JPH0574828B2 - - Google Patents
Info
- Publication number
- JPH0574828B2 JPH0574828B2 JP60015004A JP1500485A JPH0574828B2 JP H0574828 B2 JPH0574828 B2 JP H0574828B2 JP 60015004 A JP60015004 A JP 60015004A JP 1500485 A JP1500485 A JP 1500485A JP H0574828 B2 JPH0574828 B2 JP H0574828B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- liquid crystal
- thin film
- conductive thin
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010408 film Substances 0.000 claims description 61
- 239000004973 liquid crystal related substance Substances 0.000 claims description 30
- 239000000758 substrate Substances 0.000 claims description 23
- 239000010409 thin film Substances 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 4
- 238000000059 patterning Methods 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 3
- 229910004304 SiNy Inorganic materials 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 150000004767 nitrides Chemical class 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 239000004020 conductor Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 7
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、液晶と液晶駆動用電極の各画素の
間に、液晶と直列に非化学量論比からなるシリコ
ン酸化膜またはシリコン窒化膜を形成したドツト
マトリツクス液晶表示装置の製造方法に関する。Detailed Description of the Invention (Field of Industrial Application) This invention provides a non-stoichiometric silicon oxide film or silicon nitride film in series with the liquid crystal between each pixel of the liquid crystal and the liquid crystal driving electrode. The present invention relates to a method of manufacturing the formed dot matrix liquid crystal display device.
(発明の概要)
この発明は、液晶と液晶駆動用電極の各画素ご
とに液晶と直列に非線形抵抗素子を接線したドツ
トマトリクス液晶表示装置の製造方法において、
非線形抵抗素子として、シリコン酸化膜またはシ
リコン窒化膜であり、それぞれの原組成比O/si
=x、N/Si=yが、0.1≦x≦1.9、0.1≦y≦1.3
である薄膜を使用し、非線形抵抗膜の一方の電極
上の断差部のブレークダウン、シヨートを防止す
るために絶縁膜を形成し次に第1の電極をマスク
として裏面露光を行いパターニングすることによ
り、電極断差部による製造歩留り低下を防止する
ものである。(Summary of the Invention) The present invention provides a method for manufacturing a dot matrix liquid crystal display device in which a nonlinear resistance element is tangent to the liquid crystal in series with each pixel of the liquid crystal and the liquid crystal driving electrode.
A silicon oxide film or a silicon nitride film is used as the nonlinear resistance element, and the original composition ratio of each is O/si.
=x, N/Si=y, 0.1≦x≦1.9, 0.1≦y≦1.3
Using a thin film, an insulating film is formed on one electrode of the nonlinear resistance film to prevent breakdown and shoot, and then patterning is performed by backside exposure using the first electrode as a mask. This prevents a decrease in manufacturing yield due to the electrode difference.
(従来技術)
小型、軽量、低消費電力の表示装置として液晶
表示装置が実用化されてきた。近年この種の表示
装置の表示情報量増大化を計る目的で、ZnOバリ
スターや金属−絶縁膜−金属構造からなるMIM
型非線形抵抗素子を使つた液晶表示装置が研究さ
れてきた。本発明は、上記従来例とは異なり、非
線形抵抗素子として、導体−半導電性絶縁膜(以
後SCI……Semi Conductlve Insueatorと記す)
一導体構造からなる新規液晶表示装置の製造方法
に関するものである。(Prior Art) Liquid crystal display devices have been put into practical use as small, lightweight, and low power consumption display devices. In recent years, with the aim of increasing the amount of information displayed on this type of display device, ZnO varistors and MIMs consisting of metal-insulating film-metal structures have been developed.
Liquid crystal display devices using type nonlinear resistance elements have been studied. Unlike the conventional example described above, the present invention uses a conductor-semiconducting insulating film (hereinafter referred to as SCI...Semi Conductive Insueator) as a nonlinear resistance element.
The present invention relates to a method of manufacturing a novel liquid crystal display device having a single conductor structure.
