[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH058255B2 - - Google Patents

Info

Publication number
JPH058255B2
JPH058255B2 JP8833784A JP8833784A JPH058255B2 JP H058255 B2 JPH058255 B2 JP H058255B2 JP 8833784 A JP8833784 A JP 8833784A JP 8833784 A JP8833784 A JP 8833784A JP H058255 B2 JPH058255 B2 JP H058255B2
Authority
JP
Japan
Prior art keywords
steel
temperature
cold
present
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8833784A
Other languages
Japanese (ja)
Other versions
JPS60234920A (en
Inventor
Akihiko Nishimoto
Tomoyoshi Ookita
Yoshihiro Hosoya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP8833784A priority Critical patent/JPS60234920A/en
Publication of JPS60234920A publication Critical patent/JPS60234920A/en
Publication of JPH058255B2 publication Critical patent/JPH058255B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「発明の目的」 本発明は超高張力マルエージング冷延鋼板の製
造方法に係り、200Kgf/mm2以上の引張強度を有
するような超高張力マルエージング冷延鋼板を連
続焼鈍ラインによつて適切に製造することのでき
る方法を提供しようとするものである。 産業上の利用分野 超高張力マルエージング冷延鋼板の製造。 従来技術 強度の極めて高いマルエージング鋼は従来から
知られている。即ちこの従来一般のマルエージン
グ鋼は極低炭素マルテンサイト組織中にV、Ti、
Al、Co、Moなどの2元素系又は多元素系の金属
間化合物を析出させた鋼であつて、変態組織強化
と強化能の大きい金属間化合物による析出強化と
を組み合わせることにより200Kgf/mm2以上の引
張強度が得られる。然して従来斯うした鋼の利用
はその成分および製造コストの観点から軍事、航
空、原子力、海洋開発などの特殊分野に限定さ
れ、その研究開発もそれら特殊分野への利用を前
提とした成分設計、強化機構、環境脆化などが主
体となつていた。 発明が解決しようとする問題点 上記のような在来一般のマルエージング鋼は、
一般的に低廉汎用性などが要求される冷間圧延薄
鋼板の分野でその利用が検討された例は極めて少
いが、このマルエージング鋼の有する前記のよう
な特性が斯様な冷間圧延薄鋼板分野に利用される
ことが好ましいことは言うまでもない。然して近
時における製鋼技術の高度進展によつて鋼の高清
浄化、製造プロセスの連続化などの製造技術上の
進歩と共に高強度化によるゲージダウンなどは上
記薄鋼板分野での利用を可能とする因子ではある
が、それを障害する技術的問題点は以下の如くで
ある。 マルエージング鋼は時効硬化処理に先立つて
溶体化処理を行う必要があり、この溶体化条件
は800〜850℃、好ましくは820℃で1時間程度
の加熱処理であることから連続熱処理ライン
で、このような溶体化処理を実施することが困
難である。 十分な時効硬化を達成するためには更に450
〜500℃、好ましくは480℃で3時間程度の時効
処理が必要とされており、このことも連続熱処
理ラインでの実施困難さを示す。 冷間圧延時の被圧延鋼帯組織がマルテンサイ
ト相であるため変形抵抗が高く、従来の圧延技
術ではミル負荷が大きいこととならざるを得な
い。 ところでこれらの問題点を解消する1つの手法
として特公昭58−18408号公報が開示されている。
即ち上記のような問題点は従来一般のマルエージ
ング鋼における材料設計が常に材質的に最高レベ
ルを指向して行われて来たためであり、利用技術
の面で等価性が保証されるならば熱処理条件など
に対する既成概念を打破することが可能である、
という観点に立つたもので、ストリツプフオーム
によつてマルエージング鋼帯を製造しようとする
ものである。然しこの技術においては鋼のミクロ
組織を820℃×1時間の溶体化処理材と等価な組
織とすることを前提としており、その溶体化処理
条件は連続熱処理ラインにおいて溶体化を行う上
でエネルギーコスト的或いは表面品質的に最適な
ものとなし得ない。 「発明の構成」 問題点を解決するための手段 本発明は上記したような実情に鑑み検討を重ね
て創案されたものであつて、 C:0.02wt%以下、Si0.1wt%、 Mn0.2wt%、P0.01wt%、 S0.01wt%、N0.01wt% を含有すると共に、 Ni:15〜25wt%、Co10.0wt%、 Mo7.0wt%、Al0.2wt% Ti1.5wt% の中の何れか2種又は3種以上を含有し、残部が
Feおよび不可避的不純物よりなる鋼を、1000℃
以下の累積圧下率を60%以下とすると共に950℃
以下の累積圧下率を20%以下として900℃以上で
熱間圧延を終了し、300〜600℃で巻取り、次いで
冷間圧延後に再結晶焼鈍および溶体化処理するこ
とを特徴とする超高張力マルエージング冷延鋼板
の製造方法である。 作 用 上記したような本発明によるものはその成分組
成によつて有効な時効硬化を得しめ、しかもマル
エージング鋼の時効硬化を連続焼鈍ラインにおい
て短時間に達成せしめてエネルギコストを低減
し、熱間圧延時の蓄積圧下率、仕上げ温度、巻取
り温度などを適切に選ぶことにより材質および表
面性状を良好とする。 実施例 上記したような本発明について更に説明する
と、本発明は例えば連続焼鈍ラインのような実際
の連続熱処理ラインにおいてコスト的に有利で、
しかも材質的或いは表面品質上優れたマルエージ
ング冷延鋼帯を製造しようとするものであつて、
前記したような成分組成の鋼を上記のように熱間
圧延後に冷間圧延してから連続焼鈍ラインによつ
て再結晶焼鈍・溶体化処理する熱処理温度Tおよ
び熱処理時間tについては以下の条件に制御して
処理する。 825℃T1050℃ T950℃でt0.5min T950℃でtexp(−T/90.2+9.8) T1000℃でt1.0min T1000℃でtexp(−T/64.6+15.5) 又上記したような最終終溶体化工程に続いて、
200℃以下の温度に任意の冷却方法で冷却した鋼
板を同一パスライン内に配置された加熱・均熱炉
によつて400℃以上600℃以下の温度で10分以下の
時効硬化処理を行う工程を適宜に付加する。 このような本発明に関して仔細を説明すると、
本発明は熱処理されるマルエージング鋼帯の材質
および表面品質を損うことなく冷間圧延後の再結
晶焼鈍・溶体化処理を短時間内に行うことを狙い
とするものであり、特に熱延鋼板におけるミクロ
組織を最適状態に制御することによつて従来技術
に比較し更に低温・短時間の熱処理で所望の材質
を得ることに成功したものである。然してマルエ
ージング鋼帯の利用技術に関しては溶体化状態で
成形を行つた後に時効硬化処理を行うことが最も
有利であつて、このような意味から再結晶焼鈍・
溶体化処理状態における材質が保証される必要が
ある。 そこで本発明者等は、wt%(以下単に%とい
う)で、C:0.009%、Si:0.01%、Mn:0.05%、
P:0.005%、S:0.001%、N:0.0037%、Ni:
18.1%、Co:8.2%、Mo:4.7%、Al:0.004%、
を含有した鋼(後述する第1表の鋼1)を素材と
して種々の検討を行つた。即ち先ず熱間圧延機で
圧延をなし、970℃で4.0mm厚に仕上げた熱延鋼帯
を室温まで放冷し、該鋼帯を酸洗後、1.0mmtま
で圧下率75%の冷間圧延をなし、再結晶焼鈍温度
と時間を種々に変化させて軟化焼鈍を行つた。然
して800℃、900℃および1000℃で熱処理時間を変
えて処理してから室温まで空冷した素材について
曲げ部に毛割れが発生する時点の限界曲げ半径
(R/t:板厚に対する限界半径の比)を熱処理
時間に対して整理した結果は第1図に示す通りで
ある。即ち高温かつ長時間の熱処理となるに伴い
限界曲げ半径は小さくなり曲げ成形性の向上が示
されるが、ここで超高強度鋼板として使用される
場合のR/tは3以下であれば実用に供するに適
したものと言える。 又このような熱処理の温度について詳細を検討
した結果は第2図に示す通りである。即ちこの第
2図において〇の中に示された数字はR/tであ
つて、前記のようにR/t=3を境界として曲げ
成形性に対し要求されるべき焼鈍温度と時間の領
域は950℃以上では0.5分以上であるが、820℃は
下限であつて、この850℃のときは2分以上であ
る。 ところで冷延鋼板として使用される場合の重要
な特性として表面性状が挙げられ、特に高温で熱
処理する場合は炉内雰囲気による表面の酸化が問
題となる。然して連続熱処理炉で光輝焼鈍を行う
場合には炉内雰囲気を還元性にする必要があり、
一般には窒素(N2)+5〜10%水素(H2)の雰
囲気で焼鈍する。このような完全な還元性雰囲気
下での焼鈍が可能なのはラジアントチユーブ加熱
(輻射管加熱)の炉であるが、850〜900℃を越え
る温度での操業が要求される場合はエネルギー効
率の悪化および輻射管の劣化などの点から好まし
いものでないから斯うした高温加熱を行う場合に
は直火加熱の炉が使用される。この直火加熱炉の
場合に比較的低い温度では低空燃比操業により非
酸化性雰囲気での加熱が可能であるが、1000℃近
傍で加熱する場合は燃焼廃ガスによる表面酸化が
避けられず、連続熱処理ラインでは焼鈍後に強還
元帯或いは酸洗槽を附設する必要がある。従つて
高温で再結晶焼鈍・溶体化処理を行つた後、イン
ラインでの酸化被膜除去あるいは最終製品の表面
性状を良好に保つことを考慮すると、熱処理過程
での表面の酸化を極力抑える必要がある。 そこで本発明者等は実機をシユミレートした小
型直火炉で、空燃比0.7〜0.9の条件で、1.0mmtの
カツトサンプルを温度と時間を変えて熱処理した
後、N2+5%H2雰囲気中で室温まで冷却して硝
弗酸溶液中で酸洗を行いその表面性状を評価し
た。即ち殆んど光輝焼鈍に近いものを5点、均一
な酸化被膜が形成され1min以内の酸洗で熱処理
前に相当する表面が得られるものを3点、強固で
かつ選択的な酸化被膜形成が認められ、1min以
内での酸洗が不可能なばかりか完全に酸洗を行つ
ても表面欠陥が残るものを1点として、各処理材
の表面を5段階評価した結果は第3図に示す通り
であつて、高温かつ長時間の処理で表面性状の劣
化が顕著となる。然して実用に供して支障のない
表面状態としては一般的に3以上であり、この範
囲はハツチングを以て示した矢印方向の範囲とな
り、熱処理時間1分では1000℃でもよいが、この
熱処理時間が10分となると850℃が限度である。 更にこの処理温度と時間との関係を、仔細に表
面性状との関係で示しているのが第4図であつ
て、この第4図には上記のような評点3を境界と
して許容される温度と時間の具体的な領域を区分
して示している。又このような第4図の結果と前
