively formed in the surface layer of the low impurity concentration N − layer 2 stacked on the N + layer 1,
Further, an N + source region 4 is selectively formed in the surface layer of the P region 3, and a portion of the surface portion of the P region 3 sandwiched by the N − layer 2 and the N + source region 4 is a channel. It will be Part 5. A gate electrode 7 made of polycrystalline silicon is provided from above the channel portion to above the exposed portion of the N − layer via a gate insulating film 6. The surface of the gate electrode 7 is covered with the oxide film 8, but a part thereof is removed by etching, and the gate connection electrode 11 is in contact therewith. The emitter electrode 9 insulated from the gate electrode 7 by the oxide film 8 is in common contact with the P region 3 and the N + source region 4, and the collector electrode 10 is provided on the opposite surface of the N + substrate 1. Are in contact.
【0004】この素子はエミッタ電極9を接地し、コレ
クタ電極10に正の電圧を印加した状態で、ゲート電極7
にしきい値電圧以上の電圧を印加すると、チャネル部5
がP型からN型へと反転し、電子がエミッタ電極9から
N+ ソース領域4、チャネル部5の反転した部分、N-
層2およびN+ 層1を介してコレクタ電極10に流れる事
により導通状態となる。一方、ゲート電極7にしきい値
電圧以下の電圧を印加した場合はチャネル部5の反転は
起こらないので導通状態とはならない。IGBTの場合
はN+ 層1の代わりにP+ 層を用い、オン時にN- 層2
に伝導度変調をおこさせてオン電圧を低くするものであ
る。In this device, the emitter electrode 9 is grounded, and a positive voltage is applied to the collector electrode 10 while the gate electrode 7 is being applied.
When a voltage higher than the threshold voltage is applied to the channel section 5,
Are inverted from P-type to N-type, and electrons are inverted from the emitter electrode 9 to the N + source region 4 and the channel portion 5, N −.
It becomes conductive by flowing into the collector electrode 10 through the layer 2 and the N + layer 1. On the other hand, when a voltage equal to or lower than the threshold voltage is applied to the gate electrode 7, the inversion of the channel portion 5 does not occur, so that the conduction state is not established. In the case of the IGBT, the P + layer is used instead of the N + layer 1 and the N − layer 2 is turned on when the IGBT is turned on.
Conductivity modulation is caused to lower the on-voltage.
【0005】図2に示した半導体素子の製造方法は以下
の手順で行われる。N+ サブストレート1上にN- エピ
タキシャル層2を積層してなるシリコンウエーハの表面
にゲート絶縁膜6および多結晶ゲート電極7を形成した
後にこれら2層を選択エッチングによりパターニングす
る。そのエッチングによる除去部を通しアクセプタ不純
物をイオン注入し熱拡散する事によりP拡散領域3を形
成する。さらにドナー不純物をゲート電極7をマスクと
してイオン注入し熱拡散する事によりN+ ソース領域4
を形成する。その後層間絶縁膜となるPSGなどの酸化
絶縁膜8を堆積させ、ゲート電極が露出しないように窓
を開ける。この際、選択エッチングに用いたマスクを再
び用いてN+ ソース領域をエッチングする事によりP領
域3を露出させる。次いで酸化絶縁膜8をオーバーエッ
チングしてN+ ソース領域4を露出させる。なお酸化絶
縁膜8は後にゲート電極7とゲート接続電極11とが接触
するように一部除去しておく。そしてアルミニウムを蒸
着により堆積させてパターニングする事によりエミッタ
電極9とゲート接続電極11を形成する。最後にN+基板
1の反対側表面に金属を蒸着してコレクタ電極10として
完成する。The method of manufacturing the semiconductor device shown in FIG. 2 is performed in the following procedure. After a gate insulating film 6 and a polycrystalline gate electrode 7 are formed on the surface of a silicon wafer obtained by laminating an N − epitaxial layer 2 on an N + substrate 1, these two layers are patterned by selective etching. The P diffusion region 3 is formed by ion-implanting the acceptor impurity through the removed portion by the etching and thermally diffusing it. Further, the donor impurity is ion-implanted by using the gate electrode 7 as a mask to thermally diffuse the N + source region 4
To form. After that, an oxide insulating film 8 such as PSG serving as an interlayer insulating film is deposited, and a window is opened so that the gate electrode is not exposed. At this time, the N + source region is etched by using the mask used for the selective etching again to expose the P region 3. Next, the oxide insulating film 8 is over-etched to expose the N + source region 4. The oxide insulating film 8 is partially removed so that the gate electrode 7 and the gate connection electrode 11 will come into contact with each other later. Then, the emitter electrode 9 and the gate connection electrode 11 are formed by depositing aluminum by vapor deposition and patterning. Finally, metal is vapor-deposited on the opposite surface of the N + substrate 1 to complete the collector electrode 10.