(発明が解決しようとする問題点)
第2図は導体−SCI−導体構造からなる表示装
置の一画素の斜視面である。第2図の21は表示
画素電極であり透明導電膜、22は金属電極であ
り、透明電極21と金属電極22の間にはSCI2
3膜が存在する。第3図は導体−SCI−導体構造
液晶表示装置の製造方法を基板縦断面図によつて
工程順に示す。第3図aは導体薄膜31をスパツ
ターによつて基板30上に作成し次にパターニン
グを行つて電極を形成した基板断面図、第3図b
の32はSCI膜であり、プラズマCVD法により作
成したSiOx膜を形成した基板断面図、第3図c
は透明導電膜をスパツターで形成し次にパターニ
ングした画素電極33を示す基板断面図である。
SCI膜を用いた液晶表示装置の特徴は、絶縁膜を
用いたMIM構造と比較し、くり返し電界印加に
対する寿命が長いこと、膜厚500Å以上でも非線
形抵抗特性をもち、電特の対称性が良いこと、製
造プロセスが簡単であり製造コストの大巾低化が
期待できることである。(Problems to be Solved by the Invention) FIG. 2 is a perspective view of one pixel of a display device having a conductor-SCI-conductor structure. 21 in FIG. 2 is a display pixel electrode, which is a transparent conductive film, and 22 is a metal electrode. Between the transparent electrode 21 and the metal electrode 22, SCI2
There are 3 membranes. FIG. 3 shows a method for manufacturing a conductor-SCI-conductor structure liquid crystal display device in the order of steps using vertical cross-sectional views of the substrate. FIG. 3a is a cross-sectional view of a substrate in which a conductive thin film 31 is formed on a substrate 30 by sputtering and then patterned to form electrodes, and FIG. 3b
32 is the SCI film, and is a cross-sectional view of the substrate on which the SiOx film was formed by plasma CVD method, Fig. 3c.
1 is a cross-sectional view of a substrate showing a pixel electrode 33 formed by forming a transparent conductive film by sputtering and then patterning it.
The characteristics of liquid crystal display devices using SCI films are that, compared to MIM structures using insulating films, they have a long lifespan when applied with repeated electric fields, have nonlinear resistance characteristics even with film thicknesses of 500 Å or more, and have good symmetry in electric characteristics. In addition, the manufacturing process is simple, and a significant reduction in manufacturing costs can be expected.
(問題点を解決するための手段)
導体SCI−導体構造において、特に問題となる
点は、第3図cの電極31と透明電極33との重
なり部分における、電極31のエツジ部のSCI膜
ステツプカバー性である。表示装置の大画面化に
伴い電極31の配線抵抗低減化する必要があり、
そのために電極31の膜厚を1000Å以上に設定す
る必要が生じる。一方SCI膜は通常約1000Å程度
であり電極31のステツプ部でブレークダウンが
発生しやすくなる。これを防止するために、電極
31のステツプ部を絶縁膜でカバーする。このた
めに、電極31を形成後に透明絶縁膜を全面に形
成しレジストと布後基板裏面より露光現像し、次
に透明絶縁膜をエツチングする。(Means for solving the problem) In the conductor SCI-conductor structure, a particularly problematic point is the SCI film step at the edge of the electrode 31 in the overlapping part of the electrode 31 and the transparent electrode 33 in FIG. 3c. It has good coverage. As the screen of the display device becomes larger, it is necessary to reduce the wiring resistance of the electrode 31.
Therefore, it is necessary to set the film thickness of the electrode 31 to 1000 Å or more. On the other hand, since the SCI film is usually about 1000 Å thick, breakdown is likely to occur at the step portion of the electrode 31. To prevent this, the step portion of the electrode 31 is covered with an insulating film. For this purpose, after forming the electrode 31, a transparent insulating film is formed on the entire surface, exposed and developed from the back side of the substrate after resist and cloth, and then the transparent insulating film is etched.