記した第2図の結果を総合して成形性および表面
性状の何れの面からも好ましい再結晶焼鈍温度と
熱処理時間の領域は第5図に示す如くなり、この
第5図に示された範囲は以下のような条件の範囲
である。 825℃T1050℃ t0.5min atT950℃ texp(−T/90.2+9.8)atT950℃ 熱処理時間の下限 t1.0min atT1000℃ texp(−T/64.6+15.5)atT1000℃ 熱処理時間の上限 然して本発明では上記した範囲において優れた
材質を得るためおよび製造プロセス上の配慮から
熱間圧延条件を特定の範囲内に規制する。即ち先
ず本発明では熱間仕上げ圧延において、1000℃以
下の温度範囲における累積圧下率を60%以下とす
ると共に950℃以下の温度範囲における累積圧下
率を20%以下に制御して900℃以上で圧延を完了
することを条件とする。 前記した第1〜第5図の検討に供した鋼につい
て、1000℃以下での累積圧下率を種々に変化させ
て圧延を行い、910℃で4.0mmtに仕上げた熱延鋼
板を、1.0mmtまで冷間圧延した後900℃で3分間
の再結晶焼鈍・溶体化処理を行つた。溶体化状態
でJIS5号試験片による引張試験を行つた場合の鋼
帯圧延方向での伸び(ElL)と直角方向での伸び
(ElT)の差(ΔEl)を1000℃から900℃での累積
圧下率と、950℃から900℃での累積圧下率で整理
した結果は第6図に示す通りである。即ち1000℃
以下での累積圧下率が大きい程、伸びの異方性が
大きくなり、特に950℃以下での累積圧下率が大
きい場合の異方性増大が顕著である。これは当該
鋼において熱間圧延時の動的回復・再結晶速度が
遅いため、比較的低温域で強圧低下を行うとオー
ステナイト粒が圧延方向に展伸し、集合組織が著
しく発達することを示し、特にこの傾向は表層部
において顕著となり、その結果板厚方向での集合
組織の差をもたらす。斯うしたオーステナイト領
域での集合組織は冷却に伴うマルテンサイト変態
相にも受けつがれ、冷間圧延および再結晶焼鈍過
程においてもこのようにして形成された結晶組織
の異方性が完全に消失しないことによるものと推
定される。そこで本発明では異方性の目安として
ΔEl1.0%を実用上問題のないものとし、従つ
て1000℃以下の累積圧下率を60%以下とすると共
に950〜900℃での累積圧下率を20%以下とする。 次に上記のような熱間圧延後の巻取り温度も製
造プロセス上重要な因子であり、本発明では以下
の理由によつてこれを規制する。先ず巻き取り温
度の下限は300℃とするもので、上述したような
熱延鋼板を1旦900℃でオーステナイト化してか
ら冷却途中の700℃から100℃の温度範囲で引張り
試験を行つた場合、200℃付近から急激に0.2%耐
力が増大する。これはプロセス上巻き取り負荷の
増加を示唆し、その理由は第7図に示す連続冷却
変態(CCT)挙動から200℃付近でマルテンサイ
ト変態が開始するためである。又当該鋼では巻き
取り前のランナウトテーブル上で変態が開始した
場合、ランナウト冷却の不均一によつて変態の進
行に不均一が生じ、板の形状が乱れるから巻き取
つた後、変態がコイル内で均一に起ることが板形
状の点で好ましい。即ちこれらの観点から巻取り
温度下限を300℃と規制した。 他方巻取り温度の上限は600℃とするが、これ
は主として脱スケール性を配慮したものである。
冷延鋼板の場合、冷間圧延前に酸洗或いは機械的
方法によつて脱スケールする必要があり、従つて
強固なスケールの形成された熱延鋼板では脱スケ
ール処理に手間がかかるばかりでなく脱スケール
が不完全となり易く、それによつて冷延鋼板の表
面性状に重大な欠陥をもたらす。第8図には前記
鋼を実験室規模の熱間圧延機で圧延し、700℃か
ら100℃に保持した大気炉中に1時間保持して炉
冷することにより巻取りをシミユレートしたサン
プルを硝弗酸で酸洗したときの酸洗時間と巻取り
相当温度との関係を示すが、巻き取り温度が600
℃を越えると酸洗時間が相当に増大する。これは
製造プロセス上不利となるばかりでなく、酸洗量
増大による歩留り減少を意味するわけで、斯様な
観点から巻取り温度上限を600℃とした。 本発明によるものがマルエージング鋼として実
用に供される場合に所望の時効硬化を発揮するこ
とが重要であることから添加合金元素の量をNi
を含む下記の2種または3種以上を以下の範囲に
規制する。特に本発明では成分コスト上の観点か
ら主として有効な時効硬化が得られる上限添加量
を規制した。 15.0%Ni25.0% Co10.0% Mo7.0% Al0.2% Ti1.5% これらの元素は時効処理過程で、Ni3Mo、
(Fe、Ni、Co)2Mo、Fl3Mo、Ni3Ti、Fl3Al、
Ni3(Al、Ti)などの2元素或いは3元素以上の
金属間化合物を形成して著しい硬化に寄与する。
本発明においては特にNiを主体とする金属間化
合物〔Ni3Mo、(FeNi、Co)、Mo、Ni3Ti、Ni3
(Al、Ti)〕の析出強化を目的としたもので、
Fe3Mo、Fe3Alなどの析出強化を加算することに
よつて更に強化が図れる。従つてNiは不可欠の
元素としてその上、下限を設定し、下限は本発明
にあおける析出強化態を維持する上で15%とし、
又上限は素材コストが上昇するのみならず添加量
に見合つただけの析出強化が期待できなくなるこ
とから25%とする。第9図は18%Niをベースと
して各元素を添加した鋼について上記した本発明
による一連の処理を行つて溶体化した後480℃で
10分間の時効したときの硬度(HRC)上昇量を
示すが、この図から明らかなように上記した各元
素の添加範囲で略短時間時効における飽和硬化量
に達する。これはそれぞれ単独あるいは2元素添
加による結果であり、更に複合添加を行うことに
より硬化量を増大させ得ることは明かである。 従つて本発明では第9図による必要最大添加量
をもつて各元素の上限添加量とする。又本発明で
は殊更に規定しないが強化元素としてNb、Cr、
Cu等を添加することも有効である。更に本発明
では基本成分系として、C0.02%、Si0.1%、
Mn0.2%、P0.01%、S0.01%、N0.01
%に規制する。これらは主として延性を考慮した
もので上記の範囲に夫々制限することにより著し
い伸びの劣化は回避できる。 扨て、本発明では上記の内容に基く溶体化状態
のマルエージング冷延鋼板を製造する方法と共に
連続熱処理ラインにおけるインライン時効硬化処
理鋼帯の製造を可能にする。つまり本発明者等は
マルエージング鋼の時効硬化が時効開始から3分
以内で溶体化状態に比較して40%前後の硬化が、
又10分程度では50〜60%程度の硬化が認められる
ことから連続焼鈍ラインにおける過時効処理炉で
の短時間過時効でも実用に供するだけの高強度化
が図られることに着目した。第10図は前記した
鋼において本発明による条件で溶体化した後、
480℃で時効したときの時効硬化挙動を示すもの
で、この図から明かなように実際の連続焼鈍ライ
ンにおける過時効処理炉で一般的に行われている
熱処理時間(3min)でも40%以上の硬化が認
められ、実際の過時効処理炉で処理可能と考えら
れる10minでは50〜60%の硬化が認められる。こ
れは同一温度で3時間時効した場合は硬化率が70
〜80%程度であることから判断して短時間時効で
も充分実用に供するだけの強度が得られると言え
る。従つて本発明では溶体化後、インラインでの
短時間時効を行うことによつてセミハード状態の
マルエージング鋼帯製造を目的として400〜600℃
の温度で10分以下の時効処理を行う。ここで時効
温度が400℃未満の場合は10min以内の時効では
硬化率目安として本発明者等が設定した溶体化状
態に対して30%以上の硬化が望めず、一方600℃
を越える温度では10min以内の短時間時効でも過
時効現象が起つて材質が劣化すること、及び炉操
業上好ましくないと判断されるためである。 本発明方法によるものの具体的製造実施例につ
いて説明すると以下の如くである。 先ず次の第1表は本発明者等が具体的に用いた
本発明による鋼および比較鋼の化学組成である。
``Object of the Invention'' The present invention relates to a method for producing ultra-high tensile maraging cold-rolled steel sheets, in which ultra-high tensile maraging cold-rolled steel sheets having a tensile strength of 200 Kgf/mm 2 or more are suitably produced by a continuous annealing line. The aim is to provide a method that can produce Industrial Applications Manufacture of ultra-high tensile maraging cold-rolled steel sheets. PRIOR ART Maraging steels with extremely high strength have been known for some time. In other words, this conventional general maraging steel has V, Ti,
It is a steel in which binary or multi-element intermetallic compounds such as Al, Co, Mo, etc. The above tensile strength can be obtained. However, in the past, the use of such steel has been limited to special fields such as military, aviation, nuclear power, and ocean development due to its composition and manufacturing cost, and research and development of steel has focused on composition design and design with the premise of use in these special fields. The main factors were strengthening mechanisms and environmental embrittlement. Problems to be solved by the invention Conventional maraging steels as mentioned above are
There are very few cases where its use has been considered in the field of cold-rolled thin steel sheets, which generally requires low cost and versatility, but the above-mentioned characteristics of this maraging steel make it suitable for cold-rolled steel sheets. Needless to say, it is preferable to use it in the field of thin steel sheets. However, due to recent advances in steel manufacturing technology, advances in manufacturing technology such as high purity steel and continuous manufacturing processes, as well as reduced gauge due to increased strength, are factors that enable use in the above thin steel plate field. However, the technical problems that hinder this are as follows. Maraging steel requires solution treatment prior to age hardening treatment, and the solution treatment conditions are heat treatment at 800 to 850℃, preferably 820℃ for about 1 hour. It is difficult to carry out such solution treatment. 450 more to achieve sufficient age hardening.
Aging treatment is required at ~500°C, preferably at 480°C for about 3 hours, which also shows the difficulty of implementation in a continuous heat treatment line. Since the rolled steel strip structure during cold rolling is a martensitic phase, the deformation resistance is high, and conventional rolling techniques inevitably result in large mill loads. By the way, Japanese Patent Publication No. Sho 58-18408 discloses one method for solving these problems.
In other words, the above-mentioned problems are due to the fact that the material design of conventional maraging steel has always aimed at the highest level of material quality, and if equivalency can be guaranteed in terms of application technology, heat treatment is required. It is possible to break through preconceived notions regarding conditions, etc.
Based on this viewpoint, the present invention attempts to manufacture a maraging steel strip using a strip form. However, this technology assumes that the microstructure of the steel is equivalent to that of a material solution-treated at 820°C for 1 hour, and the solution treatment conditions are such that the energy cost is low when performing solution treatment on a continuous heat treatment line. It is not possible to achieve the optimum target or surface quality. "Structure of the Invention" Means for Solving Problems The present invention was created after repeated studies in view of the above-mentioned circumstances, and includes: C: 0.02wt% or less, Si 0.1wt%, Mn 0.2wt %, P0.01wt%, S0.01wt%, N0.01wt%, Ni: 15-25wt%, Co10.0wt%, Mo7.0wt%, Al0.2wt% Ti1.5wt%. or 2 or 3 or more, with the remainder being
Steel consisting of Fe and unavoidable impurities is heated to 1000℃.
The following cumulative rolling reduction ratio should be 60% or less and 950℃
Ultra-high tensile strength, characterized by finishing hot rolling at 900℃ or higher with the following cumulative reduction ratio of 20% or less, coiling at 300 to 600℃, and then recrystallization annealing and solution treatment after cold rolling. This is a method for manufacturing maraging cold-rolled steel sheets. Effect The product according to the present invention as described above achieves effective age hardening due to its component composition, and also achieves age hardening of maraging steel in a continuous annealing line in a short time, reducing energy costs and reducing thermal energy costs. Good material quality and surface quality can be achieved by appropriately selecting the cumulative reduction rate during inter-rolling, finishing temperature, winding temperature, etc. EXAMPLES To further explain the present invention as described above, the present invention is advantageous in terms of cost in an actual continuous heat treatment line such as a continuous annealing line.
Moreover, the purpose is to produce a maraging cold-rolled steel strip that is excellent in terms of material and surface quality.
The steel having the above-described composition is hot-rolled and then cold-rolled as described above, and then subjected to recrystallization annealing and solution treatment using a continuous annealing line.The heat treatment temperature T and heat treatment time t are as follows. Control and process. 825℃T1050℃ t0.5min at T950℃ texp (-T/90.2+9.8) at T1000℃ t1.0min at T1000℃ texp (-T/64.6+15.5) Also, the final final solution as described above Following the oxidation process,
A process in which a steel plate cooled to a temperature of 200°C or less by any cooling method is subjected to age hardening treatment at a temperature of 400°C or more and 600°C or less for 10 minutes or less in a heating and soaking furnace placed in the same pass line. Add as appropriate. To explain the details of this invention,
The present invention aims to perform recrystallization annealing and solution treatment after cold rolling within a short time without impairing the material quality and surface quality of the maraging steel strip to be heat treated. By controlling the microstructure of the steel plate to an optimal state, we succeeded in obtaining the desired material quality with a lower temperature and shorter heat treatment compared to conventional techniques. However, regarding the utilization technology of maraging steel strips, it is most advantageous to perform age hardening treatment after forming in a solution state, and from this point of view, recrystallization annealing and
The quality of the material in the solution treated state must be guaranteed. Therefore, the present inventors determined that in wt% (hereinafter simply referred to as %), C: 0.009%, Si: 0.01%, Mn: 0.05%,
P: 0.005%, S: 0.001%, N: 0.0037%, Ni:
18.1%, Co: 8.2%, Mo: 4.7%, Al: 0.004%,
Various studies were conducted using a steel containing (Steel 1 in Table 1, which will be described later) as a material. That is, the hot-rolled steel strip was first rolled in a hot rolling mill and finished at 970°C to a thickness of 4.0 mm, then allowed to cool to room temperature, and after pickling, the steel strip was cold-rolled to 1.0 mm at a reduction rate of 75%. Softening annealing was performed by varying the recrystallization annealing temperature and time. However, the critical bending radius (R/t: ratio of the critical radius to the plate thickness) is the point at which hair cracking occurs in the bent portion of a material that has been heat-treated at 800°C, 900°C, and 1000°C for different times and then air-cooled to room temperature. ) are arranged in relation to the heat treatment time, and the results are shown in Figure 1. In other words, as heat treatment is carried out at high temperatures and for a long time, the critical bending radius becomes smaller, indicating an improvement in bending formability, but when used as an ultra-high strength steel plate, R/t of 3 or less is practical. It can be said that it is suitable for serving. Further, the results of a detailed study on the temperature of such heat treatment are shown in FIG. That is, the number shown in the circle in FIG. 2 is R/t, and as mentioned above, the range of annealing temperature and time required for bending formability is as follows, with R/t=3 as the boundary. At 950°C or higher, the time is 0.5 minutes or more, but 820°C is the lower limit, and at 850°C, the time is 2 minutes or more. Incidentally, surface texture is an important characteristic when used as a cold-rolled steel sheet, and oxidation of the surface due to the furnace atmosphere poses a problem particularly when heat treatment is performed at a high temperature. However, when performing bright annealing in a continuous heat treatment furnace, it is necessary to make the atmosphere inside the furnace reducing.
Generally, annealing is performed in an atmosphere of nitrogen (N 2 ) + 5 to 10% hydrogen (H 2 ). Radiant tube heating furnaces are capable of annealing in such a completely reducing atmosphere, but if operation at temperatures exceeding 850-900°C is required, energy efficiency may deteriorate and Since this is not preferable in terms of deterioration of the radiant tube, etc., a direct-fired heating furnace is used when such high-temperature heating is performed. In the case of this direct-fired heating furnace, heating is possible in a non-oxidizing atmosphere by operating at a low air-fuel ratio at relatively low temperatures, but when heating at around 1000℃, surface oxidation due to combustion waste gas is unavoidable, and continuous heating is possible. In the heat treatment line, it is necessary to install a strong reduction zone or pickling tank after annealing. Therefore, after performing recrystallization annealing and solution treatment at high temperatures, it is necessary to suppress surface oxidation during the heat treatment process as much as possible in order to remove the oxide film in-line or to maintain good surface quality of the final product. . Therefore, the present inventors heat-treated cut samples of 1.0 mmt at various temperatures and times under conditions of an air-fuel ratio of 0.7 to 0.9 in a small direct-fired furnace simulating the actual machine, and then heated them at room temperature in an N 2 + 5% H 2 atmosphere. The sample was cooled to a temperature of 100 mL, pickled in a nitric-fluoric acid solution, and its surface properties were evaluated. In other words, 5 items are almost bright annealed, 3 items are those where a uniform oxide film is formed and the surface equivalent to that before heat treatment can be obtained with pickling within 1 min, and 3 items are those where a strong and selective oxide film is formed. Figure 3 shows the results of evaluating the surface of each treated material on a five-point scale, with one point being those that are not only impossible to pickle within 1 minute, but also have surface defects that remain even after complete pickling. The deterioration of the surface quality becomes noticeable after long-term treatment at high temperatures. However, the surface condition that does not pose a problem in practical use is generally 3 or higher, and this range is the range shown in the direction of the hatched arrow.If the heat treatment time is 1 minute, the temperature may be 1000℃, but if the heat treatment time is 10 minutes, Therefore, the limit is 850℃. Furthermore, Figure 4 shows the relationship between processing temperature and time in detail in relation to the surface texture, and Figure 4 shows the allowable temperatures with the above-mentioned score 3 as the boundary. and specific areas of time are shown separately. Furthermore, by combining the results shown in FIG. 4 and the results shown in FIG. 2 described above, the range of recrystallization annealing temperature and heat treatment time that is preferable in terms of formability and surface texture is as shown in FIG. , the range shown in FIG. 5 is the range under the following conditions. 825℃T1050℃ t0.5min atT950℃ texp (-T/90.2+9.8) atT950℃ Lower limit of heat treatment time t1.0min atT1000℃ texp (-T/64.6+15.5) atT1000℃ Upper limit of heat treatment time However, in the present invention Hot rolling conditions are regulated within a specific range in order to obtain excellent material within the above-mentioned range and in consideration of the manufacturing process. That is, first, in the present invention, in hot finish rolling, the cumulative rolling reduction in the temperature range of 1000°C or less is controlled to be 60% or less, and the cumulative rolling reduction in the temperature range of 950°C or less is controlled to 20% or less, and the cumulative rolling reduction in the temperature range of 950°C or lower is Subject to completion of rolling. The steels used in the studies shown in Figures 1 to 5 above were rolled at various cumulative reduction rates below 1000°C, and hot-rolled steel plates finished at 910°C to 4.0 mmt were rolled to 1.0 mmt. After cold rolling, recrystallization annealing and solution treatment were performed at 900°C for 3 minutes. The difference (ΔEl) between the elongation in the rolling direction (El L ) and the elongation in the perpendicular direction (El T ) of the steel strip when performing a tensile test using a JIS No. 5 test piece in the solution state is calculated from 1000℃ to 900℃. The results organized by the cumulative rolling reduction rate and the cumulative rolling reduction rate from 950°C to 900°C are shown in Figure 6. i.e. 1000℃
The greater the cumulative reduction rate below, the greater the anisotropy of elongation, and the anisotropy increases particularly when the cumulative reduction rate below 950°C is large. This indicates that the dynamic recovery and recrystallization rate during hot rolling is slow in this steel, so when strong pressure reduction is performed in a relatively low temperature range, austenite grains are elongated in the rolling direction and the texture develops significantly. This tendency is particularly noticeable in the surface layer, resulting in a difference in texture in the thickness direction. The texture in the austenite region is inherited by the martensitic transformation phase upon cooling, and the anisotropy of the crystal structure formed in this way completely disappears during the cold rolling and recrystallization annealing processes. It is presumed that this is due to not doing so. Therefore, in the present invention, as a guideline for anisotropy, ΔEl 1.0% is set as no problem in practice, and therefore the cumulative rolling reduction rate below 1000°C is set to 60% or less, and the cumulative rolling reduction rate between 950 and 900°C is set to 20%. % or less. Next, the winding temperature after hot rolling as described above is also an important factor in the manufacturing process, and in the present invention, this is regulated for the following reasons. First, the lower limit of the winding temperature is 300℃, and if a hot-rolled steel sheet like the one described above is austenitized at 900℃ and then subjected to a tensile test in the temperature range of 700℃ to 100℃ during cooling, The yield strength increases rapidly by 0.2% from around 200℃. This suggests an increase in the winding load in the process, and the reason is that martensitic transformation starts at around 200°C from the continuous cooling transformation (CCT) behavior shown in Figure 7. In addition, in the case of this steel, if the transformation starts on the runout table before winding, the progress of the transformation will be uneven due to the uneven cooling of the runout, and the shape of the plate will be disordered. It is preferable for the plate shape to occur uniformly. That is, from these points of view, the lower limit of the winding temperature was regulated to 300°C. On the other hand, the upper limit of the winding temperature is set at 600°C, but this is mainly done in consideration of descaling properties.
In the case of cold-rolled steel sheets, it is necessary to descale them by pickling or mechanical methods before cold rolling. Therefore, with hot-rolled steel sheets that have formed strong scales, descaling is not only time-consuming but also difficult. Descaling tends to be incomplete, thereby causing serious defects in the surface texture of cold rolled steel sheets. Figure 8 shows a sample in which the above-mentioned steel was rolled in a laboratory-scale hot rolling mill, kept in an atmospheric furnace maintained at 700°C to 100°C for 1 hour, and then rolled up to simulate rolling. The relationship between the pickling time and the equivalent winding temperature when pickling with hydrofluoric acid is shown.
If the temperature is exceeded, the pickling time increases considerably. This is not only disadvantageous in the manufacturing process, but also means a decrease in yield due to an increase in the amount of pickling.From this perspective, the upper limit of the winding temperature was set at 600°C. When the steel according to the present invention is put to practical use as a maraging steel, it is important to exhibit the desired age hardening.
Two or more of the following types, including: In particular, in the present invention, from the viewpoint of component cost, the upper limit of the addition amount that provides effective age hardening is regulated. 15.0% Ni25.0% Co10.0% Mo7.0% Al0.2% Ti1.5% These elements are converted into Ni 3 Mo,
(Fe, Ni, Co) 2 Mo, Fl 3 Mo, Ni 3 Ti, Fl 3 Al,
It forms an intermetallic compound of two or more elements such as Ni 3 (Al, Ti) and contributes to significant hardening.
In the present invention, intermetallic compounds mainly composed of Ni [Ni 3 Mo, (FeNi, Co), Mo, Ni 3 Ti, Ni 3
(Al, Ti)] for the purpose of precipitation strengthening.
Further strengthening can be achieved by adding precipitation strengthening such as Fe 3 Mo and Fe 3 Al. Therefore, Ni is an essential element and a lower limit is set, and the lower limit is 15% in order to maintain the precipitation strengthening state in the present invention.
The upper limit is set at 25% because not only does it increase the material cost, but it also makes it impossible to expect precipitation strengthening commensurate with the added amount. Figure 9 shows steel containing 18% Ni as a base and various elements added to it at 480°C after being subjected to the series of treatments according to the present invention described above.
The amount of increase in hardness (HRC) after aging for 10 minutes is shown, and as is clear from this figure, the amount of saturated hardening in approximately short-time aging is reached within the above-mentioned addition range of each element. This is a result of the addition of either a single element or two elements, and it is clear that the amount of hardening can be increased by further adding a combination of elements. Therefore, in the present invention, the necessary maximum addition amount shown in FIG. 9 is taken as the upper limit addition amount of each element. In addition, although not particularly specified in the present invention, Nb, Cr,
It is also effective to add Cu or the like. Furthermore, in the present invention, as the basic component system, C0.02%, Si0.1%,
Mn0.2%, P0.01%, S0.01%, N0.01
%. These are mainly based on consideration of ductility, and by restricting them to the above ranges, significant deterioration in elongation can be avoided. Thus, the present invention enables the production of in-line age-hardened steel strips in a continuous heat treatment line along with the method for producing maraging cold-rolled steel sheets in a solution-treated state based on the above content. In other words, the present inventors found that the age hardening of maraging steel was approximately 40% hardened compared to the solution condition within 3 minutes from the start of aging.
In addition, since hardening of about 50 to 60% was observed in about 10 minutes, we focused on the fact that even short-time overaging in an overaging furnace in a continuous annealing line can increase the strength enough for practical use. FIG. 10 shows the above-mentioned steel after solution treatment under the conditions according to the present invention.
This shows the age hardening behavior when aged at 480℃, and as is clear from this figure, even with the heat treatment time (3 min) that is commonly performed in an overaging furnace in an actual continuous annealing line, the hardening behavior is more than 40%. Hardening was observed, and 50 to 60% hardening was observed in 10 min, which is considered to be possible in an actual overaging treatment furnace. This means that when aged for 3 hours at the same temperature, the hardening rate is 70.
Judging from the fact that it is about ~80%, it can be said that sufficient strength for practical use can be obtained even with short aging. Therefore, in the present invention, after solution treatment, short-time aging is carried out in-line to produce maraging steel strip in a semi-hard state at 400 to 600°C.
Aging treatment is performed at a temperature of 10 minutes or less. Here, if the aging temperature is less than 400℃, aging for less than 10 minutes will not cure more than 30% of the solution state set by the inventors as a guideline for the hardening rate;
This is because at a temperature exceeding 10 minutes, an over-aging phenomenon occurs and the material deteriorates even in a short aging period of 10 minutes or less, and it is judged to be unfavorable for furnace operation. A specific manufacturing example of a product according to the method of the present invention will be described below. First, Table 1 below shows the chemical compositions of the steel according to the present invention and the comparative steel specifically used by the present inventors.

【表】【table】

【表】 実施例 1 真空溶解炉で溶製した第1表の鋼1〜7につい
て1250℃に加熱後熱間圧延した。熱間圧延条件は
本発明による条件として1000℃以下での累積圧下
率を50%、仕上げ温度920℃で4.0mmtとし、この
供試材を酸洗後1.0mmtまで冷間圧延した後900℃
×3minの再結晶焼鈍・溶体化処理を行つた。 この溶体化後の硬度(HRC)と破断伸び(G.
L.:50mm、G.W.:12.5mm)および480℃×10min
の時効後の硬度(HRC)の値は次の第2表の如
くであつた。
[Table] Example 1 Steels 1 to 7 in Table 1 melted in a vacuum melting furnace were heated to 1250°C and then hot rolled. The hot rolling conditions according to the present invention are a cumulative reduction rate of 50% at 1000°C or less, a finishing temperature of 920°C and 4.0 mmt, and this test material was cold rolled to 1.0 mmt after pickling and then heated to 900°C.
Recrystallization annealing and solution treatment were performed for ×3 min. Hardness (HRC) and elongation at break (G.
L.: 50mm, GW: 12.5mm) and 480℃×10min
The hardness (HRC) values after aging were as shown in Table 2 below.

【表】 即ち母金属としてのFe中の不可避的元素(C、
Si、Mn、P、S、N)が本発明による上限規制
値を越えた場合は、本発明による鋼に匹敵する時
効硬化は得られるが、溶体化状態での曲げ性が劣
化することが理解される。 実施例 2 実施例1と同様の条件で溶製し、熱間圧延、冷
間圧延および再結晶焼鈍・溶体化を行つた鋼1、
2および鋼8〜14について溶体化後の延性異方性
(ΔEl)と限界曲げ半径(R/t)および時効後
の硬度(HRC)は次の第3表の通りである。
[Table] In other words, the inevitable elements (C,
It is understood that if Si, Mn, P, S, N) exceeds the upper limit regulation value according to the present invention, age hardening comparable to the steel according to the present invention can be obtained, but bendability in the solution state deteriorates. be done. Example 2 Steel 1 was melted under the same conditions as Example 1 and subjected to hot rolling, cold rolling, and recrystallization annealing/solution treatment.
The ductile anisotropy (ΔEl) after solution treatment, the critical bending radius (R/t), and the hardness after aging (HRC) of Steel No. 2 and Steels 8 to 14 are shown in Table 3 below.

【表】 即ち強化元素として添加されるNi、Co、Mo、
Al、Tiが本発明における上限値を超えた場合は
時効硬化後の硬度は高くなるが再結晶速度が遅滞
することにより本発明で規定した熱処理条件では
冷間圧延組織が充分に回復しない。そのため本発
明による鋼に比較して延性の異方性および限界曲
げ半径が大きい。一方Niに関しては下限値(15
%)以下の場合には十分な硬化率を期待すること
ができない。 実施例 3 本発明による製造法の効果については第1表中
の鋼1について第1〜10図に詳述したが、他の
鋼についても同様であつて、次の第4表に比較法
と共に併せて示す通りである。
[Table] In other words, Ni, Co, Mo, added as reinforcing elements,
If Al and Ti exceed the upper limits in the present invention, the hardness after age hardening will increase, but the recrystallization rate will be delayed and the cold rolled structure will not recover sufficiently under the heat treatment conditions specified in the present invention. Therefore, the anisotropy of ductility and the critical bending radius are greater than the steel according to the invention. On the other hand, for Ni, the lower limit value (15
%) or less, a sufficient curing rate cannot be expected. Example 3 The effects of the manufacturing method according to the present invention are detailed in Figures 1 to 10 for Steel 1 in Table 1, but the same applies to other steels, and the results are shown in Table 4 below along with the comparative method. This is also shown.

【表】 「発明の効果」 以上説明したような本発明によるときは超高張
力マルエージング冷延鋼板を薄鋼板に関する連続
焼鈍ラインによつて、その材質上および表面品質
上ともに良好で、しかもエネルギーコスト上も有
利に製造することができるものであつて、工業的
にその効果の大きい発明である。
[Table] "Effects of the Invention" According to the present invention as explained above, ultra-high tensile maraging cold-rolled steel sheets can be produced using a continuous annealing line for thin steel sheets, which improves both the material properties and the surface quality, and also reduces energy consumption. This invention can be manufactured cost-effectively and has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであつ
て、第1図は再結晶焼鈍後の鋼帯について圧延直
角方向の限界曲げ半径(R/t:板厚に対する
比)におよぼす焼鈍温度と時間の影響を示した図
表、第2図はこの限界曲げ比で規制した本発明に
おける再結晶焼鈍温度と熱処理時間の範囲を示し
た図表、第3図は再結晶焼鈍後の後の表面酸化被
膜評点に及ぼす焼鈍温度と時間の影響を示した図
表、第4図は表面性状評点で規制した本発明にお
ける再結晶焼鈍温度と熱処理時間の範囲を示した
図表、第5図は本発明における再結晶焼鈍温度と
時間に対する本発明の関係を示した図表、第6図
は溶体化後の延性の異方性(ΔEl)におよぼす熱
間圧延時における異積圧下率の影響を示した図
表、第7図は本発明における鋼の1つについて連
続冷却変態(CCT)挙動を示した図表、第8図
は熱間圧延巻取り温度の0.2%耐力および巻き取
り後の素材酸洗時間におよぼす巻取り温度の影響
を示した図表、第9図は溶体化後の時効硬化率に
対する添加合金元素量の影響を説明した図表、第
10図は短時間溶体化材の480℃における時効時
間と時効硬化率の関係を示した図表である。
The drawings show the technical content of the present invention, and Figure 1 shows the annealing temperature and time for the steel strip after recrystallization annealing to reach the critical bending radius (R/t: ratio to the plate thickness) in the direction perpendicular to rolling. Figure 2 is a diagram showing the range of recrystallization annealing temperature and heat treatment time in the present invention regulated by this limit bending ratio, Figure 3 is the surface oxide film rating after recrystallization annealing Fig. 4 is a chart showing the range of recrystallization annealing temperature and heat treatment time in the present invention regulated by surface texture rating, Fig. 5 is a chart showing the influence of annealing temperature and time on recrystallization annealing in the present invention. Figure 6 is a diagram showing the relationship of the present invention to temperature and time; Figure 6 is a diagram showing the influence of the differential volume reduction during hot rolling on the anisotropy (ΔEl) of ductility after solution treatment; Figure 7 Figure 8 shows the continuous cooling transformation (CCT) behavior of one of the steels used in the present invention. Figure 9 is a diagram illustrating the influence of the amount of added alloying elements on the age hardening rate after solution treatment. Figure 10 is the relationship between aging time and age hardening rate at 480°C for short-time solution treatment materials. This is a chart showing the following.

Claims (1)

【特許請求の範囲】 1 C:0.02wt%以下、Si0.1wt%、 Mn0.2wt%、P0.01wt%、 S0.01wt%、N0.01wt%、 を含有すると共に、 Ni:15〜25wt%、Co1.00wt%、 Mo7.0wt%、Al0.2wt%、 Ti1.5wt% の中のNiを含む何れか2種又は3種以上を含有
し、残部がFeおよび不可避的不純物よりなる鋼
を、1000℃以下の累積圧下率を60%以下とすると
共に950℃以下の累積圧下率を20%以下として900
℃以上で熱間圧延を終了し、300〜600℃で巻取
り、次いで冷間圧延後に再結晶焼鈍および溶体化
処理することを特徴とする超高張力マルエージン
グ冷延鋼板の製造方法。 2 溶体化工程に続いて200℃以下の温度に冷却
した鋼帯を同一パスライン内に配置された加熱・
均熱炉の時効硬化処理をする特許請求の範囲第1
項に記載の超高張力マルエージング冷延鋼板の製
造方法。
[Claims] 1 Contains C: 0.02wt% or less, Si0.1wt%, Mn0.2wt%, P0.01wt%, S0.01wt%, N0.01wt%, and Ni: 15 to 25wt%. , Co 1.00wt%, Mo 7.0wt%, Al 0.2wt%, Ti 1.5wt%, including two or more of these, including Ni, with the balance consisting of Fe and unavoidable impurities. 900 with the cumulative rolling reduction rate below 1000℃ being 60% or less and the cumulative rolling reduction rate below 950℃ being 20% or less.
A method for producing an ultra-high tensile strength maraging cold-rolled steel sheet, which comprises completing hot rolling at a temperature of 300 to 600°C, followed by cold rolling followed by recrystallization annealing and solution treatment. 2 Following the solution treatment process, the steel strip cooled to a temperature below 200°C is heated and heated in the same pass line.
Claim 1: Age hardening treatment in a soaking furnace
A method for producing an ultra-high tensile strength maraging cold-rolled steel sheet as described in 2.
JP8833784A 1984-05-04 1984-05-04 Manufacture of ultrahigh tensile maraging cold rolled steel plate Granted JPS60234920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8833784A JPS60234920A (en) 1984-05-04 1984-05-04 Manufacture of ultrahigh tensile maraging cold rolled steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8833784A JPS60234920A (en) 1984-05-04 1984-05-04 Manufacture of ultrahigh tensile maraging cold rolled steel plate

Publications (2)

Publication Number Publication Date
JPS60234920A JPS60234920A (en) 1985-11-21
JPH058255B2 true JPH058255B2 (en) 1993-02-01

Family

ID=13940050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8833784A Granted JPS60234920A (en) 1984-05-04 1984-05-04 Manufacture of ultrahigh tensile maraging cold rolled steel plate

Country Status (1)

Country Link
JP (1) JPS60234920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100884639B1 (en) * 2000-11-17 2009-02-23 임피 위진느 프레씨지옹 Method for making a strip or a workpiece cut out from a cold rolled maraging steel strip

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274054A (en) * 1986-05-22 1987-11-28 Mitsubishi Heavy Ind Ltd Maraging steel and its heat treatment
JP5344329B2 (en) * 2011-03-22 2013-11-20 日立金属株式会社 Winding method of hot rolled maraging steel strip
JP2013185165A (en) * 2012-03-06 2013-09-19 Daihatsu Motor Co Ltd Heat treatment method for maraging steel
EP2899285B1 (en) * 2012-09-21 2018-11-14 Hitachi Metals, Ltd. Method for manufacturing maraging steel coil
DE102016102770A1 (en) * 2016-02-17 2017-08-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for producing a component, in particular a chassis component, of a motor vehicle
JP2017218634A (en) * 2016-06-08 2017-12-14 株式会社神戸製鋼所 Maraging steel
WO2020128568A1 (en) * 2018-12-17 2020-06-25 Arcelormittal Hot rolled and steel and a method of manufacturing thereof
CN115369332B (en) * 2022-08-24 2023-07-14 中航上大高温合金材料股份有限公司 Maraging ultrahigh-strength steel and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100884639B1 (en) * 2000-11-17 2009-02-23 임피 위진느 프레씨지옹 Method for making a strip or a workpiece cut out from a cold rolled maraging steel strip

Also Published As

Publication number Publication date
JPS60234920A (en) 1985-11-21

Similar Documents

Publication Publication Date Title
JP6475861B2 (en) Steel plates used for hot stamping, hot stamping process and hot stamping components
JP3152576B2 (en) Method for producing Nb-containing ferrite steel sheet
JPH058255B2 (en)
JPH04268016A (en) Production of high tensile strength steel sheet for door guide bar having excellent crushing characteristic
JP3468048B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent formability
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP2001140041A (en) Chromium stainless steel with double layer structure for spring and producing method therefor
JPH0320408A (en) Production of high tensile steel stock excellent in toughness at low temperature
JPS6137334B2 (en)
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
JP7579887B2 (en) High strength austenitic stainless steel cold rolled annealed steel sheet and its manufacturing method
JPH04371518A (en) Production of ferritic stainless steel for electric material having excellent ductility, wear resistance and rust resistance
JPS63241120A (en) Manufacture of high ductility and high strength steel sheet having composite structure
JPS63210234A (en) Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JPS62139821A (en) Production of high-ductility high-strength cold rolled steel sheet
JP3462473B2 (en) Tough steel excellent in stress corrosion cracking resistance and method of manufacturing the same
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JPS5910415B2 (en) Manufacturing method for high-tensile wire rods and steel bars with excellent stress corrosion cracking resistance
JPS61246327A (en) Manufacture of cold rolled steel sheet for extremely deep drawing
JP2952862B2 (en) Manufacturing method of spring steel with excellent hardenability and warm set resistance
JPH01172525A (en) Production of complex phase structure chromium stainless steel strip having excellent grain boundary corrosion resistance and high ductility and strength
JPH0192317A (en) Manufacture of high-strength sheet metal excellent in stretch-flange workability
JP3606135B2 (en) Ferritic stainless steel sheet for spring and manufacturing method thereof