JPH0578918A - Production of ultra-thin tape-like carbon fiber - Google Patents
Production of ultra-thin tape-like carbon fiberInfo
- Publication number
- JPH0578918A JPH0578918A JP23999891A JP23999891A JPH0578918A JP H0578918 A JPH0578918 A JP H0578918A JP 23999891 A JP23999891 A JP 23999891A JP 23999891 A JP23999891 A JP 23999891A JP H0578918 A JPH0578918 A JP H0578918A
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- fiber
- carbon fiber
- spinning
- tape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Inorganic Fibers (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、厚さが極めて薄く、低
電気抵抗、高圧縮強度等の物性をもつテープ状極薄炭素
繊維の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a tape-shaped ultra-thin carbon fiber which is extremely thin and has physical properties such as low electric resistance and high compressive strength.
【0002】[0002]
【従来技術とその問題点】炭素繊維は、当初レーヨンを
原料としていたが、現在では、その特性、経済性などの
点から、ポリアクリロニトリル(PAN)繊維を原料と
するPAN系炭素繊維と石炭又は石油系ピッチ類を原料
とするピッチ系炭素繊維によって代替されている。なか
でも、ピッチ系炭素繊維は経済的に優れているため、注
目を集めており、特に光学的異方性ピッチを原料とする
ピッチ系炭素繊維は、高強度、高弾性率などの優れた特
性を有し、同時に体積抵抗率等の物性もPAN系炭素繊
維と比べて、優れていることが知られている。2. Description of the Related Art Carbon fibers were originally made of rayon as a raw material, but at present, due to their characteristics and economical efficiency, polyacrylonitrile (PAN) fibers are used as raw materials for PAN-based carbon fibers and coal or It is replaced by pitch-based carbon fiber made from petroleum-based pitches. Of these, pitch-based carbon fibers have been attracting attention because they are economically superior, and in particular, pitch-based carbon fibers made of optically anisotropic pitch as a raw material have excellent properties such as high strength and high elastic modulus. At the same time, it is known that physical properties such as volume resistivity are superior to PAN-based carbon fibers.
【0003】また、ピッチ系炭素繊維の内部構造を制御
することによってさらに、高い物性が発現することも見
出されている(特開昭59−53717号公報)。即
ち、ピッチ系炭素繊維の断面構造としては、ラジアル、
ランダム、オニオン構造などが存在しており、例えば、
ラジアル構造はクラックを生じやすく、マクロ欠陥によ
る物性低下が生じるため、好ましくない。このような断
面構造を左右する要因として、ノズル構造、紡糸温度、
紡糸時粘度などがある。しかしながら、例えば、特定の
スリットノズルで紡糸して得られた、断面が楕円状であ
る炭素繊維では、引張物性は向上する(特開昭61−1
08725号公報)ものの体積抵抗率等の物性には改善
効果が見られない。It has also been found that higher physical properties are exhibited by controlling the internal structure of pitch-based carbon fibers (Japanese Patent Laid-Open No. 59-53717). That is, the sectional structure of the pitch-based carbon fiber is radial,
There are random, onion structures, etc., for example,
The radial structure is not preferable because cracks easily occur and the physical properties deteriorate due to macro defects. The factors that influence the cross-sectional structure include the nozzle structure, the spinning temperature,
There is viscosity during spinning. However, for example, in the case of carbon fibers obtained by spinning with a specific slit nozzle and having an elliptical cross section, the tensile properties are improved (JP-A-61-1).
No. 08725), no improvement effect can be seen in physical properties such as volume resistivity.
【0004】また、繊維の糸径を小さくすることによっ
て、断面構造が変るとともに、ミクロ欠陥の確率が減少
することにより、炭素繊維物性が向上することもわかっ
ている。It has also been found that reducing the fiber diameter changes the cross-sectional structure and reduces the probability of microdefects, thereby improving the physical properties of carbon fibers.
【0005】しかしながら、繊維径を小さくしたり、ま
た、ノズルの形状を真円から特殊な異型に変化する場合
には、紡糸性が極端に悪くなり、繊維化すること自体が
難しくなる場合が多い。このため、従来の石炭および石
油ピッチ系炭素繊維の繊維径をPAN系炭素繊維の繊維
径よりも小さくすることは、実質上困難である。However, when the fiber diameter is reduced or the nozzle shape is changed from a perfect circle to a special irregular shape, the spinnability is extremely deteriorated and it is often difficult to form a fiber. .. Therefore, it is substantially difficult to make the fiber diameter of conventional coal and petroleum pitch-based carbon fibers smaller than the fiber diameter of PAN-based carbon fibers.
【0006】[0006]
【問題点を解決するための手段】本発明者は、上記の如
き問題点を解決すべく鋭意検討をかさねた結果、 1)溶融紡糸用ピッチとして、特開平1−139621
号公報に記載された方法に基づいて、縮合多環炭素水素
またはこれを含有する物質をふっ化水素および3ふっ化
ほう素触媒の存在下200〜400℃で重合させること
により、光学的異方性相の含有率が90%以上で且つ軟
化点200℃〜280℃(好ましくは、220℃〜26
0℃)のピッチを製造し、 2)溶融ピッチの紡糸時に400〜5000ポイズの高
粘度(好ましくは、800〜2000ポイズ)になるよ
うな低い紡糸温度にてスリットノズルを用いて紡糸を行
い、更に、ノズル直下でピッチ繊維をN2 などの冷却ガ
スによって急冷し、 3)不融化時においては、繊維に0.005〜0.05
g/デニールの張力をかけ、その後、炭化および黒鉛化
を行う場合には、厚さが3μm(好ましくは2μm)以
下の極薄炭素繊維が得られることを見いだした。Means for Solving the Problems The inventors of the present invention have made diligent studies to solve the above problems, and as a result, 1) As a pitch for melt spinning, JP-A-1-139621
Based on the method described in Japanese Patent Publication No. JP-A No. 2004-187, an optically anisotropic substance is obtained by polymerizing a condensed polycyclic carbon hydrogen or a substance containing the same in the presence of hydrogen fluoride and a boron trifluoride catalyst at 200 to 400 ° C. The content of the natural phase is 90% or more and the softening point is 200 ° C to 280 ° C (preferably 220 ° C to 26 ° C).
0 ° C) pitch is produced, and 2) spinning is performed using a slit nozzle at a low spinning temperature such that a high viscosity of 400 to 5000 poise (preferably 800 to 2000 poise) is obtained during spinning of melt pitch, Further, the pitch fiber is rapidly cooled with a cooling gas such as N 2 immediately below the nozzle, and 3) at the time of infusibilization, the fiber is 0.005 to 0.05.
It has been found that when a tension of g / denier is applied, followed by carbonization and graphitization, ultrathin carbon fibers with a thickness of 3 μm (preferably 2 μm) or less can be obtained.
【0007】即ち、本発明は、下記のテープ状極薄炭素
繊維の製造方法を提供するものである: 1.縮合多環炭化水素またはそれを含有する物質をふつ
化水素及び三ふつ化ほう素触媒の存在下200〜400
℃で重合させた後、得られた光学的異方性ピッチをスリ
ットノズルから溶融紡糸し、得られたピッチ繊維を不融
化および炭化することを特徴とする厚さが3μm以下の
テープ状極薄炭素繊維の製造方法。That is, the present invention provides the following method for producing a tape-shaped ultra-thin carbon fiber: Condensed polycyclic hydrocarbon or a substance containing the same is used in the presence of hydrogen fluoride and a boron trifluoride catalyst.
After polymerization at ℃, the obtained optically anisotropic pitch is melt-spun from a slit nozzle to infusibilize and carbonize the obtained pitch fiber. Carbon fiber manufacturing method.
【0008】2.光学的異方性ピッチの光学的異方性量
が90%以上であり且つ軟化点が200℃〜280℃で
ある上記項1に記載のテープ状極薄炭素繊維の製造方
法。2. Item 2. The method for producing a tape-shaped ultra-thin carbon fiber according to Item 1, wherein the optically anisotropic amount of the optically anisotropic pitch is 90% or more and the softening point is 200 ° C to 280 ° C.
【0009】3.溶融紡糸に際し、紡糸粘度が400〜
5000ポイズとする上記項1に記載のテープ状極薄炭
素繊維の製造方法。3. Upon melt spinning, the spinning viscosity is 400-
5. The method for producing a tape-shaped ultrathin carbon fiber according to the above item 1, wherein the poise is 5000 poise.
【0010】4.不融化に際し、ピッチ繊維に0.00
5〜0.05g/デニールの張力をかける上記項1に記
載のテープ状極薄炭素繊維の製造方法。4. When infusibilized, the pitch fiber is 0.00
The method for producing a tape-shaped ultrathin carbon fiber according to the above item 1, wherein a tension of 5 to 0.05 g / denier is applied.
【0011】本発明の極薄炭素繊維は、幅方向全体にわ
たって、厚さが均一で3μm以下になっており、テープ
状の繊維であると言える。このような極薄繊維の物性を
測定した結果、予想外にも、体積抵抗率が一般的に市販
されているピッチ系炭素繊維に比べ、かなり低いことが
わかった。同時に、圧縮強度や引張物性も格段に向上し
ていることがわかった。更に、厚さが、3μm以下と薄
いため、製造時の不融化速度も従来のピッチ系繊維の場
合に比べ、かなり速いという特徴がある。The ultrathin carbon fiber of the present invention has a uniform thickness of 3 μm or less over the entire width direction and can be said to be a tape-shaped fiber. As a result of measuring the physical properties of such an ultra-thin fiber, it was unexpectedly found that the volume resistivity was considerably lower than that of pitch-based carbon fiber which is generally commercially available. At the same time, it was found that the compressive strength and the tensile properties were remarkably improved. Furthermore, since the thickness is as thin as 3 μm or less, the infusibilization rate during production is considerably higher than that of the conventional pitch fiber.
【0012】本発明で原料として使用するピッチは、特
開平1−139621号公報に記載の方法に基づき製造
された光学的異方性量が90%以上で軟化点が200〜
280℃のピッチであれば良く、軟化点が220〜26
0℃のものがより好ましい。また、該ピッチ50重量%
以上と残余が他のレジンなどからなるブレンドピッチを
使用しても良い。The pitch used as a raw material in the present invention has an optical anisotropy amount of 90% or more and a softening point of 200 to 200 produced by the method described in JP-A-1-139621.
If the pitch is 280 ° C., the softening point is 220 to 26.
The thing of 0 degreeC is more preferable. Also, the pitch is 50% by weight
It is also possible to use a blend pitch in which the above and the rest are other resins.
【0013】また、紡糸ノズルはスリット状のもので、
ノズル幅(L)やノズル高さ(H)は、特に限定される
ものではないが、通常Lは0.4〜1.6mm前後、H
は、0.06〜0.14mmのものであれば、十分であ
る。Hを小さくすることによって、できる繊維の厚さも
小さくなるが、Hが0.06mm未満では紡糸性が極端に
低下するので、好ましくない。The spinning nozzle has a slit shape,
Nozzle width (L) and nozzle height (H) are not particularly limited, but normally L is around 0.4 to 1.6 mm, H
Is sufficient if it is 0.06 to 0.14 mm. By reducing H, the thickness of the fiber that can be formed also decreases, but if H is less than 0.06 mm, the spinnability is extremely reduced, which is not preferable.
【0014】従来、紡糸は、ピッチが適度な紡糸粘度を
呈して、紡糸性が良好であることから、通常、50〜3
00ポイズ程度の低粘度で行われていた。しかしなが
ら、このような粘度で紡糸すると、どんなスリット状ノ
ズルを使用しても、低粘度のためピッチ繊維断面は楕円
状或いは円状になってしまう。ノズル形状に対応した薄
いテープ状繊維にするために、温度を下げて、高粘度紡
糸を行うと紡糸性が低下して、繊維が形成されない。Conventionally, the spinning is usually 50 to 3 because the pitch exhibits an appropriate spinning viscosity and the spinnability is good.
It was performed with a low viscosity of about 100 poise. However, when spinning is performed at such a viscosity, the pitch fiber cross section becomes elliptical or circular due to the low viscosity, whichever slit nozzle is used. When the temperature is lowered and the high-viscosity spinning is carried out in order to obtain a thin tape-shaped fiber corresponding to the nozzle shape, the spinnability is deteriorated and the fiber is not formed.
【0015】これに対して、本発明で特定のピッチを特
定の紡糸方法で紡糸すると、均一な厚さ3μm以下のテ
ープ状繊維が紡糸できる。即ち、上記で特定したピッチ
を用いて、均一な厚さにするためには、できるだけ高粘
度で紡糸するのが良く、その粘度は400〜5000ポ
イズとすることが好ましい。特に、均一な厚さとすると
ともに、紡糸性をそこなわないためには、800〜20
00ポイズとすることがより好ましい。On the other hand, in the present invention, when a specific pitch is spun by a specific spinning method, a tape-shaped fiber having a uniform thickness of 3 μm or less can be spun. That is, in order to obtain a uniform thickness using the pitch specified above, it is preferable to perform spinning with a viscosity as high as possible, and the viscosity is preferably 400 to 5000 poise. In particular, in order to obtain a uniform thickness and not impair the spinnability, 800 to 20
More preferably, it is 00 poise.
【0016】更に、ノズル下には、ピッチ繊維を0〜5
0℃程度に冷却したN2 などのガスで急冷することが望
ましい。しかし、ガスによって繊維の紡糸性を阻害する
ことはよくないので、ガス量は糸切れがおこらない程度
の適度な量にする必要がある。[0016] Further, 0 to 5 pitch fibers are provided under the nozzle.
It is desirable to quench with a gas such as N 2 cooled to about 0 ° C. However, since the spinnability of the fiber is not hindered by gas, it is necessary to set the gas amount to an appropriate amount that does not cause yarn breakage.
【0017】紡糸方法は、特に限定されず、従来から行
われている溶融紡糸、エアーサッカー法、渦流法などを
採用することができる。The spinning method is not particularly limited, and conventionally-used melt spinning, air sucker method, vortex method and the like can be adopted.
【0018】不融化時において、繊維に0.005〜
0.05g/デニールの張力をかけることによって、厚
さをさらに均一かつ薄くすることができる。しかしなが
ら、0.1g/デニール以上の張力をかけた場合には、
繊維が切れてしまうことがあり、好ましくない。At the time of infusibilization, 0.005 to
By applying a tension of 0.05 g / denier, the thickness can be made more uniform and thin. However, when a tension of 0.1 g / denier or more is applied,
The fiber may be broken, which is not preferable.
【0019】また、不融化工程においては、薄い繊維で
あることから、断面が同じ面積の真円状乃至楕円状の繊
維に比べ、不融化が速やかに終了する。即ち、不融化時
における繊維表面からの中心部への酸素の侵入距離が短
いため、真円状および楕円状の繊維に比して、不融化時
間を約60〜80%短縮できる。短縮の程度は、繊維の
厚さが小さい程、顕著となる。このような不融化時間の
短縮は、コストを著しく低減させるので、効果が大き
い。Further, in the infusibilizing step, since the fibers are thin, the infusibilization is completed more quickly than in the case of the fibers having the same area in cross section, that is, circular or elliptical. That is, since the penetration distance of oxygen from the fiber surface to the central portion at the time of infusibilization is short, the infusibilization time can be shortened by about 60 to 80% as compared with the case of perfect circular and elliptical fibers. The degree of shortening becomes more remarkable as the fiber thickness becomes smaller. Such shortening of the infusibilization time significantly reduces the cost, and thus has a great effect.
【0020】不融化方法は、特に限定されず、一般的に
行われている空気不融化、或いは硝酸、二酸化窒素など
の酸化剤を用いる不融化などを採用することができる。The infusibilization method is not particularly limited, and commonly used infusibilization in air or infusibilization using an oxidizing agent such as nitric acid or nitrogen dioxide can be employed.
【0021】最後に、上記のような処理を行なったの
ち、不融化繊維に糸切れのないような張力をかけなが
ら、不活性ガス雰囲気中で炭化および黒鉛化を行うと、
厚さの均一なテープ状極薄炭素繊維が製造できる。炭化
および黒鉛化時の温度条件は、特に限定されず、炭化時
は1000〜2000℃程度、黒鉛化は2000〜30
00℃程度とすれば良い。1000℃以上の炭化および
黒鉛化工程においても、本発明で特定したピッチを使用
すれば、さらに、繊維の収縮がおこる。即ち、炭化〜黒
鉛化の間で、厚さ方向において、最終的にピツチ繊維に
対し20〜60%程度収縮して薄くなる。この収縮率
は、従来の原料ピッチを使用する場合に比べても、大き
い。Finally, after the above-mentioned treatment, carbonization and graphitization are carried out in an inert gas atmosphere while applying a tension to the infusible fiber so as not to break the yarn.
A tape-shaped ultra-thin carbon fiber having a uniform thickness can be manufactured. The temperature conditions at the time of carbonization and graphitization are not particularly limited, about 1000 to 2000 ° C. at the time of carbonization, and 2000 to 30 at the graphitization.
The temperature may be about 00 ° C. Even in the carbonization and graphitization steps at 1000 ° C. or higher, if the pitch specified in the present invention is used, the fiber further shrinks. That is, in the thickness direction between carbonization and graphitization, the pitch fiber finally shrinks by about 20 to 60% and becomes thin. This shrinkage rate is large compared to the case where the conventional raw material pitch is used.
【0022】[0022]
【発明の効果】本発明により得られるテープ状極薄炭素
繊維は、その断面が3μm以下の均一な厚さをもつ繊維
であり、圧縮強度や引張物性の向上はもちろん特に電気
抵抗が低いという特徴がある。しかも、製造時には、高
粘度でも良好な紡糸性が保たれ、さらに、不融化、炭化
および黒鉛化における収縮率が高いため、安定して、極
薄繊維を得ることができる。さらに、薄い繊維であるこ
とから、不融化時間が短縮できることから生産性も飛躍
的に向上する。The tape-shaped ultra-thin carbon fiber obtained by the present invention is a fiber whose cross section has a uniform thickness of 3 μm or less, and is characterized by particularly low electric resistance as well as improvement in compressive strength and tensile properties. There is. Moreover, at the time of production, good spinnability is maintained even with a high viscosity, and since the shrinkage rate is high in infusibilization, carbonization and graphitization, it is possible to stably obtain an ultrathin fiber. Further, since the fibers are thin, the infusibilization time can be shortened, and the productivity is dramatically improved.
【0023】[0023]
【実施例】以下に実施例および比較例を示し、本発明の
特徴とするところをより一層明らかにする。EXAMPLES Examples and comparative examples will be shown below to further clarify the features of the present invention.
【0024】なお、生成物の性状は、以下の方法により
測定した。The properties of the product were measured by the following methods.
【0025】1.軟化点 スイス メトラ社製の軟化点測定装置を使用して測定し
た。1. Softening point Measured using a softening point measuring device manufactured by Swiss Metra.
【0026】2.光学的異方性量 偏光顕微鏡写真により、異方性組織の面積率を算出し
た。2. Optical anisotropy amount The area ratio of the anisotropic structure was calculated from the polarization micrograph.
【0027】3.引張試験および体積抵抗率 JIS R−7601「炭素繊維試験方法」に準じ、ス
トランドによる測定を行なった。3. Tensile test and volume resistivity According to JIS R-7601 "Carbon fiber test method", measurement with a strand was performed.
【0028】4.繊維の断面形状 繊維径の測定は、走査型電子顕微鏡写真により、n=2
0の断面の幅および厚さの平均値を算出した。4. Cross-sectional shape of fiber The fiber diameter was measured by scanning electron micrograph, n = 2
The average value of the width and thickness of the 0 cross section was calculated.
【0029】5.圧縮強度 JIS K−7076「炭素繊維強化プラスチックの圧
縮試験法」に準じて行なった。5. Compressive strength It carried out according to JIS K-7076 "compression test method of carbon fiber reinforced plastic".
【0030】[0030]
【実施例1】特開平1−139621号公報に記載され
た方法に基づいて、ナフタレン1モル、HF 0.5モ
ル、BF3 0.5モルを500mlの耐酸オートクレー
ブに仕込み、反応圧力を25kg/cm2 Gに保ちながら、
260℃に昇温し、260℃で2時間反応させた。次い
で、HFおよびBF3 をガス状で回収したのち、窒素を
吹き込み、低沸点成分を除去し、ピッチを得た。得られ
たピッチの収率は、重量比で76wt%であった。この
ピッチの軟化点は、251.5℃であり、偏光顕微鏡に
より100%の異方性ピッチであることが確認された。Example 1 Based on the method described in JP-A-1-139621, 1 mol of naphthalene, 0.5 mol of HF and 0.5 mol of BF 3 were charged into a 500 ml acid-resistant autoclave at a reaction pressure of 25 kg / While keeping it at cm 2 G,
The temperature was raised to 260 ° C. and the reaction was carried out at 260 ° C. for 2 hours. Then, HF and BF 3 were recovered in a gaseous state, and then nitrogen was blown to remove low boiling point components to obtain pitch. The yield of the obtained pitch was 76% by weight. The softening point of this pitch was 251.5 ° C., and it was confirmed by a polarization microscope that the pitch was 100% anisotropic.
【0031】このピッチをL=1.0mm、H=0.1mm
のスリットノズルを使用して紡糸したところ、273
℃、450m/分の巻取速度で10分間糸切れなく紡糸
できた。その時の紡糸粘度は、約1200ポイズであっ
た。また、ノズル下2.5mmの位置で2l/分で窒素を
吹付け、ピッチ繊維を急冷した。This pitch is L = 1.0 mm, H = 0.1 mm
273 when spun using the slit nozzle of
It could be spun at a winding speed of 450 m / min for 10 minutes without breakage. The spinning viscosity at that time was about 1200 poise. Further, nitrogen was blown at a position of 2.5 mm below the nozzle at a rate of 2 l / min to quench the pitch fiber.
【0032】次に、ピッチ繊維に張力0.01g/デニ
ールをかけた状態で、270℃まで8℃/分で昇温し、
10分間保持することで不融化を行なった。Next, the pitch fiber was heated to 270 ° C. at a rate of 8 ° C./min while a tension of 0.01 g / denier was applied,
It was made infusible by holding it for 10 minutes.
【0033】この不融化した繊維を不活性ガス中15℃
/分の昇温速度で、1400℃、2000℃および26
00℃まで各々昇温し、繊維が切れない程度の張力をか
けながら、炭化および黒鉛化を施した。その物性を表1
に示す。The infusibilized fiber was heated in an inert gas at 15 ° C.
1400 ° C., 2000 ° C. and 26 at a heating rate of 1 / min
The temperature was raised to 00 ° C., and carbonization and graphitization were performed while applying a tension not to break the fibers. The physical properties are shown in Table 1.
Shown in.
【0034】[0034]
【比較例1】実施例1と同じピッチを用い、真円ノズル
(直径0.2mm)を使用した以外は同じ条件で紡糸し、
不融化を(a)実施例1と同じ条件で行なった繊維或い
は(b)270℃まで8℃/分で昇温し、同温度に25
分間保持した繊維を2000℃で焼成した。その時の物
性を表1に示す。[Comparative Example 1] Spinning was performed under the same conditions as in Example 1 except that a perfect circular nozzle (diameter 0.2 mm) was used,
The infusibilization was (a) fibers carried out under the same conditions as in Example 1 or (b) the temperature was raised to 270 ° C. at 8 ° C./min, and the temperature was raised to 25
The fibers held for minutes were fired at 2000 ° C. Table 1 shows the physical properties at that time.
【0035】[0035]
【表1】 [Table 1]
【0036】表1に示す結果から明らかな様に、本発明
方法によれば、極薄繊維の不融化時間の短縮の効果およ
び体積抵抗率、圧縮強度および引張物性の向上が顕著に
見られる。As is clear from the results shown in Table 1, according to the method of the present invention, the effect of shortening the infusibilizing time of the ultrathin fibers and the improvement in volume resistivity, compressive strength and tensile properties are remarkably observed.
【0037】[0037]
【実施例2】実施例1と同じピッチを用い、L=1.3
5mm、H=0.06mmのスリットノズルを使用して巻取
速度620m/分で巻取ったのち、260℃まで8℃/
分で昇温し、5分間保持して不融化を行なった。そのの
ち、不活性ガス中2000℃で焼成した。得られた炭素
繊維の断面形状は、厚さ=0.95μm、幅=17.2
μmであった。得られた極薄炭素繊維の物性を表2に示
す。Example 2 Using the same pitch as in Example 1, L = 1.3
After winding at a winding speed of 620 m / min using a slit nozzle of 5 mm and H = 0.06 mm, 8 ° C / up to 260 ° C.
The temperature was raised in minutes, and the temperature was maintained for 5 minutes for infusibilization. After that, baking was performed at 2000 ° C. in an inert gas. The cross-sectional shape of the obtained carbon fiber has a thickness = 0.95 μm and a width = 17.2.
was μm. Table 2 shows the physical properties of the obtained ultra-thin carbon fiber.
【0038】 表 2 体積抵抗率 1.62×10-4Ω・cm 引張強度 501kg/mm2 弾性率 46 ton/mm2 Table 2 Volume resistivity 1.62 × 10 −4 Ω · cm Tensile strength 501 kg / mm 2 Elastic modulus 46 ton / mm 2
【0039】[0039]
【実施例3】実施例1と同じピッチをL=0.9mm、H
=0.20mmのスリットノズルを用い巻取速度をかえて
紡糸した。即ち、300、600および900m/分の
巻取速度で紡糸したが、600および900mm/分で
は、紡糸できなかった。300m/分で紡糸した繊維を
実施例1と同じ条件で不融化し、2000℃焼成を行な
った。結果を表3に示す。この繊維の断面厚さは3.9
5μm、幅12.3μmであり、物性は低いものであっ
た。断面厚さが3μm以上になると、本発明の特徴が失
われることがわかる。[Third Embodiment] L = 0.9 mm, H with the same pitch as in the first embodiment.
= 0.20 mm slit nozzle was used and spinning was performed while changing the winding speed. That is, spinning was performed at a winding speed of 300, 600 and 900 m / min, but spinning was not possible at 600 and 900 mm / min. The fiber spun at 300 m / min was made infusible under the same conditions as in Example 1 and fired at 2000 ° C. The results are shown in Table 3. The cross-sectional thickness of this fiber is 3.9.
The physical properties were low, with a width of 5 μm and a width of 12.3 μm. It can be seen that the features of the present invention are lost when the sectional thickness is 3 μm or more.
【0040】 表 3 体積抵抗率 15.0×10-4Ω・cm 引張強度 330kg/mm2 弾性率 38 ton/mm2 Table 3 Volume resistivity 15.0 × 10 −4 Ω · cm Tensile strength 330 kg / mm 2 Elastic modulus 38 ton / mm 2
Claims (4)
質をふつ化水素及び三ふつ化ほう素触媒の存在下200
〜400℃で重合させた後、得られた光学的異方性ピッ
チをスリットノズルから溶融紡糸し、得られたビッチ繊
維を不融化および炭化することを特徴とする厚さが3μ
m以下のテープ状極薄炭素繊維の製造方法。1. A condensed polycyclic hydrocarbon or a substance containing the condensed polycyclic hydrocarbon in the presence of hydrogen fluoride and a boron trifluoride catalyst.
After polymerization at ˜400 ° C., the obtained optically anisotropic pitch is melt-spun from a slit nozzle, and the obtained Bitch fiber is infusibilized and carbonized.
A method for producing a tape-shaped ultra-thin carbon fiber having a size of m or less.
0%以上であり且つ軟化点が200℃〜280℃である
請求項1に記載のテープ状極薄炭素繊維の製造方法。2. The optical anisotropy amount of the optically anisotropic pitch is 9
The method for producing a tape-shaped ultra-thin carbon fiber according to claim 1, wherein the softening point is 0% or more and the softening point is 200 ° C to 280 ° C.
00ポイズとする請求項1に記載のテープ状極薄炭素繊
維の製造方法。3. The melt spinning has a spinning viscosity of 400 to 50.
The method for producing the tape-shaped ultra-thin carbon fiber according to claim 1, wherein the poise is 00 poise.
0.05g/デニールの張力をかける請求項1に記載の
テープ状極薄炭素繊維の製造方法。4. The pitch fiber is 0.005 to 5% when infusibilized.
The method for producing a tape-shaped ultra-thin carbon fiber according to claim 1, wherein a tension of 0.05 g / denier is applied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23999891A JPH0578918A (en) | 1991-09-19 | 1991-09-19 | Production of ultra-thin tape-like carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23999891A JPH0578918A (en) | 1991-09-19 | 1991-09-19 | Production of ultra-thin tape-like carbon fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0578918A true JPH0578918A (en) | 1993-03-30 |
Family
ID=17052950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23999891A Pending JPH0578918A (en) | 1991-09-19 | 1991-09-19 | Production of ultra-thin tape-like carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0578918A (en) |
-
1991
- 1991-09-19 JP JP23999891A patent/JPH0578918A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5037590A (en) | Method for the preparation of carbon fibers | |
US4574077A (en) | Process for producing pitch based graphite fibers | |
US4356158A (en) | Process for producing carbon fibers | |
JPH0578918A (en) | Production of ultra-thin tape-like carbon fiber | |
JP2849156B2 (en) | Method for producing hollow carbon fiber | |
JPS6278220A (en) | Production of ribbon-like carbon fiber | |
JPH01282325A (en) | Pitch-based carbon fibersheet and production thereof | |
JP4601875B2 (en) | Carbon fiber manufacturing method | |
JP2766530B2 (en) | Method for producing pitch-based carbon fiber | |
JP3164704B2 (en) | Method for producing pitch-based high compressive strength carbon fiber | |
JPS59168123A (en) | Preparation of pitch carbon yarn | |
JPS60181313A (en) | Manufacture of pitch fiber | |
JPS6269826A (en) | Production of high-strength and high-modulus carbon fiber | |
JPH0314625A (en) | Pitch for carbon yarn and production of carbon yarn using the same pitch | |
JP3239490B2 (en) | Optically anisotropic pitch for high compressive strength carbon fiber and method for producing carbon fiber | |
JP2766521B2 (en) | Method for producing pitch-based carbon fiber | |
JPH06248520A (en) | Production of carbon fiber | |
JPH0413450B2 (en) | ||
JPH0841730A (en) | Production of high-thermal conductivity carbon fiber | |
JPS6183319A (en) | Carbon fiber and its production | |
JPH0610215A (en) | Pitch carbon fiber and its production | |
JPS60259631A (en) | Production of pitch carbon fiber | |
JPS6081320A (en) | Manufacture of carbon fiber | |
JPS6134224A (en) | Production of pitch based high-strength carbon filament yarn | |
JPS6285030A (en) | Production of carbon fiber with modified cross section |