(作用)
上記方法により、SCI膜の下側電極のステツプ
で無くすることができる。工程は絶縁膜の形成と
エツチング工程が増加することになるが、マスク
合せが不要であり、画素欠陥率の極めて低い低コ
スト大型液晶表示装置を提供する。(Function) By the above method, the step of the lower electrode of the SCI membrane can be eliminated. Although the steps of forming an insulating film and etching are increased, mask alignment is not required, and a low-cost large-sized liquid crystal display device with an extremely low pixel defect rate can be provided.
(実施例)
第1図は本発明による液晶表示装置の製造方法
を示す実施例であり、説明を簡略化するために1
画素についての縦断面構造によつて工程順に説明
する。第1図aは透明絶縁基板10上に第1導体
薄膜11を形成し次にパターニングした基板の断
面図である。基板はガラスを使用した。第1の導
体薄膜はCr1000Å形成した。導体薄膜11はAl、
Au、Ta、Ni等不透明金属を使用することができ
る。第1図bは透明絶縁膜12を基板全面に形成
した状態を示し、絶縁膜はシランガスと亜酸化窒
素ガスを使つたプラズマCVD法によつてシリコ
ン酸化膜を約2000Å形成した。透明絶縁膜12は
他に窒化シリコン膜としても良い。次にネガ型感
光性樹脂を全面と布仮硬化し、透明基板の下側か
ら露光する。第1図cは基板下側から第1の電極
をマスクとして感光性樹脂13を露光している状
況を示す縦断面図である。透明絶縁膜12がパタ
ーンを形成した第1の電極のパターンエツジ部を
完全に覆うようにするためにオーバー露光する。
第1図dは感光樹脂13を現像した基板断面図で
ある。第1図eは透明絶縁膜12をフツ酸系エツ
チカントでエツチングした基板断面図である。次
に感光性樹脂を除去し、第1図fに示すごとく
SCI膜14、第2の導体薄膜15を形成する。
SCI膜14はプラズマCVD法によつて、シランガ
スと亜酸化窒素または酸化窒素ガスの適切な混合
ガスによつて作成したシリコン酸化膜SiOxであ
り、膜厚は約1000Åである。導体薄膜15はスパ
ツターによつて作成した透明導電膜ITOであり、
膜厚約500Åである。第4図aは前記方法で作成
したSCI膜14の赤外吸収特性を示すグラフであ
り、第4図aの41は波数2100cm-1付近のSi−H
ボンドの吸収ピーク、第4図aの42は波数900
〜1100cm-1付近のSi−O吸収ピークを示す。オー
ジエ分析によれば、前記SCI膜を原素組成比O/
Si0.5であり、しかも可視光領域において透過
率80%以上を示した。第4図bは前記SCI膜の電
圧対電流特性を示し、極めてすぐれた対称性を示
し、印加電圧Vppのときの電流に対し電圧Vpp/
2において約3ケタ以上電流値が低下する。第1
図gは第2の導体薄膜15をパターニングし画素
電極を形成した基板縦断面図である。なお、第1
の導体薄膜11と第2の導体薄膜15の重なり面
積は、液晶の抵抗、液晶の容量、SCI膜の非線形
抵抗、SCI膜の容量によつて決定され、SIC膜の
容量に対する液晶の容量が小であり、液晶の抵抗
に対してSCI膜のスレツシヨルド抵抗がほぼ等し
くなるように設計すれば良い。本発明による実施
例で第1図g以後の製造工程は通常の液晶パネル
製造方法と同じであり、以後上下基板の接着、液
晶注入封止、TN液晶を使用する場合は偏光板を
貼り合せて完成となる。(Example) FIG. 1 shows an example showing a method for manufacturing a liquid crystal display device according to the present invention.
The steps will be explained in the order of steps using the vertical cross-sectional structure of the pixel. FIG. 1a is a cross-sectional view of a transparent insulating substrate 10 on which a first conductive thin film 11 is formed and then patterned. Glass was used as the substrate. The first conductive thin film was formed of Cr1000 Å. The conductor thin film 11 is made of Al,
Opaque metals such as Au, Ta, and Ni can be used. FIG. 1b shows a state in which a transparent insulating film 12 is formed over the entire surface of the substrate, and the insulating film is a silicon oxide film having a thickness of approximately 2000 Å by plasma CVD using silane gas and nitrous oxide gas. Alternatively, the transparent insulating film 12 may be a silicon nitride film. Next, the negative photosensitive resin is temporarily cured on the entire surface of the cloth, and the transparent substrate is exposed to light from below. FIG. 1c is a longitudinal sectional view showing a situation in which the photosensitive resin 13 is exposed from below the substrate using the first electrode as a mask. Overexposure is performed so that the transparent insulating film 12 completely covers the patterned edge portion of the first electrode.
FIG. 1d is a cross-sectional view of the substrate on which the photosensitive resin 13 has been developed. FIG. 1e is a sectional view of a substrate in which the transparent insulating film 12 has been etched with a hydrofluoric acid etchant. Next, remove the photosensitive resin, and as shown in Figure 1 f.
An SCI film 14 and a second conductive thin film 15 are formed.
The SCI film 14 is a silicon oxide film SiOx formed by a plasma CVD method using an appropriate mixed gas of silane gas and nitrous oxide or nitrogen oxide gas, and has a film thickness of about 1000 Å. The conductive thin film 15 is a transparent conductive film ITO made by sputtering,
The film thickness is approximately 500 Å. FIG. 4a is a graph showing the infrared absorption characteristics of the SCI film 14 prepared by the above method, and 41 in FIG.
Absorption peak of bond, 42 in Figure 4a is wave number 900
It shows a Si-O absorption peak around ~1100 cm -1 . According to Augier analysis, the SCI film has an atomic composition ratio of O/
It has a Si of 0.5 and has a transmittance of 80% or more in the visible light region. Figure 4b shows the voltage vs. current characteristics of the SCI film, showing excellent symmetry, with the voltage Vpp /
2, the current value decreases by about three orders of magnitude or more. 1st
FIG. g is a vertical cross-sectional view of a substrate in which the second conductor thin film 15 is patterned to form pixel electrodes. In addition, the first
The overlapping area of the conductive thin film 11 and the second conductive thin film 15 is determined by the resistance of the liquid crystal, the capacitance of the liquid crystal, the nonlinear resistance of the SCI film, and the capacitance of the SCI film. Therefore, the design should be such that the threshold resistance of the SCI film is approximately equal to the resistance of the liquid crystal. In the embodiment according to the present invention, the manufacturing process from FIG. It will be completed.
なお、本発明の液晶表示装置の製造方法の実施
例におけるSCI膜製造方法は、プラズマCVD法と
したが、これを常圧および減圧CVD法によつて
作成することができる。また、スパツターや光
CVD法で作成してもよいことはもちとんである。
またSCI膜を、ツランガスとアンモニアがまたは
窒素ガスにしてガス流量比を適切に設定すること
により、シリコン窒化膜SiNy(0.1y1.3)と
することができる。このシリコン窒化膜の電気特
性は、第4図bに示す電流対電圧特性が得られ、
組成比yを適切に選ぶことにより透明のSCI膜を
得ることができた。 Note that although the SCI film manufacturing method in the embodiment of the method for manufacturing a liquid crystal display device of the present invention is a plasma CVD method, it can also be created by a normal pressure or a reduced pressure CVD method. Also, spatter and light
It is true that it may be created using the CVD method.
Further, the SCI film can be made into a silicon nitride film SiNy (0.1y1.3) by using turan gas and ammonia gas or nitrogen gas and appropriately setting the gas flow rate ratio. As for the electrical characteristics of this silicon nitride film, the current vs. voltage characteristics shown in FIG. 4b are obtained.
By appropriately selecting the composition ratio y, a transparent SCI film could be obtained.
(発明の効果)
以上述べてきたように、本発明による液晶表示
装置の製造方法によれば、第1の導体薄膜電極の
パターンエツジ部で発生するSCI膜のブレークダ
ウン等の電気的特性悪化を防止するために、透明
絶縁膜を全面に形成し次に第1の導体薄膜パター
ンによつて裏面から感光樹脂を露光現像、透明絶
縁膜のエツチングを行うことにより、パターン合
せを必要としないで導体薄膜パターンエツジ部に
絶縁膜を形成するので、画素欠陥の極めて少ない
低コスト液晶表示装置を提供することができると
いうすぐれた効果を有する。(Effects of the Invention) As described above, according to the method of manufacturing a liquid crystal display device according to the present invention, deterioration of electrical characteristics such as breakdown of the SCI film that occurs at the pattern edge portion of the first conductive thin film electrode can be prevented. In order to prevent this, by forming a transparent insulating film over the entire surface, then exposing and developing the photosensitive resin from the back side using the first conductor thin film pattern, and etching the transparent insulating film, the conductor can be formed without the need for pattern alignment. Since the insulating film is formed on the edge portion of the thin film pattern, it has the excellent effect of providing a low-cost liquid crystal display device with extremely few pixel defects.
第1図a〜gは本発明による液晶表示装置の製
造方法を基板縦断面図によつて工程順に示す流れ
図、第2図はSCI膜を使用した液晶表示装置の一
方の基板の一画素部分を示す斜視図、第3図a〜
cはSCI膜を使用した液晶表示装置の製造方法を
縦断面図によつて工程順に示す流れ図、第4図a
は本発明の液晶表示装置の製造方法によつて作成
したSIC膜の赤外吸収特性を示すグラフ、第4図
bは本発明の液晶表示装置の製造方法によつて作
成したSCI膜の電圧対電流特性を示すグラフであ
る。
透明基板……10,20,30、第1導体薄膜
……11,22,31、第2導体薄膜……15,
21,33、SCI膜……14,23,32、感光
性樹脂……13。
Figures 1a to 1g are flowcharts showing the manufacturing method of a liquid crystal display device according to the present invention in the order of steps using vertical cross-sectional views of substrates, and Figure 2 shows one pixel portion of one substrate of a liquid crystal display device using an SCI film. Perspective view shown in Figure 3 a~
c is a flowchart showing the manufacturing method of a liquid crystal display device using an SCI film in the order of steps using vertical cross-sectional views; Fig. 4a
4 is a graph showing the infrared absorption characteristics of the SIC film produced by the method of manufacturing a liquid crystal display device of the present invention, and FIG. 4b shows the voltage vs. It is a graph showing current characteristics. Transparent substrate...10, 20, 30, first conductor thin film...11, 22, 31, second conductor thin film...15,
21, 33, SCI film... 14, 23, 32, photosensitive resin... 13.
Claims (1)
液晶層などからなる液晶表示装置の製造方法にお
いて、少なくとも一方の透明基板上に第1の導体
薄膜を形成し次に所定の形状に第1の導体薄膜を
形成し次に所定の形状に第1の導体薄膜をパター
ニングする工程と、前記パターニングした透明基
板上に透明絶縁膜を形成する工程と、前記絶縁膜
を形成した基板上に感光性樹脂をと布し次に前記
パターン化された第1の導体薄膜をマスクとして
基板裏面より露光現像し前記透明絶縁膜を選択エ
ツチする工程と、シリコン酸化膜SiOxまたはシ
リコン窒化膜SiNyであり原子組成比0/si=x、
N/Si=yがそれぞれ0.1≦x≦1.9、0.1≦y≦1.3
である薄膜を形成する工程と、第2の導体薄膜を
形成し所定の形状に第2の導体薄膜を形成し所定
の形状に第2の導体薄膜をパターニングすること
を特徴とする液晶表示装置の製造方法。 2 特許請求の範囲第1項記載の液晶表示装置の
製造方法において、シリコン酸化膜またはシリコ
ン窒化膜は、その製膜時に前記シリコン酸化膜ま
たはシリコン窒化膜中に水素が含有する工程であ
ることを特徴とする液晶表示装置の製造方法。[Claims] 1. A method for manufacturing a liquid crystal display device consisting of two opposing substrates, a liquid crystal layer sandwiched between the substrates, etc., which comprises forming a first conductive thin film on at least one transparent substrate; forming a first conductive thin film in a predetermined shape and then patterning the first conductive thin film in a predetermined shape; forming a transparent insulating film on the patterned transparent substrate; A step of spreading a photosensitive resin on the formed substrate, then exposing and developing it from the back side of the substrate using the patterned first conductive thin film as a mask and selectively etching the transparent insulating film, and forming a silicon oxide film SiOx or silicon. Nitride film SiNy, atomic composition ratio 0/si=x,
N/Si=y is 0.1≦x≦1.9, 0.1≦y≦1.3, respectively
A liquid crystal display device comprising: forming a second conductive thin film, forming the second conductive thin film in a predetermined shape, and patterning the second conductive thin film in a predetermined shape. Production method. 2. In the method for manufacturing a liquid crystal display device according to claim 1, the silicon oxide film or the silicon nitride film is formed in a step in which hydrogen is contained in the silicon oxide film or the silicon nitride film. A method for manufacturing a liquid crystal display device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60015004A JPS61174589A (en) | 1985-01-29 | 1985-01-29 | Manufacture of liquid crystal display unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60015004A JPS61174589A (en) | 1985-01-29 | 1985-01-29 | Manufacture of liquid crystal display unit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61174589A JPS61174589A (en) | 1986-08-06 |
JPH0574828B2 true JPH0574828B2 (en) | 1993-10-19 |
Family
ID=11876748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60015004A Granted JPS61174589A (en) | 1985-01-29 | 1985-01-29 | Manufacture of liquid crystal display unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61174589A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0497824U (en) * | 1991-01-10 | 1992-08-25 | ||
WO2008117494A1 (en) * | 2007-03-22 | 2008-10-02 | Panasonic Corporation | Storage element and storage device |
US8422268B2 (en) | 2008-07-11 | 2013-04-16 | Panasonic Corporation | Current control element, memory element, and fabrication method thereof |
WO2010032470A1 (en) | 2008-09-19 | 2010-03-25 | パナソニック株式会社 | Current suppressing element, storage element, storage device, and method for manufacturing current suppressing element |
-
1985
- 1985-01-29 JP JP60015004A patent/JPS61174589A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61174589A (en) | 1986-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0211401B1 (en) | N+ amorphous silicon thin film transistors for matrix addressed liquid crystal displays | |
GB2091468A (en) | Matrix liquid crystal display device and method of manufacturing the same | |
US4810637A (en) | Non-linear control element for a flat electrooptical display screen and a method of fabrication of said control element | |
JPH0574828B2 (en) | ||
JPS6349914B2 (en) | ||
JPS599635A (en) | Electrooptic device | |
JPH06148658A (en) | Wiring structure | |
TWI249642B (en) | TFT LCD and manufacturing method thereof | |
JPS61188967A (en) | Thin film transistor | |
JPH0617956B2 (en) | Liquid crystal display manufacturing method | |
JP2862737B2 (en) | Thin film transistor and method of manufacturing the same | |
JPS5922361A (en) | Semiconductor device | |
JPS6050963A (en) | Manufacture of thin film transistor | |
JPH09260675A (en) | Thin-film transistor and thin-film transistor substrate | |
JP3419073B2 (en) | Thin film transistor, method of manufacturing the same, and active matrix liquid crystal display device | |
JP3052361B2 (en) | Active matrix liquid crystal display device and manufacturing method thereof | |
JP2656555B2 (en) | Thin film transistor, active matrix circuit substrate using the same, and image display device | |
JPH06308539A (en) | Production of matrix array substrate | |
JP2879746B2 (en) | Semiconductor panel | |
JP2594114B2 (en) | Method for manufacturing electrode substrate for liquid crystal display panel | |
JP2934731B2 (en) | Nonlinear resistance element and manufacturing method thereof | |
JPS63102367A (en) | Manufacture of thin film transistor | |
JPH0548106A (en) | Thin film transistor and its manufacture | |
JPS61205917A (en) | Liquid crystal display device | |
JPS62262890A (en) | Manufacture of active matrix element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |