[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH057570A - Mri apparatus - Google Patents

Mri apparatus

Info

Publication number
JPH057570A
JPH057570A JP3164587A JP16458791A JPH057570A JP H057570 A JPH057570 A JP H057570A JP 3164587 A JP3164587 A JP 3164587A JP 16458791 A JP16458791 A JP 16458791A JP H057570 A JPH057570 A JP H057570A
Authority
JP
Japan
Prior art keywords
signal
mhz
image
control system
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3164587A
Other languages
Japanese (ja)
Other versions
JP3157546B2 (en
Inventor
Hideaki Uno
英明 宇野
Susumu Kosugi
進 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP16458791A priority Critical patent/JP3157546B2/en
Publication of JPH057570A publication Critical patent/JPH057570A/en
Application granted granted Critical
Publication of JP3157546B2 publication Critical patent/JP3157546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To enable the prevention of degrading of an image as caused by the mixing into an RF system a noise attributed to a clock signal of a control system. CONSTITUTION:A phase relationship synchronizing means (PLL and a computer system) is included to maintain a relationship a phase of a clock signal of a control system 2 and a phase of an NMR signal for the whole view per observation. An arithmetic processing section 20 obtains a noise component attributed to a clock signal of a control system 2 from a reception data with the reception of no NMR signal and subtracts the noise component from a reception data of each view to correct the reception data. Or the arithmetic processing section 20 reconstructs an image by a Fourier transform of the reception data of each view while performing a processing a DC component to the end of the image thereby obtaining an image of a high quality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、MRI装置に関し、
さらに詳しくは、RF系に混入するクロック信号ノイズ
による画質の劣化を防止することが可能なMRI装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an MRI apparatus,
More specifically, the present invention relates to an MRI apparatus capable of preventing deterioration of image quality due to clock signal noise mixed in an RF system.

【0002】[0002]

【従来の技術】図3に、従来のMRI装置の一例の要部
構成図を示す。このMRI装置51において、制御系5
2では、発振子53で発生した4MHzの信号を逓倍し、
32MHzのクロック信号を作り、それによりコンピュー
タ系を駆動している。
2. Description of the Related Art FIG. 3 is a block diagram showing the essential parts of an example of a conventional MRI apparatus. In this MRI apparatus 51, the control system 5
In 2, the 4 MHz signal generated by the oscillator 53 is multiplied,
A computer system is driven by generating a 32 MHz clock signal.

【0003】一方、RF系(図3における発振子54か
らバンドパスフィルタBPF6fまで)では、発振子5
4で発生した10MHzの信号を逓倍して20MHzの信号
を作ると共に分周して5MHzの信号を作る。そして、R
F送信時には、制御系52からの送信時/受信時周波数
切換信号に基づいて、DDSで1.29MHzの信号を作
り、これと前記5MHzの信号をミクサ5aで混合しBP
F6aにより6.29MHzの信号を作り、これと前記2
0MHzの信号をミクサ5bで混合しBPF6bにより2
6.29MHzの信号を作り、さらにそれと制御系52の
RF振幅信号で変調された前記5MHzの信号をミクサ5
dで混合して21.29MHzのRF信号を作り、これを
増幅器(図示省略)を経由してRFコイル10に供給す
る。また、NMR信号受信時には、前記制御系52から
の送信時/受信時周波数切換信号に基づいて、DDSで
1.665MHzの信号を作り、これと前記5MHzの信号
をミクサ5aで混合しBPF6aにより6.665MHz
信号を作り、これと前記20MHzの信号をミクサ5bで
混合しBPF6bにより26.665MHzの信号を作
り、これをNMR信号受信部のミクサ5eに供給する。
On the other hand, in the RF system (from the oscillator 54 to the bandpass filter BPF 6f in FIG. 3), the oscillator 5
The 10 MHz signal generated in step 4 is multiplied to create a 20 MHz signal and the frequency is divided to create a 5 MHz signal. And R
At the time of F transmission, a 1.29 MHz signal is generated by DDS based on the transmission / reception frequency switching signal from the control system 52, and this and 5 MHz signal are mixed by the mixer 5a to BP.
Generate 6.29MHz signal by F6a, and this and the above 2
The signal of 0MHz is mixed by the mixer 5b and 2 by the BPF 6b.
A signal of 6.29 MHz is generated, and the signal of 5 MHz modulated by the RF amplitude signal of the control system 52 is further mixed with the mixer 5.
An RF signal of 21.29 MHz is produced by mixing in d, and this is supplied to the RF coil 10 via an amplifier (not shown). Further, when receiving the NMR signal, a signal of 1.665 MHz is generated by DDS based on the transmission / reception frequency switching signal from the control system 52, and this signal and the signal of 5 MHz are mixed by the mixer 5a and then mixed by the BPF 6a. .665 MHz
A signal is produced, and the signal of 20 MHz is mixed with the mixer 5b to produce a signal of 26.665 MHz by the BPF 6b, which is supplied to the mixer 5e of the NMR signal receiving section.

【0004】NMR信号受信部では、RFコイル10で
受信し増幅器(図示省略)で増幅された21.29MHz
のNMR信号と前記26.665MHzの信号をミクサ5
eで混合しBPF6eにより5.375MHzの信号を作
り、それと前記5MHzの信号をミクサ5fで混合しBP
F6fにより375kHzの信号を作り、これを受信デー
タとして演算処理部70に入力する。演算処理部70
は、受信データをフーリエ変換してイメージを再構成す
る。
In the NMR signal receiving section, 21.29 MHz received by the RF coil 10 and amplified by an amplifier (not shown)
Of the NMR signal of 26.665 MHz and the signal of the mixer 5
The signal of 5375MHz is made by BPF6e by mixing with e, and it is mixed with the signal of 5MHz by the mixer 5f.
A signal of 375 kHz is created by F6f, and this is input to the arithmetic processing unit 70 as received data. Arithmetic processing unit 70
Reconstructs the image by Fourier transforming the received data.

【0005】[0005]

【発明が解決しようとする課題】上記従来のMRI装置
51において、制御系52のクロック信号(32MHz)
がノイズとしてNMR信号受信部のミクサ5eより前段
に混入すると、ミクサ5eで前記26.665MHzの信
号と混合され、5.335MHzのノイズを生じる。これ
はNMR信号による5.375MHzの信号と周波数帯域
が近似するため、BPF6eによっても除去されない。
5.335MHzのノイズは、前記5MHzの信号とミクサ
5fで混合され、335kHzのノイズを生じる。これは
NMR信号による375kHzの信号と周波数帯域が近似
するため、BPF6fによっても除去されない。従っ
て、335kHzのノイズが受信データに混入して演算処
理部70に入力される。
In the above conventional MRI apparatus 51, the clock signal (32 MHz) of the control system 52 is used.
Is mixed as noise in the preceding stage of the mixer 5e of the NMR signal receiving unit, the mixer 5e mixes it with the 26.665 MHz signal to generate 5.335 MHz noise. This is not removed even by the BPF 6e because the frequency band is similar to the 5.375 MHz signal by the NMR signal.
The 5.335 MHz noise is mixed with the 5 MHz signal in the mixer 5f to generate 335 kHz noise. This is not removed even by the BPF 6f because the frequency band is close to the 375 kHz signal by the NMR signal. Therefore, noise of 335 kHz is mixed with the received data and input to the arithmetic processing unit 70.

【0006】図4は、受信データにおける375kHz
のNMR信号成分と335kHzのノイズ成分とを3つ
の異なるビューについて示した概念図である。制御系5
2のクロック信号とRF系の信号とが全く独立であるた
め、各ビューにおける両成分の位相関係はランダムにな
っている。
FIG. 4 shows 375 kHz in the received data.
FIG. 3 is a conceptual diagram showing the NMR signal component of R and a noise component of 335 kHz for three different views. Control system 5
Since the two clock signals and the RF system signal are completely independent, the phase relationship between both components in each view is random.

【0007】このように上記MRI装置51では、受信
データにおける375kHzのNMR信号成分と335
kHzのノイズ成分の位相関係がランダムであるため、
ノイズ成分を除去することができず、アーチファクトと
して画像に表われ、画質を劣化させる問題点がある。
As described above, in the MRI apparatus 51, the 375 kHz NMR signal component and 335 kHz of the received data are received.
Since the phase relationship of the noise component of kHz is random,
The noise component cannot be removed and appears as an artifact in the image, degrading the image quality.

【0008】そこで、この発明は、制御系のクロック信
号に起因するノイズがRF系に混入することにより生じ
る画質の劣化を防止可能としたMRI装置を提供するこ
とにある。
Therefore, the present invention is to provide an MRI apparatus capable of preventing the deterioration of the image quality caused by the noise caused by the clock signal of the control system being mixed into the RF system.

【0009】[0009]

【課題を解決するための手段】この発明のMRI装置
は、制御系のクロック信号の位相とNMR信号の位相の
関係を、1観測における全ビューについて、一定に保つ
ための位相関係同期手段を具備したことを構成上の特徴
とするものである。
The MRI apparatus of the present invention comprises a phase relation synchronizing means for keeping the relation between the phase of the clock signal of the control system and the phase of the NMR signal constant for all views in one observation. What is done is a characteristic of the configuration.

【0010】上記構成において、NMR信号が受信され
ない状態での受信データから制御系のクロック信号に起
因するノイズ成分を得て、そのノイズ成分を各ビューの
受信データから差し引くことにより受信データを補正す
る受信データ補正手段をさらに具備するのが好ましい。
In the above configuration, the received data is corrected by obtaining the noise component caused by the clock signal of the control system from the received data when the NMR signal is not received, and subtracting the noise component from the received data of each view. It is preferable to further include reception data correction means.

【0011】また、上記構成において、各ビューの受信
データをフーリエ変換してイメージを再構成すると共に
そのイメージの端にDC成分を追いやる処理を行うDC
成分除去手段をさらに具備するのが好ましい。
Further, in the above structure, the received data of each view is Fourier transformed to reconstruct the image, and the DC component is processed to remove the DC component at the edge of the image.
It is preferable to further include a component removing means.

【0012】[0012]

【作用】この発明のMRI装置では、位相関係同期手段
によって、制御系のクロック信号の位相とNMR信号の
位相の関係を、どのビューでも一定になるように制御す
る。この結果、受信データにおけるNMR信号成分とノ
イズ成分の位相関係がどのビューでも一定になるから、
NMR信号成分のない状態でノイズ成分のみを測定し、
各ビューの受信データからそれを差し引けば、ノイズ成
分を除去でき、アーチファクトのないイメージが得られ
る。また、例えばチョプレトソン技法を用いることによ
って、ノイズ成分に起因するアーチファクトをイメ−ジ
の端に追いやることが出来るから、実質的に画像の劣化
を防止できる。また、
In the MRI apparatus of the present invention, the phase relation synchronizing means controls the relation between the phase of the clock signal of the control system and the phase of the NMR signal so as to be constant in every view. As a result, the phase relationship between the NMR signal component and the noise component in the received data becomes constant in every view,
Only the noise component is measured without the NMR signal component,
By subtracting it from the received data of each view, the noise component can be removed and an image without artifacts can be obtained. Further, for example, by using the Chopletson technique, the artifacts caused by the noise component can be driven to the edge of the image, so that the deterioration of the image can be substantially prevented. Also,

【0013】[0013]

【実施例】以下、図に示す実施例によりこの発明をさら
に詳細に説明する。なお、これによりこの発明が限定さ
れるものではない。図1は、この発明の一実施例のMR
I装置1を示す構成図である。このMRI装置1におい
て、制御系2では、発振子3で発生した10MHzの信号
を逓倍して20MHzの信号を作り、それをPLLにより
1.6倍して32MHzのクロック信号を作り、それによ
りコンピュータ系を駆動している。
The present invention will be described in more detail with reference to the embodiments shown in the drawings. The present invention is not limited to this. FIG. 1 shows an MR according to an embodiment of the present invention.
It is a block diagram which shows the I apparatus 1. In this MRI apparatus 1, the control system 2 multiplies the signal of 10 MHz generated by the oscillator 3 to produce a signal of 20 MHz, and multiplies the signal by 1.6 by a PLL to produce a clock signal of 32 MHz. Driving the system.

【0014】一方、RF系(図1における発振子3から
バンドパスフィルタBPF6fまで)では、発振子3で
発生した10MHzの信号を逓倍して20MHzの信号を作
ると共に分周して5MHzの信号を作る。そして、RF送
信時には、制御系2からの送信時/受信時周波数切換信
号に基づいて、DDSで1.29MHzの信号を作り、こ
れと前記5MHzの信号をミクサ5aで混合しBPF6a
により6.29MHzの信号を作り、これと前記20MHz
の信号をミクサ5bで混合しBPF6bにより26.2
9MHzの信号を作り、さらにそれと制御系2のRF振幅
信号で変調された前記5MHzの信号をミクサ5dで混合
して21.29MHzのRF信号を作り、これをRFコイ
ル10に供給する。また、NMR信号受信時には、前記
制御系2からの送信時/受信時周波数切換信号に基づい
て、DDSで1.665MHzの信号を作り、これと前記
5MHzの信号をミクサ5aで混合しBPF6aにより
6.665MHz信号を作り、これと前記20MHzの信号
をミクサ5bで混合しBPF6bにより26.665M
Hzの信号を作り、これをNMR信号受信部のミクサ5e
に供給する。
On the other hand, in the RF system (from the oscillator 3 to the bandpass filter BPF 6f in FIG. 1), the signal of 10 MHz generated in the oscillator 3 is multiplied to produce a signal of 20 MHz and the signal is divided to generate a signal of 5 MHz. create. Then, at the time of RF transmission, a 1.29 MHz signal is produced by DDS based on the transmission / reception frequency switching signal from the control system 2, and this and the 5 MHz signal are mixed by the mixer 5a, and the BPF 6a.
6.29MHz signal is generated by this, and this and 20MHz
The signal of 6 is mixed by the mixer 5b, and 26.2 by the BPF 6b.
A signal of 9 MHz is produced, and the 5 MHz signal modulated by the RF amplitude signal of the control system 2 is mixed by the mixer 5d to produce an RF signal of 21.29 MHz, which is supplied to the RF coil 10. When receiving the NMR signal, a DDS signal of 1.665 MHz is produced based on the transmission / reception frequency switching signal from the control system 2. This signal and the 5 MHz signal are mixed by the mixer 5a and mixed by the BPF 6a. .665 MHz signal is generated, and this and the 20 MHz signal are mixed by the mixer 5b, and the BPF 6b outputs 26.665M.
Create a Hz signal, and use this for the mixer 5e of the NMR signal receiver.
Supply to.

【0015】NMR信号受信部では、RFコイル10で
受信された21.29MHzのNMR信号と前記26.6
65MHzの信号をミクサ5eで混合しBPF6eにより
5.375MHzの信号を作り、それと前記5MHzの信号
をミクサ5fで混合しBPF6fにより375kHzの信
号を作り、これを受信データとして演算処理部20に入
力する。演算処理部20は、受信データをフーリエ変換
してイメージを再構成する。
In the NMR signal receiving section, the NMR signal of 21.29 MHz received by the RF coil 10 and the above 26.6 are received.
The signal of 65 MHz is mixed by the mixer 5e to make a signal of 5.375 MHz by the BPF 6e, the signal of 5 MHz is mixed with the signal of 5 MHz by the mixer 5f, and the signal of 375 kHz is made by the BPF 6f, and this is input to the arithmetic processing unit 20 as received data. . The arithmetic processing unit 20 performs a Fourier transform on the received data to reconstruct an image.

【0016】上記MRI装置1において、制御系2のク
ロック信号がノイズとしてNMR信号受信部のミクサ5
eより前段に混入すると、ミクサ5eで前記26.66
5MHzの信号と混合され、5.335MHzのノイズを生
じる。これはNMR信号による5.375MHzの信号と
周波数帯域が近似するため、BPF6eによっても除去
されない。5.335MHzのノイズは、前記5MHzの信
号とミクサ5fで混合され、335kHzのノイズを生じ
る。これはNMR信号による375kHzの信号と周波数
帯域が近似するため、BPF6fによっても除去されな
い。従って、335kHzのノイズが受信データに混入し
て演算処理部20に入力される。
In the MRI apparatus 1, the clock signal of the control system 2 is regarded as noise by the mixer 5 of the NMR signal receiving section.
If mixed in the previous stage from e, the above-mentioned 26.66 is mixed by the mixer 5e.
Mixing with the 5 MHz signal results in 5.335 MHz noise. This is not removed even by the BPF 6e because the frequency band is similar to the 5.375 MHz signal by the NMR signal. The 5.335 MHz noise is mixed with the 5 MHz signal in the mixer 5f to generate 335 kHz noise. This is not removed even by the BPF 6f because the frequency band is close to the 375 kHz signal by the NMR signal. Therefore, noise of 335 kHz is mixed in the received data and input to the arithmetic processing unit 20.

【0017】ところで、制御系2は、各ビューにおける
パルスシーケンスの開始のタイミングとクロック信号の
位相の関係が常に一定になるように制御する。すると、
クロック信号とRF系の信号は同じ発振子3から作られ
ているから、各ビューにおけるパルスシーケンスの開始
のタイミングとRF系の信号の位相の関係が常に一定に
なる。この結果、図2に示すように、受信データにおけ
る375kHzのNMR信号成分と335kHzのノイ
ズ成分の位相関係はどのビューでも一定になる。
The control system 2 controls so that the relationship between the start timing of the pulse sequence and the phase of the clock signal in each view is always constant. Then,
Since the clock signal and the RF system signal are produced from the same oscillator 3, the relationship between the start timing of the pulse sequence and the phase of the RF system signal in each view is always constant. As a result, as shown in FIG. 2, the phase relationship between the 375 kHz NMR signal component and the 335 kHz noise component in the received data is constant in all views.

【0018】このように上記MRI装置1では、受信デ
ータにおける375kHzのNMR信号成分と335k
Hzのノイズ成分の位相関係が一定であるため、演算処
理部20でノイズ成分を除去することが可能となる。す
なわち、演算処理部20は、本来の観測とは別に、NM
R信号成分のない状態で受信データを得る。次に、本来
の観測を行ない、得られた各ビューの受信データから前
記受信データを差し引く。そして、差し引いた後の各ビ
ューの受信データをフーリエ変換して、イメージを再構
成する。これにより得られるイメージは、制御系2のク
ロック信号に起因するノイズ成分を除去した受信データ
から再構成されたものなので、アーチファクトのない高
品質のイメージとなる。あるいは、演算処理部20は、
ノイズ成分を含んだままの受信データを用いるが、励起
パルス(90゜パルス)の位相をビュー毎に反転し、負
の位相で励起された信号を反転して再構成することによ
り、DC成分(ベースライン成分)をイメージ(視野領
域)の端に追いやる処理を行う。NMR信号成分とノイ
ズ成分の位相関係が一定であるため、ノイズ成分はDC
成分と考えられるから、制御系2のクロック信号に起因
するアーチファクトはイメージの端に追いやられ、本来
のイメージを損わないようになる。
As described above, in the MRI apparatus 1, the 375 kHz NMR signal component and the 335 kHz of the received data are received.
Since the phase relationship of the noise component of Hz is constant, the arithmetic processing unit 20 can remove the noise component. That is, the arithmetic processing unit 20 separates the NM from the original observation.
Received data is obtained without an R signal component. Next, the original observation is performed, and the received data is subtracted from the obtained received data of each view. Then, the received data of each view after the subtraction is Fourier transformed to reconstruct the image. Since the image obtained by this is reconstructed from the received data from which the noise component caused by the clock signal of the control system 2 is removed, it is a high quality image without artifacts. Alternatively, the arithmetic processing unit 20
Although the received data including the noise component is used, the phase of the excitation pulse (90 ° pulse) is inverted for each view, and the signal excited in the negative phase is inverted and reconstructed to obtain the DC component ( The process of moving the baseline component) to the edge of the image (field of view) is performed. Since the phase relationship between the NMR signal component and the noise component is constant, the noise component is DC
Since it is considered as a component, the artifact caused by the clock signal of the control system 2 is driven to the edge of the image, and the original image is not spoiled.

【0019】DC成分をイメージの端に追いやる処理と
しては、チョップレトソン手法の外に、なお、PLLお
よびコンピュータ系が、位相関係同期手段に相当する。
また、演算処理部20が、位相関係同期手段またはDC
成分除去手段に相当する。
As a process for driving the DC component to the edge of the image, in addition to the Chopper's method, the PLL and the computer system correspond to the phase relation synchronizing means.
Further, the arithmetic processing unit 20 uses the phase relation synchronizing means or DC.
It corresponds to a component removing means.

【0020】[0020]

【発明の効果】この発明のMRI装置によれば、RF系
に混入する制御系のクロック信号ノイズによる画質の劣
化を防止することが可能になり、高品質のイメージが得
られるようになる。
According to the MRI apparatus of the present invention, it is possible to prevent the deterioration of the image quality due to the clock signal noise of the control system mixed in the RF system, and it is possible to obtain a high quality image.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例のMRI装置の要部構成図
である。
FIG. 1 is a configuration diagram of a main part of an MRI apparatus according to an embodiment of the present invention.

【図2】図1の装置における各ビューの受信データの説
明図である。
FIG. 2 is an explanatory diagram of received data of each view in the device of FIG.

【図3】従来のMRI装置の一例の要部構成図である。FIG. 3 is a main part configuration diagram of an example of a conventional MRI apparatus.

【図4】図3の装置における各ビューの受信データの説
明図である。
FIG. 4 is an explanatory diagram of received data of each view in the device of FIG.

【符号の説明】[Explanation of symbols]

1 MRI装置 2 制御系 3 発振子 5a ミクサ 6a バンドパスフィルタ 10 RFコイル 20 演算処理部 PLL フェーズロックループ DDS ダイレクトデジタルシンセサイザ 1 MRI device 2 control system 3 oscillator 5a Mixer 6a bandpass filter 10 RF coil 20 arithmetic processing unit PLL phase-locked loop DDS Direct Digital Synthesizer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G06F 15/66 B 8420−5L 7831−4C A61B 5/05 390 9118−2J G01N 24/02 N ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location G06F 15/66 B 8420-5L 7831-4C A61B 5/05 390 9118-2J G01N 24/02 N

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 制御系のクロック信号の位相とNMR信
号の位相の関係を、1観測における全ビューについて、
一定に保つための位相関係同期手段を具備したことを特
徴とするMRI装置。
1. The relationship between the phase of the clock signal of the control system and the phase of the NMR signal is shown for all views in one observation.
An MRI apparatus comprising a phase relationship synchronizing means for maintaining a constant value.
【請求項2】 請求項1のMRI装置において、NMR
信号が受信されない状態での受信データから制御系のク
ロック信号に起因するノイズ成分を得て、そのノイズ成
分を各ビューの受信データから差し引くことにより受信
データを補正する受信データ補正手段をさらに具備する
ことを特徴とするMRI装置。
2. The MRI apparatus according to claim 1, wherein the NMR
The apparatus further comprises reception data correction means for correcting the reception data by obtaining a noise component caused by the clock signal of the control system from the reception data in the state where the signal is not received and subtracting the noise component from the reception data of each view. An MRI apparatus characterized in that
【請求項3】 請求項1のMRI装置において、各ビュ
ーの受信データをフーリエ変換してイメージを再構成す
ると共にそのイメージの端にDC成分を追いやる処理を
行うDC成分除去手段をさらに具備してなることを特徴
とするMRI装置。
3. The MRI apparatus according to claim 1, further comprising DC component removing means for performing a Fourier transform on the received data of each view to reconstruct an image and for removing a DC component at the edge of the image. An MRI apparatus characterized in that
JP16458791A 1991-07-04 1991-07-04 MRI equipment Expired - Lifetime JP3157546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16458791A JP3157546B2 (en) 1991-07-04 1991-07-04 MRI equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16458791A JP3157546B2 (en) 1991-07-04 1991-07-04 MRI equipment

Publications (2)

Publication Number Publication Date
JPH057570A true JPH057570A (en) 1993-01-19
JP3157546B2 JP3157546B2 (en) 2001-04-16

Family

ID=15796013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16458791A Expired - Lifetime JP3157546B2 (en) 1991-07-04 1991-07-04 MRI equipment

Country Status (1)

Country Link
JP (1) JP3157546B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400148B2 (en) 2005-03-23 2008-07-15 Kabushiki Kaisha Toshiba MRI apparatus, signal selection method in MRI apparatus, and MRI method in magnetic resonance imaging apparatus
US7560933B2 (en) 2007-04-18 2009-07-14 Ge Medical Systems Global Technology Company, Llc MRI apparatus and RF pulse generating circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400148B2 (en) 2005-03-23 2008-07-15 Kabushiki Kaisha Toshiba MRI apparatus, signal selection method in MRI apparatus, and MRI method in magnetic resonance imaging apparatus
US7560933B2 (en) 2007-04-18 2009-07-14 Ge Medical Systems Global Technology Company, Llc MRI apparatus and RF pulse generating circuit

Also Published As

Publication number Publication date
JP3157546B2 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
JP2002159470A (en) Method of sampling high frequency received signal
JPH057570A (en) Mri apparatus
JPH0212080A (en) Magnetic resonance spectrometer
JPS649859B2 (en)
JPH0647014A (en) Imaging method by mr
JP2985934B2 (en) MR imaging device
EP1739445B1 (en) Magnetic resonance involving digital quadrature detection with reference signals of variable frequency
JP3274891B2 (en) Nuclear magnetic resonance inspection system
JP3142905B2 (en) Magnetic resonance imaging
JPH03112538A (en) Mri device
JP2011206287A (en) Signal processing apparatus and magnetic resonance imaging apparatus
JPH0568185A (en) Dispersal signal removing device
JPH09257900A (en) Method for setting resonance frequency in measurement of pulse esr
JPH0360644A (en) Mri device
JPH0966041A (en) Nuclear magnetic resonance inspection instrument
JPH08299301A (en) Magnetic resonance(mr) imaging device
JPH04357937A (en) Nuclear magnetic resonance device
JP2723814B2 (en) Frequency measurement device
JP3152669B2 (en) MR imaging device
JPH0568184A (en) Dispersal signal detector
JPH05137727A (en) Ultrasonic diagnostic device
JPS61142889A (en) Circuit layout for fetching control signal from synchronous
JPH04197239A (en) Image forming method of mri device
JPH1099291A (en) Nuclear magnetic resonance spectrometer imaging device
JPH06133947A (en) High-frequency signal generator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11