【0006】[0006]
【発明が解決しようとする課題】近年MOS型トランジ
スタへの要求として装置の小型化のためにより高速スイ
ッチング可能な素子の開発が求められている。そのため
にはゲート、エミッタ、コレクタの各電極間の容量、と
りわけゲート・コレクタ間の容量低減が重要になる。そ
れはMOS型トランジスタは前述したようにゲート電極
に正または負の電圧を印加する事により動作させる電圧
駆動型素子であるが、ゲートをある電位に固定させるに
は電荷の充放電が必要で、その充放電の速度はゲート電
極とその他の電極間の容量Cおよびゲート電極とゲート
駆動回路間の抵抗Rによって決まる時定数によって決ま
り、この速度が素子のスイッチング速度を決める重要な
要素となっている。この対策としては容量Cの低減やゲ
ート抵抗Rの低減などが有るが、容量Cの低減のために
ゲート酸化膜を厚くすることや、容量に影響する部分の
面積を狭くすることは何れもオン電圧を上昇させるし、
抵抗Rの低減も現開発段階では限界となりつつある。In recent years, as a demand for a MOS type transistor, development of an element capable of high-speed switching has been demanded in order to miniaturize the device. To that end, it is important to reduce the capacitance between the gate, emitter, and collector electrodes, and especially to reduce the capacitance between the gate and collector. Although the MOS type transistor is a voltage drive type element which is operated by applying a positive or negative voltage to the gate electrode as described above, charge and discharge of electric charges are required to fix the gate to a certain potential. The charge / discharge speed is determined by the time constant determined by the capacitance C between the gate electrode and the other electrodes and the resistance R between the gate electrode and the gate drive circuit, and this speed is an important factor for determining the switching speed of the device. As measures against this, there are reductions in capacitance C and reduction in gate resistance R. However, in order to reduce capacitance C, thickening the gate oxide film and narrowing the area of the portion that affects capacitance are both on. Increase the voltage and
The reduction of resistance R is reaching the limit at the current development stage.
【0007】本発明の目的は上述の問題を解決し、高速
スイッチング可能なMOS型トランジスタを提供する事
にある。An object of the present invention is to solve the above problems and provide a MOS transistor capable of high speed switching.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、半導体基板の第一導電型の第一領域の表
面層内に選択的に形成された第二導電型の第二領域およ
びその第二領域の表面層内に選択的に形成された第一導
電型の第三領域を有し、第二領域表面部の第一領域と第
三領域にはさまれた部分の上から第一領域の露出面上に
かけてゲート絶縁膜を介して設けられたゲート電極なら
びにそのゲート電極と絶縁されて第二領域および第三領
域に共通に接触するエミッタ電極を備えたMOS型トラ
ンジスタにおいて、ゲート電極の少なくとも第一領域の
露出面上にある部分が第一導電型であり、残りの部分が
第二導電型であって、ゲート端子がゲート電極の第一導
電型の部分に直接に、第二導電型の部分にコイルを介し
て接続されたものとする。そして、ゲート電極が多結晶
シリコンよりなることが有効である。またコイルが半導
体基板表面と絶縁膜を介する導体層により形成されたこ
とも有効である。To achieve the above object, the present invention provides a second conductivity type second layer selectively formed in a surface layer of a first region of the first conductivity type of a semiconductor substrate. Area and a third area of the first conductivity type selectively formed in the surface layer of the second area, and on the portion sandwiched between the first area and the third area of the second area surface portion. To a exposed region of the first region through a gate insulating film, and a MOS transistor having an emitter electrode insulated from the gate electrode and commonly contacting the second region and the third region, At least a portion of the gate electrode on the exposed surface of the first region is a first conductivity type, the remaining portion is a second conductivity type, the gate terminal directly to the first conductivity type portion of the gate electrode, Connected to the second conductivity type part via a coil To. It is effective that the gate electrode is made of polycrystalline silicon. It is also effective that the coil is formed of a conductor layer with the surface of the semiconductor substrate and an insulating film interposed.
【0009】[0009]
【作用】以下、記述を簡単にするために本発明の作用を
NチャネルMOS型トランジスタ、すなわち第一導電型
がN型、第二導電型がP型であるMOS型トランジスタ
について説明する。その場合、ゲート電極のうち、チャ
ネルの上にある部分はP型、第一領域の露出面上にある
部分はN型である。そしてN型の部分にはコイルが接続
されている。素子をオフさせる場合にはゲート電極に負
を印加して、正の電荷をゲート電極より取り除く必要が
ある。従来の素子ではゲート電極全ての電荷を同時に取
り除いていたが、実際には電流をその通路中の一部でで
も通電出来なくなると電流は流れなくなる。オフ時にす
べての電荷を瞬時に除去する必要はなく、チャネル部上
のゲート電極の電荷のみ確実に瞬時に除去すれば素子は
オフする。この素子の場合、ゲート電極中P型の部分は
ゲート回路に直接に接続しているのですぐに放電が終了
し、素子はオフする。しかしN型の部分にコイルが接続
してあるので電流に遅れが生じる。またP型の部分とは
逆方向なのでこの部分を迂回して流れる事もできない。
結果としてゲート電極のN型の部分は素子がオフした後
にゆっくり放電が行われ、最終的にはP型の部分と同電
位となる。オン動作の時にもコイルの箇所では遅れが生
じるが今度はP型部分とN型部分の間の接合が順方向な
のでP型からN型へ電流が流れてオン動作は速やかに行
われる。同様な作用は、導電型が入れ換わり、印加電圧
の極性が逆のPチャネルMOS型トランジスタでも行わ
れる。In order to simplify the description, the operation of the present invention will be described below for an N-channel MOS type transistor, that is, a MOS type transistor in which the first conductivity type is N type and the second conductivity type is P type. In that case, of the gate electrode, the portion above the channel is P-type, and the portion above the exposed surface of the first region is N-type. A coil is connected to the N-type portion. When turning off the element, it is necessary to apply a negative voltage to the gate electrode to remove positive charges from the gate electrode. In the conventional device, the electric charge of all the gate electrodes was removed at the same time, but in reality, when the current cannot be conducted even in a part of the passage, the current stops flowing. It is not necessary to instantly remove all the charges when turned off, and if only the charges of the gate electrode on the channel portion are surely instantly removed, the device turns off. In the case of this element, since the P-type portion in the gate electrode is directly connected to the gate circuit, the discharge ends immediately and the element turns off. However, since the coil is connected to the N-type portion, the current is delayed. Also, since it is in the opposite direction to the P-type part, it cannot flow around this part.
As a result, the N-type portion of the gate electrode is slowly discharged after the element is turned off, and finally has the same potential as the P-type portion. At the time of the on-operation, a delay occurs at the coil, but this time the junction between the p-type part and the n-type part is in the forward direction, so a current flows from the p-type to the n-type, and the on-operation is quickly performed. The same operation is performed in a P-channel MOS type transistor in which the conductivity types are exchanged and the polarity of the applied voltage is opposite.
【0010】[0010]
【実施例】以下図2と共通の部分に同一の符号を付した
図を引用して本発明の実施例について説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawing in which the same reference numerals are given to the same parts as in FIG.
【0011】図1に示した実施例では、多結晶シリコン
ゲート電極の内、下がチャネル部になっている部分71は
P型に、それ以外の部分72はN型になっていて、P型の
部分71はゲート端子12に直接接続されており、N型の部
分72はコイル13を介して接続されている。このNチャネ
ル縦型MOSFETを製造するには、まず高不純物濃度
のN+ 基板1の上に低不純物濃度のN- エピタキシャル
層2を成長させたシリコンウエーハの表面を厚さ1000Å
程度酸化してゲート酸化膜6とする。次いでゲート電極
となる多結晶シリコンを1μm程度の厚さまで堆積させ
る。多結晶シリコンゲート電極は通常単一の不純物を抵
抗が下がるように1×1020/cm3 程度の大量に導入して
N型にするけれども、本発明によりP−N接合を形成す
るためにP部71とN部72とを片側ずつ保護膜で覆い、イ
オン注入または表面からの拡散によりそれぞれの不純物
を1×1019/cm3 程度に導入し、熱拡散にて活性化して
P−N接合を備えたゲート電極を形成する。これらゲー
ト酸化膜6とゲート電極71, 72を同一マスクを用いてエ
ッチングする。この時形成された窓を通してアクセプタ
不純物として硼素を1×1014/cm2 程度のドーズ量でイ
オン注入して熱拡散を行い、深さ3μm程度のP拡散領
域3を形成する。またドナー不純物として砒素を1×10
15/cm2 程度のドーズ量でイオン注入して熱拡散を行う
ことにより深さ0.2 μm程度のN+ ソース領域4を形成
する。さらに、表面上にPSGあるいはSPSGなどか
らなる層間絶縁膜8を1μm程度の厚さに堆積させ、ゲ
ート電極71, 72が露出しない程度のコンタクトホールを
開ける。この時用いたフォトマスクを再び用いてシリコ
ンをエッチングして凹部を形成し、N+ ソース領域4の
側面を露出させる。そして絶縁膜8をオーバーエッチン
グしてからこの時使用したレジストを除去すると、P拡
散領域3の表面も露出した状態になる。なお酸化絶縁膜
8には、ゲート電極71, 72にそれぞれゲート接続電極11
を接続するためのコンタクトホールを開けておく。その
あとアルミニウムなどの金属を蒸着により堆積させ、不
要部分はエッチングにより除去することにより、ゲート
接続電極11とエミッタ電極9とに分けることが出来る。In the embodiment shown in FIG. 1, of the polycrystalline silicon gate electrode, a portion 71 having a channel portion below is a P-type and the other portion 72 is an N-type, which is a P-type. The part 71 is directly connected to the gate terminal 12, and the N-type part 72 is connected through the coil 13. In order to manufacture this N-channel vertical MOSFET, first, the surface of a silicon wafer having a low impurity concentration N - epitaxial layer 2 grown on a high impurity concentration N + substrate 1 has a thickness of 1000Å.
The gate oxide film 6 is oxidized to some extent. Next, polycrystalline silicon to be a gate electrode is deposited to a thickness of about 1 μm. Although a polycrystalline silicon gate electrode is usually N-type by introducing a single impurity in a large amount of about 1 × 10 20 / cm 3 so as to lower the resistance, a P-N junction is formed according to the present invention. Part 71 and N part 72 are covered with a protective film on each side, and each impurity is introduced to about 1 × 10 19 / cm 3 by ion implantation or diffusion from the surface, activated by thermal diffusion and PN junction. Forming a gate electrode. The gate oxide film 6 and the gate electrodes 71 and 72 are etched using the same mask. Boron as an acceptor impurity is ion-implanted through the window formed at this time with a dose amount of about 1 × 10 14 / cm 2 to perform thermal diffusion to form a P diffusion region 3 having a depth of about 3 μm. Arsenic was used as a donor impurity at 1 × 10
Ions are implanted with a dose amount of about 15 / cm 2 and thermal diffusion is performed to form an N + source region 4 having a depth of about 0.2 μm. Further, an interlayer insulating film 8 made of PSG, SPSG, or the like is deposited on the surface to a thickness of about 1 μm, and contact holes are opened to the extent that the gate electrodes 71 and 72 are not exposed. Using the photomask used at this time again, silicon is etched to form a recess, and the side surface of the N + source region 4 is exposed. Then, when the insulating film 8 is over-etched and the resist used at this time is removed, the surface of the P diffusion region 3 is also exposed. In the oxide insulating film 8, the gate electrodes 71 and 72 are connected to the gate connection electrode 11
Open a contact hole for connecting the. After that, a metal such as aluminum is deposited by vapor deposition, and unnecessary portions are removed by etching, whereby the gate connection electrode 11 and the emitter electrode 9 can be separated.
【0012】コイル13は、別個の部品を外付けしてもよ
いが、図3に示すように、素子の半導体基板21の表面上
に酸化膜22を介して形成された多結晶シリコン層23とそ
れに層間絶縁膜24に開けられたコンタクトホール25で接
触するアルミニウム層26とによって形成することもで
き、その一端をN型ゲート電極72に接触するゲート接続
電極11と、他端をゲート端子12と接続すればよい。Although the coil 13 may be provided as a separate component externally, as shown in FIG. 3, a polycrystalline silicon layer 23 formed on the surface of the semiconductor substrate 21 of the device via an oxide film 22 and a polycrystalline silicon layer 23. It can also be formed by an aluminum layer 26 which is in contact with a contact hole 25 formed in the interlayer insulating film 24, one end of which is a gate connection electrode 11 which is in contact with the N-type gate electrode 72, and the other end is a gate terminal 12. Just connect.
【0013】図4は図1と同様の表面構造をしたIGB
Tで、N+ サブストレート1の代わりにP+ サブストレ
ート14が用いられている点が異なっている。このIGB
Tにおいても同様の効果が得られる。FIG. 4 is an IGB having a surface structure similar to that of FIG.
The difference is that at T, the P + substrate 14 is used instead of the N + substrate 1. This IGB
The same effect can be obtained with T.
【0014】以上の実施例ではゲート電極への電圧印加
によりP型チャネル部を反転させるNチャネル型素子に
ついて述べたが、各部の導電型を逆にしたPチャネル型
の素子でも同様に実施し、同様の効果が得られる。In the above embodiments, the N-channel type element in which the P-type channel portion is inverted by applying the voltage to the gate electrode has been described. However, the same operation is performed in the P-channel type element in which the conductivity type of each portion is reversed. The same effect can be obtained.
【0015】[0015]
【発明の効果】本発明によれば、半導体基板上のゲート
電極のチャネル部上以外の部分とチャネル部上の部分と
の間にPN接合を形成し、オフ時にゲート電極に印加さ
れる電圧がそのPN接合を逆バイアスするようにして、
オフ時にはチャネル部上のゲート電極の電荷がすぐに放
電し、コイルが接続されている残りの部分の電荷はその
あと遅れて放電させることによって、ゲート電極中の電
荷のオフ動作のために必要な放電が速やかに行われるよ
うになり、スイッチング速度が向上したMOS型トラン
ジスタを得ることができた。According to the present invention, a PN junction is formed between a portion of the gate electrode on the semiconductor substrate other than the portion on the channel portion and a portion on the channel portion, and the voltage applied to the gate electrode when off is Reverse bias the PN junction,
When turned off, the charge on the gate electrode on the channel part is immediately discharged, and the charge on the remaining part where the coil is connected is discharged later, so that the charge in the gate electrode can be turned off. The discharge was started quickly, and a MOS type transistor with an improved switching speed could be obtained.
【図1】本発明の一実施例の縦型MOSFETの断面図FIG. 1 is a sectional view of a vertical MOSFET according to an embodiment of the present invention.
【図2】従来の縦型MOSFETの断面図FIG. 2 is a sectional view of a conventional vertical MOSFET.
【図3】半導体基板上に形成したコイルを有する実施例
を示し、(a) は平面図、(b) は(a) のA−A線断面図FIG. 3 shows an embodiment having a coil formed on a semiconductor substrate, (a) is a plan view, (b) is a sectional view taken along line AA of (a).
【図4】本発明の別の実施例のIGBTの断面図FIG. 4 is a sectional view of an IGBT according to another embodiment of the present invention.
1 N+ サブストレート 2 N- 低不純物濃度層 3 P領域 4 N+ ソース領域 5 チャネル部 6 ゲート酸化膜 71 P型ゲート電極 72 N型ゲート電極 8 層間絶縁膜 9 エミッタ電極 10 コレクタ電極 11 ゲート接続電極 12 ゲート端子 13 コイル 14 P+ サブストレート1 N + substrate 2 N - low impurity concentration layer 3 P region 4 N + source region 5 channel unit 6 the gate oxide film 71 P-type gate electrode 72 N-type gate electrode 8 interlayer insulating film 9 emitter electrode 10 collector electrode 11 gate connection Electrode 12 Gate terminal 13 Coil 14 P + Substrate
Claims (3)
層内に選択的に形成された第二導電型の第二領域および
その第二領域の表面層内に選択的に形成された第一導電
型の第三領域を有し、第二領域表面部の第一領域と第三
領域にはさまれた部分の上から第一領域の露出面上にか
けてゲート絶縁膜を介して設けられたゲート電極ならび
にそのゲート電極と絶縁されて第二領域および第三領域
に共通に接触するエミッタ電極を備えたものにおいて、
ゲート電極の少なくとも第一領域の露出面上にある部分
が第一導電型であり、残りの部分が第二導電型であっ
て、ゲート端子がゲート電極の第一導電型の部分に直接
に、第二導電型の部分にコイルを介して接続されたこと
を特徴とするMOS型トランジスタ。1. A second region of a second conductivity type selectively formed in a surface layer of a first region of a first conductivity type of a semiconductor substrate and a surface region of the second region of the second region of a second conductivity type. The third region of the first conductivity type is provided, and is provided through the gate insulating film from above the portion sandwiched between the first region and the third region of the surface of the second region to the exposed surface of the first region. A gate electrode provided with the emitter electrode and an emitter electrode insulated from the gate electrode and commonly contacting the second region and the third region,
At least a portion of the gate electrode on the exposed surface of the first region is a first conductivity type, the remaining portion is a second conductivity type, the gate terminal directly to the first conductivity type portion of the gate electrode, A MOS transistor characterized in that it is connected to a portion of the second conductivity type through a coil.
のMOS型トランジスタ。2. The MOS transistor according to claim 1, wherein the gate electrode is made of polycrystal.
層により形成された請求項1あるいは2記載のMOS型
トランジスタ。3. The MOS transistor according to claim 1, wherein the coil is formed of a conductor layer having a semiconductor substrate and an insulating film interposed therebetween.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3242196A JPH0582786A (en) | 1991-09-24 | 1991-09-24 | MOS type transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3242196A JPH0582786A (en) | 1991-09-24 | 1991-09-24 | MOS type transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0582786A true JPH0582786A (en) | 1993-04-02 |
Family
ID=17085714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3242196A Pending JPH0582786A (en) | 1991-09-24 | 1991-09-24 | MOS type transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0582786A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5446311A (en) * | 1994-09-16 | 1995-08-29 | International Business Machines Corporation | High-Q inductors in silicon technology without expensive metalization |
US9267536B2 (en) | 2005-06-27 | 2016-02-23 | Campagnolo S.R.L. | Control device for a bicycle derailleur |
US10118664B2 (en) | 2007-03-01 | 2018-11-06 | Campagnolo S.R.L. | Control device for a bicycle and bicycle comprising such a device |
-
1991
- 1991-09-24 JP JP3242196A patent/JPH0582786A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5446311A (en) * | 1994-09-16 | 1995-08-29 | International Business Machines Corporation | High-Q inductors in silicon technology without expensive metalization |
US9267536B2 (en) | 2005-06-27 | 2016-02-23 | Campagnolo S.R.L. | Control device for a bicycle derailleur |
US9802671B2 (en) | 2005-06-27 | 2017-10-31 | Campagnolo S.R.L. | Control device for a bicycle derailleur |
US10118664B2 (en) | 2007-03-01 | 2018-11-06 | Campagnolo S.R.L. | Control device for a bicycle and bicycle comprising such a device |
US10308309B2 (en) | 2007-03-01 | 2019-06-04 | Campagnolo S.R.L. | Control device for a bicycle and bicycle comprising such a device |
US10589817B2 (en) | 2007-03-01 | 2020-03-17 | Campagnolo S.R.L. | Control device for a bicycle and bicycle comprising such a device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6091086A (en) | Reverse blocking IGBT | |
KR920005513B1 (en) | A semiconductor device having a structure in which parasitic transistors are difficult to operate and a method of manufacturing the same | |
JPH08222735A (en) | Vertical trench MISFET and manufacturing method thereof | |
GB2150753A (en) | Semiconductor device | |
US5360746A (en) | Method of fabricating a semiconductor device | |
JP2809253B2 (en) | Injection control type Schottky barrier rectifier | |
GB2259608A (en) | Power switching semiconductor device including SI thyristor and MOSFET connected in cascade | |
US6448588B2 (en) | Insulated gate bipolar transistor having high breakdown voltage in reverse blocking mode | |
US4517731A (en) | Double polysilicon process for fabricating CMOS integrated circuits | |
JPH1140808A (en) | Semiconductor device and its manufacture | |
JPH0752770B2 (en) | Conduction modulation type MOSFET | |
JP2808871B2 (en) | Method for manufacturing MOS type semiconductor device | |
JPH0582786A (en) | MOS type transistor | |
US5990518A (en) | MOS device | |
JP3294001B2 (en) | Method for manufacturing insulated gate semiconductor device | |
US5118638A (en) | Method for manufacturing MOS type semiconductor devices | |
US5925899A (en) | Vertical type insulated gate bipolar transistor having a planar gate structure | |
JP2941405B2 (en) | Semiconductor device | |
JP2884787B2 (en) | Semiconductor device | |
JP2808882B2 (en) | Insulated gate bipolar transistor | |
JPS6334619B2 (en) | ||
JP2759472B2 (en) | Method of manufacturing high voltage MOS field effect transistor | |
JP2937016B2 (en) | Conductivity modulation type field effect transistor | |
JPH04314365A (en) | MOS type transistor | |
JPS62159468A (en) | semiconductor equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20040608 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040621 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20080709 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20090709 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20100709 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20100709 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110709 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20110709 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120709 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20120709 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |