[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0571807A - Capacity controller for refrigerating plant - Google Patents

Capacity controller for refrigerating plant

Info

Publication number
JPH0571807A
JPH0571807A JP3231882A JP23188291A JPH0571807A JP H0571807 A JPH0571807 A JP H0571807A JP 3231882 A JP3231882 A JP 3231882A JP 23188291 A JP23188291 A JP 23188291A JP H0571807 A JPH0571807 A JP H0571807A
Authority
JP
Japan
Prior art keywords
pressure
decompression
hot gas
capacity
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3231882A
Other languages
Japanese (ja)
Other versions
JP2630128B2 (en
Inventor
Hirobumi Yamamoto
博文 山本
Hiroyuki Nishimura
博行 西村
Toshiyuki Momono
俊之 桃野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP23188291A priority Critical patent/JP2630128B2/en
Publication of JPH0571807A publication Critical patent/JPH0571807A/en
Application granted granted Critical
Publication of JP2630128B2 publication Critical patent/JP2630128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To maintain the step value of a compressor to the change of conditions while using a totally-enclosed type compressor, and to keep the control precision of the object to be cooled of the evaporator of a refrigerating plant. CONSTITUTION:A hot gas bypass 7 is installed between the discharge pipe of a refrigerant circuit 6 and the inlet-side liquid pipe of an evaporator 4, and a decompression- degree adjusting mechanism 8, in which a plurality of pairs composed of decompression mechanisms Cn and on-off valves Rn connected in series with the mechanisms Cn are connected in parallel mutually, is mounted to the hot gas bypass 7. Each on-off valve Rn of the capacity adjusting mechanism 8 is opened and closed in response to required capacity by a capacity control means 20, and the capacity of a compressor 1 is controlled at a plurality of steps. When an outside air temperature, etc., is decreased or when the pressure on the higher pressure side is lowered, the opening of the on-off valves Rn by the capacity control means 20 are changed over in the direction that the quantity of a hot gas bypassed is increased by a changeover means 21. Accordingly, a capacity value at the step of the compressor 1 is maintained under a proper state, and the control precision of an object to be cooled is kept excellent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷凍装置の運転制御装置
に係り、特にホットガスバイパスにより圧縮機の容量を
制御するようにしたものの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation controller for a refrigerating machine, and more particularly to an improvement of a compressor which controls a capacity of a compressor by a hot gas bypass.

【0002】[0002]

【従来の技術】従来より、例えば実開昭49―4004
7号公報に開示される如く、圧縮機,凝縮器,減圧弁及
び蒸発器を順次接続してなる冷媒回路を備え、蒸発器で
チラ―回路の冷却液を冷却するようにした冷凍装置にお
いて、冷媒回路の吐出ラインと減圧弁−蒸発器間の液管
とをバイパス接続するホットガスバイパス路を備えると
ともに、該ホットガスバイパス路に蒸発器の冷媒との熱
交換を行う熱交換器を介設することにより、ホットガス
バイパス量の調節の容易化を図り、もって、全閉型圧縮
機等の低容量型圧縮機を使用した場合にも容量制御を円
滑に行おうとするものは公知の技術である。
2. Description of the Related Art Conventionally, for example, Japanese Utility Model Laid-Open No. Sho 49-4004
As disclosed in Japanese Patent Publication No. 7, in a refrigeration system including a refrigerant circuit in which a compressor, a condenser, a pressure reducing valve, and an evaporator are sequentially connected, and an evaporator cools a cooling liquid in a chiller circuit, A hot gas bypass path for bypass-connecting the discharge line of the refrigerant circuit and the liquid pipe between the pressure reducing valve and the evaporator is provided, and a heat exchanger for exchanging heat with the refrigerant of the evaporator is provided in the hot gas bypass path. By doing so, it is possible to facilitate the adjustment of the hot gas bypass amount, and thus it is a well-known technique to smoothly perform the capacity control even when using a low capacity compressor such as a fully closed compressor. is there.

【0003】[0003]

【発明が解決しようとする課題】ところで、近年ウォ―
タ―チリングユニットは産業用として使用されるにした
がい、その出口水温を高い精度で制御することが求めら
れている。ここで、特に中型ないし大型のユニットで、
複数のアンロ―ドステップを有する圧縮機を搭載したも
のでは、蒸発器出口水温の制御が可能であるが、小型の
全閉型圧縮機を搭載したものでは、アンロ―ドステップ
を増大できないため、出口水温を一定に制御することが
困難であった。
By the way, in recent years,
As the teaching ring unit is used for industrial purposes, it is required to control the outlet water temperature with high accuracy. Here, especially for medium to large units,
With a compressor equipped with multiple unload steps, it is possible to control the evaporator outlet water temperature, but with a small fully enclosed compressor, the unload steps cannot be increased. It was difficult to keep the outlet water temperature constant.

【0004】かかる場合、圧縮機の容量制御によらずに
冷却液の蒸発器出口水温を調節する手段として、例えば
蒸発器出口に冷却液を加熱するヒ―タを設け、いったん
冷却された冷却液の加熱量を調節することにより、蒸発
器出口水温を一定制御することが考えられる。しかし、
その場合、いったん冷却液を過度に冷却し、さらに、ヒ
―タ電力を使用するので、効率が非常に悪くなる。
In this case, as a means for adjusting the evaporator outlet water temperature of the cooling liquid without depending on the capacity control of the compressor, for example, a heater for heating the cooling liquid is provided at the evaporator outlet, and the cooling liquid once cooled is provided. It is possible to control the water temperature at the outlet of the evaporator at a constant level by adjusting the heating amount of. But,
In that case, since the cooling liquid is once excessively cooled and the heater power is used, the efficiency becomes very poor.

【0005】そこで、上記従来の公報のもののごとく、
圧縮機の容量の代わりにホットガスバイパスで蒸発器の
能力を調節することが考えられるが、上記公報のもので
は、ホットガスバイパス路における蒸発器の冷媒との熱
交換によりバイパスされる冷媒の過熱度等の冷媒状態を
適正に維持することができても、ホットガスバイパス路
を開いた時と閉じた時とでは能力の変化が大きすぎて、
蒸発器出口の水温を一定制御するのは困難であるという
問題があった。一方、バイパス路に電動膨張弁を配置す
るか、あるいはバイパス路との分岐点に三方弁を配置し
て、冷媒のバイパス量をPID制御することも考えられ
るが、コントローラが高価になる。
Therefore, as in the above-mentioned conventional publication,
It is conceivable to adjust the capacity of the evaporator by a hot gas bypass instead of the capacity of the compressor. However, in the above publication, overheating of the refrigerant bypassed by heat exchange with the refrigerant of the evaporator in the hot gas bypass passage. Even if the refrigerant state such as the degree can be maintained properly, the change in capacity is too large when the hot gas bypass passage is opened and when it is closed,
There is a problem that it is difficult to control the water temperature at the outlet of the evaporator at a constant level. On the other hand, an electric expansion valve may be arranged in the bypass passage or a three-way valve may be arranged at a branch point from the bypass passage to control the bypass amount of the refrigerant by PID, but the controller becomes expensive.

【0006】また、ホットガスバイパス路に、開閉弁と
キャピラリチュ―ブが直列に接続された複数組を互いに
並列に接続し、要求能力に応じて個別に開くよう制御す
ることも考えられるが、同じ開閉弁が開かれているとき
でも、冷媒回路の圧力条件によってホットガスバイパス
量が大きく変化し、その結果、圧縮機の容量が変化する
ため、制御機能が悪化するという問題があった。そし
て、このような問題は、チリングユニットだけでなく、
例えば年間冷房を行なう空調機等でも同様に生じてい
る。
It is also conceivable to connect a plurality of sets of an on-off valve and a capillary tube connected in series to the hot gas bypass line in parallel with each other, and control so as to open individually according to the required capacity. Even when the same on-off valve is opened, the hot gas bypass amount changes greatly depending on the pressure condition of the refrigerant circuit, and as a result, the capacity of the compressor changes, which deteriorates the control function. And such a problem is not limited to the chilling unit,
For example, air conditioners that perform cooling annually are also caused.

【0007】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、ホットガスバイパス路に複数のキャ
ピラリチュ―ブと開閉弁の組を並列に配置するととも
に、冷媒回路の圧力に影響する条件の変化に応じて開閉
弁の開閉制御を切換えることにより、圧縮機の容量制御
精度の向上を図ることにある。
The present invention has been made in view of the above problems, and an object of the present invention is to arrange a plurality of sets of capillaries and an on-off valve in parallel in a hot gas bypass passage and to adjust the pressure of a refrigerant circuit. It is intended to improve the capacity control accuracy of the compressor by switching the opening / closing control of the opening / closing valve according to the change of the conditions that affect.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
請求項1の発明の講じた手段は、図1に示すように、圧
縮機(1)、凝縮器(2)、主減圧機構(3)及び蒸発
器(4)を順次接続してなる冷媒回路(6)を備えた冷
凍装置を前提とする。
In order to achieve the above object, the means taken by the invention of claim 1 is, as shown in FIG. 1, a compressor (1), a condenser (2), a main pressure reducing mechanism (3). ) And an evaporator (4) are sequentially connected, and a refrigerating device provided with a refrigerant circuit (6) is assumed.

【0009】そして、冷凍装置の運転制御装置として、
上記冷媒回路(6)の吐出管と主減圧機構(3)−蒸発
器(4)間の液管とをバイパス接続するホットガスバイ
パス路(7)と、該ホットガスバイパス路(7)に介設
され、減圧機構(Cn)(n=1,2,…)とこれに直
列接続される開閉弁(Rn)とからなる複数の組を互い
に並列に接続してなる減圧度調節機構(8)と、利用側
熱交換器となる蒸発器(4)側の要求能力に応じて、上
記減圧度調節機構(8)の各開閉弁(Rn)を個別に開
き、圧縮機(1)の容量を複数のステップに制御する容
量制御手段(20)とを設ける。
Then, as an operation control device of the refrigeration system,
The discharge pipe of the refrigerant circuit (6) and the liquid pipe between the main decompression mechanism (3) and the evaporator (4) are connected by bypass to a hot gas bypass passage (7) and the hot gas bypass passage (7). A decompression degree adjusting mechanism (8) which is provided with a plurality of sets of decompression mechanisms (Cn) (n = 1, 2, ...) And on-off valves (Rn) serially connected to the decompression mechanisms connected in parallel with each other. And each opening / closing valve (Rn) of the above-mentioned decompression degree adjusting mechanism (8) is individually opened according to the required capacity of the evaporator (4) side which is the utilization side heat exchanger, and the capacity of the compressor (1) is changed. A capacity control means (20) for controlling a plurality of steps is provided.

【0010】さらに、熱源側熱交換器となる凝縮器
(2)の熱源側熱媒体の温度を検出する熱媒体温度検出
手段(Tha)と、該熱媒体温度検出手段(Tha)の出力
を受け、熱源側熱媒体の温度が一定温度以下になったと
きには、各ステップにおけるホットガスバイパス量を増
大させるように上記容量制御手段(20)が開く開閉弁
(Rn)を切換える切換手段(21A)とを設ける構成
としたものである。
Further, the heat medium temperature detecting means (Tha) for detecting the temperature of the heat medium on the heat source side of the condenser (2) which is the heat exchanger on the heat source side, and the output of the heat medium temperature detecting means (Tha) are received. When the temperature of the heat medium on the heat source side becomes equal to or lower than a certain temperature, there is provided switching means (21A) for switching the on-off valve (Rn) opened by the capacity control means (20) so as to increase the hot gas bypass amount in each step. Is provided.

【0011】請求項2の発明の講じた手段は、図4に示
すように、上記請求項1の発明と同様の冷凍装置を前提
とし、冷凍装置の運転制御装置として、請求項1の発明
と同様のホットガスバイパス路(7)と、減圧度調節機
構(8)と、容量制御手段(20)とを設ける。そし
て、高圧側圧力を検出する高圧検出手段(HP )と、該
高圧検出手段(HP )の出力を受け、高圧側圧力が一定
圧力以下になったときには、各ステップにおけるホット
ガスバイパス量を増大させるように上記容量制御手段
(20)により開かれる開閉弁(Rn)を切換える切換
手段(21B)とを設けたものである。
As shown in FIG. 4, the means taken by the invention of claim 2 presupposes a refrigerating apparatus similar to that of the invention of claim 1 above. A similar hot gas bypass passage (7), a pressure reduction degree adjusting mechanism (8), and a capacity control means (20) are provided. Then, the high pressure detecting means (HP) for detecting the high pressure side pressure and the output of the high pressure detecting means (HP) are received, and when the high pressure side pressure becomes equal to or lower than a certain pressure, the hot gas bypass amount in each step is increased. Thus, the switching means (21B) for switching the on-off valve (Rn) opened by the capacity control means (20) is provided.

【0012】請求項3の発明の講じた手段は、図5に示
すように、圧縮機(1)、凝縮器(2)、主減圧機構
(3)及び蒸発器(4)を順次接続してなる冷媒回路
(6)を備えた冷凍装置を前提とする。
As shown in FIG. 5, the means taken by the invention of claim 3 is that a compressor (1), a condenser (2), a main decompression mechanism (3) and an evaporator (4) are sequentially connected. The refrigerating apparatus provided with the refrigerant circuit (6) is

【0013】そして、冷凍装置の運転制御装置として、
上記冷媒回路(6)の吐出管と主減圧機構(3)−蒸発
器(4)間の液管とをバイパス接続するホットガスバイ
パス路(7)と、該ホットガスバイパス路(7)に介設
され、減圧機構(Cn)(n=1,2,…)とこれに直
列接続される開閉弁(Rn)とからなる複数の組を互い
に並列に接続してなる減圧度調節機構(8)と、利用側
熱交換器となる蒸発器(4)側の要求能力に応じ、上記
各減圧度調節機構(8)の開閉弁(Rn)を個別に開い
て圧縮機(1)の容量を複数のステップに制御する容量
制御手段(20)とを設ける。
As an operation control device for the refrigeration system,
The discharge pipe of the refrigerant circuit (6) and the liquid pipe between the main decompression mechanism (3) and the evaporator (4) are connected by bypass to a hot gas bypass passage (7) and the hot gas bypass passage (7). A decompression degree adjusting mechanism (8) which is provided with a plurality of sets of decompression mechanisms (Cn) (n = 1, 2, ...) And on-off valves (Rn) serially connected to the decompression mechanisms connected in parallel with each other. According to the required capacity on the side of the evaporator (4) serving as the heat exchanger on the use side, the opening / closing valves (Rn) of the pressure reduction degree adjusting mechanisms (8) are individually opened to make the compressor (1) have a plurality of capacities. And a capacity control means (20) for controlling the above step.

【0014】さらに、上記ホットガスバイパス路(7)
内で上記減圧度調節機構(8)に対して直列に接続さ
れ、互いに並列に接続される開閉弁(R0)と減圧機構
(C0)とからなる減圧度切換機構(9)と、上記冷媒
回路(6)の高圧側圧力と低圧側圧力との差圧が一定値
以下のときを検出する差圧検出手段(HLP) と、該差圧
検出手段(HLP)の出力を受け、差圧が一定値よりも低
いときには上記減圧度切換機構(9)の開閉弁(R0)
を開く一方、差圧が一定値以上になると、上記減圧度切
換機構(9)の開閉弁(R0)を閉じるよう切換える切
換手段(21C)とを設ける構成としたものである。
Further, the hot gas bypass passage (7)
A pressure reduction degree switching mechanism (9) including an on-off valve (R0) and a pressure reduction mechanism (C0) that are connected in series to the pressure reduction degree adjustment mechanism (8) in parallel, and the refrigerant circuit. The differential pressure detection means (HLP) for detecting when the differential pressure between the high-pressure side pressure and the low-pressure side pressure of (6) is below a certain value, and the output of the differential pressure detection means (HLP), the differential pressure is constant. When it is lower than the value, the on-off valve (R0) of the pressure reduction degree switching mechanism (9)
On the other hand, a switching means (21C) for switching the opening / closing valve (R0) of the decompression degree switching mechanism (9) to be closed when the differential pressure exceeds a certain value.

【0015】請求項4の発明の講じた手段は、図7に示
すように、上記請求項3の発明と同様の冷凍装置を前提
とし、冷凍装置の運転制御装置として、請求項3の発明
と同様のホットガスバイパス路(7)と、減圧度調節機
構(8)と、容量制御手段(20)とを設ける。そし
て、上記ホットガスバイパス路(7)内で上記減圧度調
節機構(8)に対して直列に接続され、互いに並列に接
続される開閉弁(R0)と減圧機構(C0)とからなる
減圧度切換機構(9)と、上記凝縮器(2)の熱源側熱
媒体の温度を検出する熱媒体温度検出手段(Tha)と、
上記蒸発器(4)の冷却対象となる利用側熱媒体の出口
温度の制御目標値を設定する設定手段(22)と、上記
熱媒体温度検出手段(Tha)の出力を受け、常時は上記
減圧度切換機構(9)の開閉弁(R0)を開く一方、熱
源側熱媒体の温度が一定温度以上で、かつ上記設定手段
(22)で設定される利用側熱媒体の出口温度の制御目
標温度が所定温度以下のときには上記減圧度切換機構
(9)の開閉弁(R0)を閉じるよう切換える切換手段
(21D)とを備えたことを特徴とする冷凍装置の運転
制御装置。
As shown in FIG. 7, the means taken by the invention of claim 4 presupposes a refrigerating apparatus similar to that of the invention of claim 3 above. A similar hot gas bypass passage (7), a pressure reduction degree adjusting mechanism (8), and a capacity control means (20) are provided. Then, in the hot gas bypass passage (7), a degree of pressure reduction including an on-off valve (R0) and a pressure reduction mechanism (C0) connected in series to the pressure reduction degree adjustment mechanism (8) and connected in parallel with each other. A switching mechanism (9), a heat medium temperature detecting means (Tha) for detecting the temperature of the heat medium on the heat source side of the condenser (2),
The output of the setting means (22) for setting the control target value of the outlet temperature of the use side heat medium to be cooled by the evaporator (4) and the heat medium temperature detecting means (Tha) is received, and the decompression is normally performed. The opening / closing valve (R0) of the temperature switching mechanism (9) is opened, while the temperature of the heat source side heat medium is equal to or higher than a certain temperature, and the control target temperature of the outlet temperature of the use side heat medium set by the setting means (22) is set. And a switching means (21D) for switching the opening / closing valve (R0) of the decompression degree switching mechanism (9) to be closed when is below a predetermined temperature.

【0016】請求項5の発明の講じた手段は、図8に示
すように、上記請求項3の発明と同様の冷凍装置を前提
とし、冷凍装置の運転制御装置として、請求項3の発明
と同様のホットガスバイパス路(7)と、減圧度調節機
構(8)と、容量制御手段(20)とを設ける。そし
て、上記ホットガスバイパス路(7)内で上記減圧度調
節機構(8)に対して直列に接続され、互いに並列に接
続される開閉弁(R0)と減圧機構(C0)とからなる
減圧度切換機構(9)と、上記冷媒回路(6)の高圧側
圧力を検出する高圧検出手段(HP )と、該高圧検出手
段(HP )の出力を受け、高圧側圧力が一定値よりも低
いときには上記減圧度切換機構(9)の開閉弁(R0)
を開く一方、高圧側圧力が一定値以上のときには、上記
減圧度切換機構(9)の開閉弁(R0)を閉じるよう切
換える切換手段(21E)とを設けたものである。
As shown in FIG. 8, the means taken by the invention of claim 5 presupposes the same refrigerating apparatus as that of the invention of claim 3, and the operation control device of the refrigerating apparatus is the same as that of claim 3. A similar hot gas bypass passage (7), a pressure reduction degree adjusting mechanism (8), and a capacity control means (20) are provided. Then, in the hot gas bypass passage (7), a degree of pressure reduction including an on-off valve (R0) and a pressure reduction mechanism (C0) connected in series to the pressure reduction degree adjustment mechanism (8) and connected in parallel with each other. When the switching mechanism (9), the high pressure detecting means (HP) for detecting the high pressure side pressure of the refrigerant circuit (6), and the output of the high pressure detecting means (HP), the high pressure side pressure is lower than a certain value. Open / close valve (R0) of the pressure reduction degree switching mechanism (9)
On the other hand, when the high-pressure side pressure is equal to or higher than a certain value, switching means (21E) for switching to close the on-off valve (R0) of the pressure reduction degree switching mechanism (9) is provided.

【0017】[0017]

【作用】以上の構成により、請求項1の発明では、通常
条件下よりも凝縮器(2)側の熱媒体温度(例えば冷却
用冷凍装置における外気温度)が低下して、ホットガス
バイパス路(7)のホットガスバイパス量が低減しよう
とするとき、切換手段(21A)により、ホットガスバ
イパス量が増大するよう各ステップにおいて開かれる開
閉弁(Rn)が切換えられるので、低外気等に起因する
各ステップにおけるホットガスバイパス量の低減が防止
され、圧縮機(1)の各ステップにおける容量値が通常
条件下における値と同じ適正状態に維持されることにな
る。
With the above construction, in the invention of claim 1, the temperature of the heat medium on the condenser (2) side (for example, the outside air temperature in the refrigerating apparatus for cooling) is lower than that under normal conditions, and the hot gas bypass passage ( When the hot gas bypass amount of 7) is about to be reduced, the switching means (21A) switches the open / close valve (Rn) that is opened in each step so as to increase the hot gas bypass amount. The reduction of the hot gas bypass amount in each step is prevented, and the capacity value in each step of the compressor (1) is maintained in the same proper state as the value under normal conditions.

【0018】請求項2の発明では、高圧側圧力が通常条
件下よりも低下すると、切換手段(21B)により、容
量制御手段(20)により開かれる開閉弁(Rn)がホ
ットガスバイパス量を増大させるように切換えられるの
で、ホットガスバイパス量の低減が防止され、上記請求
項1の発明と同様の作用により、圧縮機(1)の各ステ
ップの容量値が適正状態に維持される。
According to the second aspect of the invention, when the high-pressure side pressure falls below the normal condition, the switching means (21B) causes the switching valve (Rn) opened by the capacity control means (20) to increase the hot gas bypass amount. Since the hot gas bypass amount is prevented from being reduced, the capacity value of each step of the compressor (1) is maintained in an appropriate state by the same action as that of the invention of claim 1.

【0019】請求項3の発明では、通常条件下では減圧
度切換機構(9)の開閉弁(R0)が開かれており、容
量制御手段(20)により開閉される減圧度調節機構
(8)の各開閉弁(Rn)の開閉で定まる減圧度に応
じ、圧縮機(1)の容量がステップ制御される。
In the third aspect of the invention, the opening / closing valve (R0) of the decompression degree switching mechanism (9) is opened under normal conditions, and the decompression degree adjusting mechanism (8) is opened and closed by the capacity control means (20). The capacity of the compressor (1) is step-controlled in accordance with the degree of pressure reduction which is determined by opening and closing each on-off valve (Rn).

【0020】そして、運転条件の変化により冷媒回路
(6)の高低差圧が増大すると、切換手段(21C)に
より、減圧度切換機構(9)の開閉弁(R0)が閉じら
れるので、ホットガスバイパス路(7)全体の減圧度が
増大し、ホットガスバイパス路(7)のバイパス量の増
大が防止され、圧縮機(1)の各ステップにおける容量
値が適正状態に維持されることになる。
When the pressure difference between the refrigerant circuit (6) and the refrigerant circuit (6) increases due to changes in operating conditions, the switching means (21C) closes the on-off valve (R0) of the pressure reduction degree switching mechanism (9). The degree of pressure reduction of the entire bypass passage (7) increases, the bypass amount of the hot gas bypass passage (7) is prevented from increasing, and the capacity value in each step of the compressor (1) is maintained in an appropriate state. ..

【0021】請求項4の発明では、上記請求項3の発明
と同様に、通常条件下では容量制御手段(20)による
減圧度調節機構(8)の減圧度制御により、圧縮機
(1)の容量が制御される一方、凝縮器(2)の熱源側
熱媒体温度が高くかつ蒸発器(4)の利用側熱媒体温度
の制御目標温度が低い高低差圧が大きくなるような条件
下では、切換手段(21D)により、減圧度切換機構
(9)の開閉弁(R0)が閉じられるので、ホットガス
バイパス路(7)全体の減圧度が増大し、上記請求項3
の発明と同様の作用により、圧縮機(1)の各ステップ
における容量値が適正状態に維持される。
In the fourth aspect of the invention, as in the third aspect of the invention, under normal conditions, the pressure reducing degree control of the pressure reducing degree adjusting mechanism (8) by the capacity controlling means (20) controls the compressor (1). While the capacity is controlled, the heat source side heat medium temperature of the condenser (2) is high, and the control target temperature of the use side heat medium temperature of the evaporator (4) is low. The switching means (21D) closes the on-off valve (R0) of the decompression degree switching mechanism (9), so that the decompression degree of the entire hot gas bypass passage (7) increases, and the above-mentioned claim 3
By the operation similar to that of the invention described above, the capacity value in each step of the compressor (1) is maintained in an appropriate state.

【0022】請求項5の発明では、通常条件下では減圧
度切換機構(9)の開閉弁(R0)が開かれており、圧
縮機(1)の容量が容量制御手段(20)による減圧度
調節機構(8)の各開閉弁(Rn)の開閉に応じて所定
のステップ値に制御される一方、高圧側圧力が一定圧力
以上に増大すると、切換手段(21E)により、減圧度
切換機構(9)の開閉弁(R0)が閉じられるので、ホ
ットガスバイパス路(7)全体の減圧度が増大し、上記
請求項3又は4の発明と同様の作用により、圧縮機
(1)の各ステップにおける容量値が適正状態に維持さ
れる。
In the fifth aspect of the invention, the opening / closing valve (R0) of the decompression degree switching mechanism (9) is opened under normal conditions, and the capacity of the compressor (1) is reduced by the capacity control means (20). While the opening / closing valve (Rn) of the adjusting mechanism (8) is controlled to a predetermined step value according to opening / closing, when the high-pressure side pressure exceeds a certain pressure, the switching means (21E) causes the decompression degree switching mechanism ( Since the on-off valve (R0) of 9) is closed, the degree of pressure reduction of the entire hot gas bypass passage (7) is increased, and each step of the compressor (1) is performed by the same action as the invention of claim 3 or 4. The capacitance value at is maintained in a proper state.

【0023】[0023]

【実施例】以下、本発明の実施例について、図面に基づ
き説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】まず、請求項1の発明に対応する実施例1
について説明する。図1は、実施例1に係る液体冷却装
置の冷媒配管系統を示し、該液体冷却装置は、工作機械
等を冷却するためのチリングユニット(B)と、該チリ
ングユニット(B)の循環液を冷却するための冷凍装置
(A)とからなる。上記冷凍装置(A)は、全閉型の圧
縮機(1)と、該圧縮機(1)から吐出された冷媒を凝
縮,液化するための凝縮器(2)と、該凝縮器(2)で
液化された冷媒を減圧する減圧機構としてのメインキャ
ピラリチュ―ブ(3)と、該メインキャピラリチュ―ブ
(3)で減圧された冷媒を蒸発させる蒸発器(4)とを
冷媒配管(5)で順次接続してなる冷媒回路(6)を備
えている。さらに、上記冷媒回路(6)の吐出ラインと
キャピラリチュ―ブ(3)−蒸発器(4)間の液管との
間をバイパス接続するホットガスバイパス路(7)が設
けられており、このホットガスバイパス路(7)には、
ホットガスバイパス量を調節するための減圧度調節機構
(8)が設けられている。該減圧度調節機構(8)は、
直列接続された開閉弁(Rn)(n=1〜3)と減圧機
構としてのキャピラリチュ―ブ(Cn)(n=1〜3)
との複数組を備えている。そして、各キャピラリチュ―
ブ(C1)〜(C3)の管径は順に細くなるよう、つま
り第1キャピラリチュ―ブ(C1)から第3キャピラリ
チュ―ブ(C3)まで順に減圧度を大きくしていくよう
に設定されている。すなわち、該減圧度調節機構(8)
の第1〜第3開閉弁(R1)〜(R3)を個別に開くこ
とにより、各々減圧度の異なる第1〜第3キャピラリチ
ュ―ブ(C1)〜(C3)によるホットガスバイパス量
の調節を行なうようになされている。
First, a first embodiment corresponding to the invention of claim 1
Will be described. FIG. 1 shows a refrigerant piping system of a liquid cooling device according to a first embodiment. The liquid cooling device includes a chilling unit (B) for cooling a machine tool and a circulating liquid of the chilling unit (B). A refrigerating device (A) for cooling. The refrigeration system (A) is a fully-closed compressor (1), a condenser (2) for condensing and liquefying the refrigerant discharged from the compressor (1), and the condenser (2). A main capillary tube (3) as a depressurizing mechanism for depressurizing the refrigerant liquefied in step 1, and an evaporator (4) for evaporating the refrigerant depressurized by the main capillary tube (3) are connected to a refrigerant pipe (5 ), The refrigerant circuit (6) sequentially connected. Further, there is provided a hot gas bypass passage (7) for bypass connection between the discharge line of the refrigerant circuit (6) and the liquid pipe between the capillary tube (3) and the evaporator (4). In the hot gas bypass (7),
A decompression degree adjusting mechanism (8) for adjusting the hot gas bypass amount is provided. The decompression degree adjusting mechanism (8)
An on-off valve (Rn) (n = 1 to 3) connected in series and a capillary tube (Cn) (n = 1 to 3) as a pressure reducing mechanism.
It has multiple pairs of. And each capillary
The pipe diameters of the tubes (C1) to (C3) are set so as to become smaller in order, that is, the pressure reduction degree is sequentially increased from the first capillary tube (C1) to the third capillary tube (C3). ing. That is, the decompression degree adjusting mechanism (8)
By individually opening the first to third on-off valves (R1) to (R3), the hot gas bypass amount is adjusted by the first to third capillary tubes (C1) to (C3) having different degrees of pressure reduction. Is designed to do.

【0025】ここで、上記蒸発器(4)の利用媒体流通
部には、チリングユニット(B)のチラ―回路(10)
を循環する冷却液が流通するようになされており、冷媒
回路(6)において凝縮器(2)で付与された冷熱を蒸
発器(4)での熱交換により冷却液に付与し、冷却液を
冷却するようになされている。
Here, the chiller circuit (10) of the chilling unit (B) is provided in the utilization medium circulating portion of the evaporator (4).
The cooling liquid circulated in the refrigerant circuit (6) is circulated, and the cold heat given in the condenser (2) in the refrigerant circuit (6) is given to the cooling liquid by heat exchange in the evaporator (4), and the cooling liquid is given. It is designed to cool.

【0026】上記チラ―回路(10)の蒸発器(4)出
口には冷却水の蒸発器(4)出口の水温Twoを検出する
出口水温センサ(Thw)が配設されており、この出口水
温センサ(Thw)の信号は冷凍装置(A)の運転を制御
するコントロ―ラ(20)に入力可能になされている。
さらに、上記コントローラ(20)には、冷却水の出口
温度Twoの制御目標値Twsを設定する設定回路(22)
が内蔵されており、コントローラ(20)により、この
設定回路(22)で設定された制御目標温度Twsと上記
出口水温センサ(Thw)で検出された出口水温Twoとを
比較し、その差温に相当する要求能力に応じ、上記ホッ
トガスバイパス路(7)の減圧度調節機構(8)の各開
閉弁(R1)〜(R3)の開閉を制御することにより、
圧縮機(1)の容量を後述のような複数のステップに制
御するようになされており、上記コントロ―ラ(20)
は各請求項の発明にいう容量制御手段としての機能を有
するものである。
At the outlet of the evaporator (4) of the chiller circuit (10), an outlet water temperature sensor (Thw) for detecting the water temperature Two at the outlet of the cooling water evaporator (4) is arranged. The signal of the sensor (Thw) can be input to the controller (20) that controls the operation of the refrigeration system (A).
Further, in the controller (20), a setting circuit (22) for setting a control target value Tws for the outlet temperature Two of the cooling water.
The control target temperature Tws set by the setting circuit (22) is compared with the outlet water temperature Two detected by the outlet water temperature sensor (Thw) by the controller (20), and the difference temperature is calculated. By controlling the opening and closing of each of the on-off valves (R1) to (R3) of the decompression degree adjusting mechanism (8) of the hot gas bypass passage (7) according to the corresponding required capacity,
The capacity of the compressor (1) is controlled in a plurality of steps as described below, and the controller (20) is
Has a function as a capacity control means in the invention of each claim.

【0027】次に、上記凝縮器(2)の空気吸込口側に
は、凝縮器(2)側の熱媒体である外気の温度を検出す
る熱媒体温度検出手段としての外気温度センサ(Tha)
が配置されており、該外気温度センサ(Tha)の信号は
上記コントローラ(20)に内蔵される切換手段として
の切換回路(21A)に入力可能になされている。
Next, on the air inlet side of the condenser (2), an outside air temperature sensor (Tha) as heat medium temperature detecting means for detecting the temperature of the outside air which is the heat medium on the condenser (2) side.
Is arranged, and the signal of the outside air temperature sensor (Tha) can be input to a switching circuit (21A) as a switching means built in the controller (20).

【0028】ここで、上記コントローラ(20)及び切
換回路(21A)による減圧度調節機構(8)の各開閉
弁(R1)〜(R3)の開閉制御について、下記表1及
び表2に基づき説明する。
The opening / closing control of each of the opening / closing valves (R1) to (R3) of the pressure reducing degree adjusting mechanism (8) by the controller (20) and the switching circuit (21A) will be described with reference to Tables 1 and 2 below. To do.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】上記表1は、通常条件下の制御の場合を示
し、表2は外気温度が一定温度(例えば13℃程度の温
度)以下の時いわゆる低外気時の制御を示す。すなわ
ち、通常条件下では、第3開閉弁(R3)を開くことに
より圧縮機(1)の容量を80%に、第2開閉弁(R
2)を開くことにより圧縮機(1)の容量を60%に、
第1開閉弁(R1)を開くことにより圧縮機(1)の容
量を40%にし、すべての開閉弁(R1)〜(R3)を
閉じることによる100%と合わせて、圧縮機(1)の
容量を4ステップに制御するようになされている。
Table 1 shows the case of control under normal conditions, and Table 2 shows control when the outside air temperature is below a certain temperature (for example, a temperature of about 13 ° C.), that is, when the outside air is low. That is, under normal conditions, the capacity of the compressor (1) is increased to 80% by opening the third opening / closing valve (R3), and the second opening / closing valve (R3) is opened.
By opening 2), the capacity of the compressor (1) is increased to 60%,
The capacity of the compressor (1) is made 40% by opening the first on-off valve (R1), and combined with 100% by closing all the on-off valves (R1) to (R3), the compressor (1) The capacity is controlled in four steps.

【0032】一方、低外気条件下では、第2及び第3開
閉弁(R2),(R3)を開くことにより圧縮機(1)
の容量を80%に、第1及び第3開閉弁(R1),(R
3)を開くことにより圧縮機(1)の容量を60%に、
第1及び第2開閉弁(R1),(R2)を開くことによ
り圧縮機(1)の容量を40%にするように、上記通常
条件下における開閉弁(R1)〜(R3)の開閉制御と
は異ならせるようにしている。すなわち、低外気時に
は、開く開閉弁数を増大することでホットガスバイパス
量の低減を補償し、圧縮機(1)の容量制御を通常条件
下におけると同じ容量の4ステップに制御するようにし
ている。
On the other hand, under low outside air conditions, the compressor (1) is opened by opening the second and third on-off valves (R2), (R3).
Capacity of 80%, the first and third on-off valves (R1), (R
By opening 3), the capacity of the compressor (1) becomes 60%,
Open / close control of the open / close valves (R1) to (R3) under the above normal conditions so that the capacity of the compressor (1) is set to 40% by opening the first and second open / close valves (R1) and (R2). I am trying to make it different from. That is, when the outside air is low, the number of open / close valves is increased to compensate for the reduction in the hot gas bypass amount, and the capacity control of the compressor (1) is controlled in four steps with the same capacity as under normal conditions. There is.

【0033】したがって、上記実施例1では、冷凍装置
(A)において、圧縮機から吐出された冷媒が凝縮器
(2)で凝縮,液化された後メインキャピラリチュ―ブ
(3)で減圧され、蒸発器(4)で蒸発した圧縮機
(1)に戻るように循環することにより、室外空気との
熱交換で得た冷熱を凝縮器(2)でチリングユニット
(B)の冷却液に付与する。そして、容量制御手段たる
コントローラ(20)により、蒸発器(4)の出口水温
センサ(Thw)で検出される冷却液の出口水温Twoとそ
の設定温度Twsとを比較し、出口水温Twoが設定温度T
wsよりも高いほど圧縮機(1)の容量を大きくし、設定
温度Twsに近付くと圧縮機(1)の容量を小さくするよ
うに、減圧度調節機構(8)の各開閉弁(R1)〜(R
3)を個別に開いて、圧縮機(1)の容量を100%,
80%,60%,40%の4ステップに制御し、出口水
温Twoを微細に制御する(図2参照)。
Therefore, in the first embodiment, in the refrigeration system (A), the refrigerant discharged from the compressor is condensed and liquefied by the condenser (2) and then decompressed by the main capillary tube (3). By circulating so as to return to the compressor (1) evaporated in the evaporator (4), cold heat obtained by heat exchange with the outdoor air is applied to the cooling liquid of the chilling unit (B) by the condenser (2). .. The controller (20) serving as a capacity control means compares the outlet water temperature Two of the cooling liquid detected by the outlet water temperature sensor (Thw) of the evaporator (4) with the set temperature Tws, and the outlet water temperature Two is set. T
Each open / close valve (R1) of the pressure reduction degree adjusting mechanism (8) is designed so that the capacity of the compressor (1) is increased as the value is higher than ws and is decreased as the temperature approaches the set temperature Tws. (R
3) individually open the capacity of the compressor (1) to 100%,
The outlet water temperature Two is finely controlled by controlling in four steps of 80%, 60% and 40% (see FIG. 2).

【0034】そのとき、外気温度センサ(Tha)により
検出される外気温度が一定温度以下のときには、高圧側
圧力が低下するので、ホットガスバイパス路(7)から
のホットガスバイパス量が低減し、通常条件下と同じ開
閉弁(R1)〜(R3)の開閉制御を行なうと、現実の
圧縮機(1)の容量は100%容量に対して、80%,
60%,40%よりもそれぞれ高い値となって、各ステ
ップ間の容量差が適正値よりも大きくずれることになる
(例えば、図3参照)。
At this time, when the outside air temperature detected by the outside air temperature sensor (Tha) is below a certain temperature, the high-pressure side pressure decreases, so the amount of hot gas bypass from the hot gas bypass passage (7) decreases, When the opening / closing control of the opening / closing valves (R1) to (R3) is performed under the same conditions as under normal conditions, the actual capacity of the compressor (1) is 80%,
The values are higher than 60% and 40%, respectively, and the capacity difference between the steps deviates from the proper value by a large amount (see, for example, FIG. 3).

【0035】それに対し、上記実施例1では、低外気時
には、各ステップにおける減圧度調節機構(21A)の
開閉弁(R1)〜(R3)の開作動数を増大させてホッ
トガスバイパス量を増大するようにしているので、各ス
テップにおけるホットガスバイパス量の低減が補償さ
れ、上記図2に示すような通常制御時における各ステッ
プの容量値と略等しい圧縮機(1)の容量値が確保され
ることになる。すなわち、安価な全閉型圧縮機を使用し
ながら、出口水温Twoの制御精度の向上を図ることがで
きる。
On the other hand, in the first embodiment, when the outside air is low, the number of open operations of the opening / closing valves (R1) to (R3) of the pressure reduction degree adjusting mechanism (21A) at each step is increased to increase the hot gas bypass amount. Therefore, the reduction of the hot gas bypass amount in each step is compensated, and the capacity value of the compressor (1) substantially equal to the capacity value of each step in the normal control as shown in FIG. 2 is secured. Will be. That is, it is possible to improve the control accuracy of the outlet water temperature Two while using an inexpensive fully-closed compressor.

【0036】次に、請求項2の発明に対応する実施例2
について説明する。図4は実施例2における冷凍装置
(A)及びチリングユニット(B)の配管系統を示し、
上記図1に示す実施例1の配管系統と同じ配管系統であ
るが、本実施例では、外気温度センサ(Tha)の代わり
に、高圧側圧力を検出する高圧検出手段としての高圧セ
ンサ(HP )が吐出管に配設されている。
Next, a second embodiment corresponding to the invention of claim 2
Will be described. FIG. 4 shows the piping system of the refrigeration system (A) and the chilling unit (B) in Example 2,
The piping system is the same as the piping system of the first embodiment shown in FIG. 1, but in this embodiment, instead of the outside air temperature sensor (Tha), a high pressure sensor (HP) as a high pressure detecting means for detecting the high pressure side pressure. Is disposed in the discharge pipe.

【0037】そして、本実施例では、減圧度調節機構
(8)の各開閉弁(R1)〜(R3)について、通常条
件下では上記実施例1の表1に示す開閉制御が行われ、
高圧側圧力が一定圧力(例えば13kg/cm2 )程度の圧
力値)以下に低下すると、コントローラ(8)中の切換
回路(21B)により、上記実施例1の表2と同じ開閉
制御に切換えるようになされている。
Then, in the present embodiment, the opening / closing control shown in Table 1 of the above-described Embodiment 1 is performed for each of the opening / closing valves (R1) to (R3) of the decompression degree adjusting mechanism (8) under normal conditions.
When the high-pressure side pressure falls below a certain pressure (for example, a pressure value of about 13 kg / cm 2 ), the switching circuit (21B) in the controller (8) switches to the same opening / closing control as shown in Table 2 of the first embodiment. Has been done.

【0038】したがって、この実施例2でも、高圧側圧
力の低下によるホットガスバイパス量の低減を、減圧度
調節機構(8)の開閉弁(R1)〜(R3)の開作動数
を増大するよう切換えることにより補償して、圧縮機
(1)の各ステップにおける容量値を適正に維持するこ
とができる。すなわち、上記実施例1と同様の効果を得
ることができる。
Therefore, also in the second embodiment, the hot gas bypass amount is reduced by decreasing the high-pressure side pressure so as to increase the number of open operations of the opening / closing valves (R1) to (R3) of the pressure reduction degree adjusting mechanism (8). It is possible to compensate by switching and properly maintain the capacity value in each step of the compressor (1). That is, it is possible to obtain the same effect as that of the first embodiment.

【0039】次に、請求項3の発明に対応する実施例3
について説明する。図5は実施例3における冷凍装置
(A)及びチリングユニット(B)の配管系統を示し、
上記実施例1の図1に示す配管系統と同じ構成に加え
て、本実施例では、ホットガスバイパス路(7)におい
て、上記減圧度調節機構(8)と直列に減圧度切換機構
(9)が設けられている。該減圧度調節機構(9)は、
管径の小さいつまり減圧度の大きい切換用キャピラリチ
ュ―ブ(C0)と切換用開閉弁(R0)とを並列に配置
してなる。すなわち、切換用開閉弁(R0)を開閉する
ことにより、減圧度調節機構(8)による圧縮機(1)
のステップ制御パターンを2つのモードに切換えるよう
になされている。
Next, a third embodiment corresponding to the invention of claim 3
Will be described. FIG. 5 shows the piping system of the refrigeration system (A) and the chilling unit (B) in Example 3,
In addition to the same configuration as that of the piping system shown in FIG. 1 of the first embodiment, in the present embodiment, in the hot gas bypass passage (7), the pressure reduction degree switching mechanism (9) is connected in series with the pressure reduction degree adjusting mechanism (8). Is provided. The decompression degree adjusting mechanism (9)
A switching capillary tube (C0) having a small pipe diameter, that is, a large degree of pressure reduction and a switching on-off valve (R0) are arranged in parallel. That is, by opening and closing the switching on-off valve (R0), the compressor (1) by the pressure reduction degree adjusting mechanism (8).
The step control pattern of is switched to two modes.

【0040】さらに、外気温度センサ(Tha)の代わり
に、高低差圧値が一定値(例えば10kg/cm2 程度の
値)以下になると作動する差圧スイッチ(HLP)が設け
られている。そして、コントローラ(8)中の切換回路
(21C)により、差圧スイッチ(HLP)が作動しない
ときには、減圧度切換機構(9)の切換用開閉弁(C
0)を閉じる一方、差圧スイッチ(HLP)が作動したと
きには、切換用開閉弁(C0)を開くよう開閉を切換え
るようにしている。すなわち、本実施例では、切換回路
(21C)により請求項3の発明にいう切換手段が構成
されている。
Further, in place of the outside air temperature sensor (Tha), a differential pressure switch (HLP) is provided which is activated when the high and low differential pressure value becomes a certain value (for example, a value of about 10 kg / cm 2 ) or less. When the differential pressure switch (HLP) is not operated by the switching circuit (21C) in the controller (8), the switching opening / closing valve (C) of the pressure reduction degree switching mechanism (9) is
0) is closed while the differential pressure switch (HLP) is activated, the switching on-off valve (C0) is opened and closed. That is, in this embodiment, the switching circuit (21C) constitutes the switching means according to the invention of claim 3.

【0041】したがって、上記実施例3では、切換回路
(21C)により、差圧スイッチ(HLP)により検出さ
れる高低差圧が小さいときには減圧度切換機構(9)の
切換用開閉弁(R0)を開く一方、運転条件の変化で高
低差圧が増大して、一定値(上記実施例では10kg/cm
2 )以上になると、切換用開閉弁(R0)を閉じるよう
制御され、この制御によって、ホットガスバイパス路
(7)全体の減圧度が増大し、ホットガスバイパス量が
低減する。
Therefore, in the third embodiment, the switching circuit (21C) causes the switching opening / closing valve (R0) of the pressure reduction degree switching mechanism (9) to operate when the high and low differential pressure detected by the differential pressure switch (HLP) is small. While opening, the high and low differential pressure increases due to changes in operating conditions, resulting in a constant value (10 kg / cm in the above embodiment).
2 ) When the above is reached, the switching on-off valve (R0) is controlled to be closed, and by this control, the degree of pressure reduction of the entire hot gas bypass passage (7) is increased and the hot gas bypass amount is reduced.

【0042】すなわち、ホットガスバイパス路(7)全
体の減圧度が一定の場合、高低差圧が小さい状態では、
上記実施例1における図2に示すように、圧縮機(1)
の容量が100%,80%,60,40%の4ステップ
に容量制御されるが、高低差圧が増大すると、ホットガ
スバイパス路(7)からのホットガスバイパス量が増大
するため、図6に示すように、圧縮機(1)の容量値が
例えば100%,50%,20%,10%のような適正
状態からずれた値となり、最大容量値と他のステップの
容量値との差が大きくなりすぎて、その結果、出口水温
Twoの制御精度が悪化する。
That is, when the degree of pressure reduction of the entire hot gas bypass passage (7) is constant, and when the high and low differential pressure is small,
As shown in FIG. 2 in the first embodiment, the compressor (1)
The capacity is controlled in four steps of 100%, 80%, 60, and 40%, but when the high and low differential pressure increases, the hot gas bypass amount from the hot gas bypass passage (7) increases, so that As shown in, the capacity value of the compressor (1) is a value deviating from the proper state such as 100%, 50%, 20%, 10%, and the difference between the maximum capacity value and the capacity value of another step. Becomes too large, and as a result, the control accuracy of the outlet water temperature Two deteriorates.

【0043】それに対し、上述のように、高低差圧が増
大したときには切換用開閉弁(R0)を閉じるよう制御
することにより、圧縮機(1)の各ステップにおける実
際の容量がほぼ図2のような適正値となり、出口水温T
woの制御精度の悪化を防止することができる。
On the other hand, as described above, by controlling the switching on-off valve (R0) to be closed when the high and low differential pressure increases, the actual capacity of each step of the compressor (1) is almost as shown in FIG. Such an appropriate value and the outlet water temperature T
It is possible to prevent the deterioration of the control accuracy of wo.

【0044】次に、請求項4の発明に対応する実施例4
について説明する。本実施例における冷凍装置(A)及
びチリングユニット(B)は、図7に示すように、上記
実施例3と同じ回路構成を有しているが、本実施例で
は、差圧スイッチ(HLP)の代わりに外気温度センサ
(Tha)が凝縮器(2)の空気吸込口に取付けられてお
り、その信号がコントローラ(20)に入力可能に接続
されている。そして、コントローラ(20)内の切換回
路(21D)により、上記外気温度センサ(Tha)で検
出される外気温度が一定温度(例えば23℃)よりも低
いときには、減圧度切換機構(9)の開閉弁(R0)を
開く一方、上記設定回路(22)で設定される出口水温
の制御目標温度Twsが一定値(例えば15℃程度の値)
以下のときに、外気温度が一定温度以上になると、切換
用開閉弁(R0)を閉じてホットガスバイパス路(7)
全体の減圧度を増大させ、ホットガスバイパス量を低減
するように制御される。すなわち、切換回路(21D)
は、請求項4の発明にいう切換手段として機能する。
Next, a fourth embodiment corresponding to the invention of claim 4
Will be described. As shown in FIG. 7, the refrigeration system (A) and the chilling unit (B) in this embodiment have the same circuit configuration as that of the third embodiment, but in this embodiment, the differential pressure switch (HLP) is used. Instead of the above, an outside air temperature sensor (Tha) is attached to the air suction port of the condenser (2), and its signal is connected to the controller (20) so that it can be input. Then, when the outside air temperature detected by the outside air temperature sensor (Tha) is lower than a constant temperature (for example, 23 ° C.) by the switching circuit (21D) in the controller (20), the pressure reduction degree switching mechanism (9) is opened and closed. While opening the valve (R0), the control target temperature Tws of the outlet water temperature set by the setting circuit (22) is a constant value (for example, a value of about 15 ° C).
In the following cases, when the outside air temperature exceeds a certain temperature, the switching on-off valve (R0) is closed and the hot gas bypass passage (7) is closed.
It is controlled so as to increase the overall degree of pressure reduction and reduce the amount of hot gas bypass. That is, the switching circuit (21D)
Functions as the switching means in the invention of claim 4.

【0045】ここで、外気温度が高くかつ蒸発器(4)
の出口水温が低い、つまり高圧側圧力が高く低圧側圧力
が低い高低差圧が大きくなるような条件下では、上記実
施例3で説明したように、ホットガスバイパス量の増大
により圧縮機(1)の各ステップにおける容量値が適正
値よりも小さくなって、出口水温Twoの制御精度が悪化
する虞れが生じる(上記図6参照)が、上記実施例4で
は、切換回路(21D)により、減圧度切換機構(9)
の開閉弁(R1)が閉じられ、ホットガスバイパス量が
減少する。したがって、圧縮機(1)の各ステップにお
ける容量値がほぼ図2のような適正状態に維持され、出
口水温Twoの制御精度の悪化が防止されることになる。
Here, the outside air temperature is high and the evaporator (4)
Under the condition that the outlet water temperature is low, that is, the high-pressure side pressure is high and the low-pressure side pressure is low, the high-low differential pressure is large, as described in the third embodiment, the compressor (1 ) The capacity value in each step becomes smaller than the appropriate value, and the control accuracy of the outlet water temperature Two may deteriorate (see FIG. 6). However, in the fourth embodiment, the switching circuit (21D) causes Decompression degree switching mechanism (9)
The on-off valve (R1) is closed and the hot gas bypass amount is reduced. Therefore, the capacity value in each step of the compressor (1) is maintained in a proper state as shown in FIG. 2, and deterioration of the control accuracy of the outlet water temperature Two is prevented.

【0046】次に、請求項5の発明に対応する実施例5
について説明する。図8に示すように、本実施例の冷凍
装置(A)及びチリングユニット(B)の配管構成は、
上記実施例3における図5に示すと同様であるが、差圧
スイッチ(HLP)の代りに、高圧圧力センサ(HP )が
設けられており、その信号はコントローラ(20)内の
切換回路(21E)に入力可能になされている。そし
て、高圧側圧力が一定圧力(例えば13kg/cm2 程度の
圧力値)以下のときには、減圧度切換機構(9)の切換
用開閉弁(R0)を開く一方、高圧側圧力が一定圧力を
越えると、切換用開閉弁(R0)を閉じて、ホットガス
バイパス路(7)全体の減圧度を増大させ、ホットガス
バイパス量を低減するようになされている。上記切換回
路(21E)は、請求項5の発明にいう切換手段として
機能するものである。
Next, a fifth embodiment corresponding to the invention of claim 5
Will be described. As shown in FIG. 8, the piping configurations of the refrigeration system (A) and the chilling unit (B) of this example are as follows.
5 is the same as that shown in FIG. 5 in the third embodiment, but a high pressure pressure sensor (HP) is provided instead of the differential pressure switch (HLP), and its signal is a switching circuit (21E) in the controller (20). ) Has been made possible to enter. When the high-pressure side pressure is equal to or lower than a certain pressure (for example, a pressure value of about 13 kg / cm 2 ), the switching on-off valve (R0) of the pressure reduction degree switching mechanism (9) is opened, while the high-pressure side pressure exceeds the certain pressure. Then, the switching on-off valve (R0) is closed to increase the degree of pressure reduction of the entire hot gas bypass passage (7) and reduce the hot gas bypass amount. The switching circuit (21E) functions as the switching means in the invention of claim 5.

【0047】すなわち、本実施例においても、高圧側圧
力の増大時、減圧度切換機構(9)の切換用開閉弁(R
0)を閉じることで、ホットガスバイパス量を低減させ
るようにしているので、上記実施例3又は4と同様に、
圧縮機(1)の各ステップにおける容量値を適正状態に
維持することができ、出口水温Twoの制御精度の悪化を
防止することができる。
That is, also in this embodiment, when the pressure on the high pressure side increases, the switching on-off valve (R) of the decompression degree switching mechanism (9) is changed.
By closing 0), the hot gas bypass amount is reduced. Therefore, as in the third or fourth embodiment,
The capacity value in each step of the compressor (1) can be maintained in an appropriate state, and deterioration of the control accuracy of the outlet water temperature Two can be prevented.

【0048】なお、上記各実施例では、冷凍装置(A)
をチリングユニット(B)の冷却水を冷却するためのも
のとしたが、本発明は斯かる実施例に限定されるもので
はなく、室内の冷房を行う空気調和装置等にも適用する
ことができる。
In each of the above embodiments, the refrigeration system (A)
Is for cooling the cooling water of the chilling unit (B), but the present invention is not limited to such an embodiment, and can be applied to an air conditioner for cooling the room. ..

【0049】また、上記各実施例では、減圧度調節機構
(8)の各キャピラリチュ―ブ(C1)〜(C3)の減
圧度は各々異なる値としたが、必ずしも各キャピラリチ
ュ―ブ(C1)〜(3)の値が異なる必要はなく、まっ
たく同一の値であってもよい。
Further, in each of the above-mentioned embodiments, the pressure reduction degree of each capillary tube (C1) to (C3) of the pressure reduction degree adjusting mechanism (8) is set to a different value, but each capillary tube (C1) is not always required. ) To (3) need not be different, and may be exactly the same.

【0050】[0050]

【発明の効果】以上説明したように、請求項1の発明に
よれば、冷凍装置の運転制御装置として、吐出管と冷媒
回路の減圧機構−蒸発器間の液管とをホットガスバイパ
ス路でバイパス接続し、ホットガスバイパス路に、減圧
機構とこれに直列接続される開閉弁とからなる複数の組
を互いに並列に接続してなる減圧度調節機構を設け、蒸
発器側の要求能力に応じ、減圧度調節機構の各開閉弁の
開閉を制御するとともに、凝縮器の熱源側熱媒体の温度
が一定温度以下に下降すると、ホットガスバイパス量が
増大する方向に開閉弁の開閉を切換えるようにしたの
で、ホットガスバイパス量の減少による圧縮機の各ステ
ップの容量値の適正状態からのずれを防止することがで
き、よって、全閉型圧縮機の使用により低コストを維持
しかつ成績係数の悪化を招くことなく、蒸発器の冷却対
象となる利用側媒体の出口温度の制御精度を良好に維持
することができる。
As described above, according to the invention of claim 1, as the operation control device of the refrigeration system, the discharge pipe and the pressure reducing mechanism of the refrigerant circuit and the liquid pipe between the evaporator are formed by the hot gas bypass passage. By providing a bypass connection, a hot gas bypass passage is provided with a pressure reducing degree adjusting mechanism in which a plurality of groups of a pressure reducing mechanism and an on-off valve connected in series to the hot pressure bypass mechanism are connected in parallel to each other, depending on the required capacity of the evaporator side. Controlling the opening and closing of each on-off valve of the decompression degree adjusting mechanism, and switching the on-off valve to the direction in which the hot gas bypass amount increases when the temperature of the heat source side heat medium of the condenser falls below a certain temperature. As a result, it is possible to prevent the capacity value of each step of the compressor from deviating from the proper state due to the reduction of the hot gas bypass amount. evil The without incurring, it is possible to satisfactorily maintain the control accuracy of the outlet temperature of the usage-side medium to be cooled in the evaporator.

【0051】請求項2の発明によれば、冷凍装置の運転
制御装置として、吐出管と冷媒回路の減圧機構−蒸発器
間の液管とをホットガスバイパス路でバイパス接続し、
ホットガスバイパス路に、減圧機構とこれに直列接続さ
れる開閉弁とからなる複数の組を互いに並列に接続して
なる減圧度調節機構を設け、蒸発器側の要求能力に応
じ、減圧度調節機構の各開閉弁の開閉を制御するととも
に、高圧側圧力が一定圧力以下に下降すると、ホットガ
スバイパス量が増大する方向に開閉弁の開閉を切換える
ようにしたので、ホットガスバイパス量の減少による圧
縮機の各ステップの容量値の適正状態からのずれを防止
することができ、よって、上記請求項1の発明と同様の
効果を得ることができる。
According to the invention of claim 2, as the operation control device of the refrigeration system, the discharge pipe and the liquid pipe between the pressure reducing mechanism of the refrigerant circuit and the evaporator are bypass-connected by the hot gas bypass passage,
The hot gas bypass path is equipped with a decompression degree adjustment mechanism that connects multiple groups of decompression mechanisms and on-off valves connected in series with each other in parallel, and adjusts the decompression degree according to the required capacity of the evaporator side. It controls opening / closing of each on-off valve of the mechanism, and when the high-pressure side pressure falls below a certain pressure, the opening / closing valve is switched to increase / decrease the hot gas bypass amount. It is possible to prevent the displacement of the capacity value of each step of the compressor from the proper state, and therefore, it is possible to obtain the same effect as that of the invention of claim 1 above.

【0052】請求項3の発明によれば、冷凍装置の運転
制御装置として、吐出管と冷媒回路の減圧機構−蒸発器
間の液管とをホットガスバイパス路でバイパス接続し、
ホットガスバイパス路に、減圧機構とこれに直列接続さ
れる開閉弁とからなる複数の組を互いに並列に接続して
なる減圧度調節機構を設け、蒸発器側の要求能力に応
じ、減圧度調節機構の各開閉弁の開閉を制御するととも
に、ホットガスバイパス路に、開閉弁と減圧機構とを並
列に接続してなる減圧度切換機構を上記減圧度調節機構
に対して直列に介設し、通常条件下では減圧度切換機構
の開閉弁を開く一方、高低差圧が一定以上になると減圧
度切換機構の開閉弁を閉じるようにしたので、ホットガ
スバイパス量の増大による圧縮機の各ステップの容量値
の適正状態からのずれを防止することができ、よって、
全閉型圧縮機の使用により低コストを維持しかつ成績係
数の悪化を招くことなく、蒸発器の冷却対象となる利用
側媒体の出口温度の制御精度を良好に維持することがで
きる。
According to the invention of claim 3, as the operation control device of the refrigeration system, the discharge pipe and the pressure reducing mechanism of the refrigerant circuit-the liquid pipe between the evaporators are bypass-connected by the hot gas bypass passage.
The hot gas bypass path is equipped with a decompression degree adjustment mechanism that connects multiple groups of decompression mechanisms and on-off valves connected in series with each other in parallel, and adjusts the decompression degree according to the required capacity of the evaporator side. While controlling the opening and closing of each on-off valve of the mechanism, in the hot gas bypass path, a decompression degree switching mechanism in which the on-off valve and the decompression mechanism are connected in parallel is provided in series to the decompression degree adjusting mechanism, Under normal conditions, the on-off valve of the decompression degree switching mechanism is opened, while the on-off valve of the decompression degree switching mechanism is closed when the high and low differential pressure exceeds a certain level. It is possible to prevent the capacitance value from deviating from the proper state, and thus
The use of the fully-closed compressor makes it possible to maintain good cost control accuracy of the outlet temperature of the use-side medium to be cooled by the evaporator, while maintaining low cost and without degrading the coefficient of performance.

【0053】請求項4の発明によれば、冷凍装置の運転
制御装置として、吐出管と冷媒回路の減圧機構−蒸発器
間の液管とをホットガスバイパス路でバイパス接続し、
ホットガスバイパス路に、減圧機構とこれに直列接続さ
れる開閉弁とからなる複数の組を互いに並列に接続して
なる減圧度調節機構を設け、蒸発器側の要求能力に応
じ、減圧度調節機構の各開閉弁の開閉を制御するととも
に、ホットガスバイパス路に、開閉弁と減圧機構とを並
列に接続してなる減圧度切換機構を上記減圧度調節機構
に対して直列に介設し、通常条件下では減圧度切換機構
の開閉弁を開く一方、凝縮器の熱源側熱媒体温度が一定
温度以上に上昇し、かつ蒸発器の利用側熱媒体の制御目
標温度が一定値以下となる高低差圧の増大条件下では、
減圧度切換機構の開閉弁を閉じるようにしたので、ホッ
トガスバイパス量の増大による圧縮機の各ステップの容
量値の適正状態からのずれを防止することができ、よっ
て、上記請求項3の発明と同様の効果を得ることができ
る。
According to the invention of claim 4, as the operation control device of the refrigerating device, the discharge pipe and the pressure reducing mechanism of the refrigerant circuit-the liquid pipe between the evaporators are bypass-connected by the hot gas bypass passage,
The hot gas bypass path is equipped with a decompression degree adjustment mechanism that connects multiple groups of decompression mechanisms and on-off valves connected in series with each other in parallel, and adjusts the decompression degree according to the required capacity of the evaporator side. While controlling the opening and closing of each on-off valve of the mechanism, in the hot gas bypass path, a decompression degree switching mechanism in which the on-off valve and the decompression mechanism are connected in parallel is provided in series to the decompression degree adjusting mechanism, Under normal conditions, while opening the on-off valve of the decompression degree switching mechanism, the heat source side heat medium temperature of the condenser rises above a certain temperature and the control target temperature of the evaporator use side heat medium falls below a certain value. Under the condition of increasing differential pressure,
Since the on-off valve of the decompression degree switching mechanism is closed, it is possible to prevent the capacity value of each step of the compressor from deviating from the proper state due to the increase of the hot gas bypass amount. Therefore, the invention according to claim 3 above The same effect as can be obtained.

【0054】請求項5の発明によれば、冷凍装置の運転
制御装置として、吐出管と冷媒回路の減圧機構−蒸発器
間の液管とをホットガスバイパス路でバイパス接続し、
ホットガスバイパス路に、減圧機構とこれに直列接続さ
れる開閉弁との複数組を互いに並列に接続してなる減圧
度調節機構を設け、蒸発器側の要求能力に応じ、減圧度
調節機構の各開閉弁の開閉を制御するとともに、ホット
ガスバイパス路に、開閉弁と減圧機構とを並列に接続し
てなる減圧度切換機構を上記減圧度調節機構に対して直
列に介設し、通常条件下では減圧度切換機構の開閉弁を
開く一方、高圧側圧力が一定圧力以上に上昇すると、減
圧度切換機構の開閉弁を閉じるようにしたので、ホット
ガスバイパス量の増大による圧縮機の各ステップの容量
値の適正状態からのずれを防止することができ、よっ
て、上記請求項3の発明と同様の効果を得ることができ
る。
According to the invention of claim 5, as the operation control device of the refrigeration system, the discharge pipe and the pressure reducing mechanism of the refrigerant circuit and the liquid pipe between the evaporator are bypass-connected by the hot gas bypass passage.
In the hot gas bypass path, a decompression degree adjusting mechanism is provided in which a plurality of sets of decompression mechanism and on-off valves connected in series to this are connected in parallel to each other. In addition to controlling the opening / closing of each on-off valve, a decompression degree switching mechanism, in which an on-off valve and a decompression mechanism are connected in parallel, is installed in series with the decompression degree adjusting mechanism in the hot gas bypass line under normal conditions. Below, the on-off valve of the decompression degree switching mechanism is opened, while the on-off valve of the decompression degree switching mechanism is closed when the high-pressure side pressure rises above a certain pressure. It is possible to prevent the deviation of the capacitance value from the appropriate state, and therefore, it is possible to obtain the same effect as the invention of claim 3 above.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に係る冷凍装置及びチリングユニット
の配管系統及び信号経路を示す図である。
FIG. 1 is a diagram showing a piping system and a signal path of a refrigeration system and a chilling unit according to a first embodiment.

【図2】実施例1の通常条件下における圧縮機の各ステ
ップの容量値を示す図である。
FIG. 2 is a diagram showing the capacity value of each step of the compressor under normal conditions of the first embodiment.

【図3】開閉弁の開閉固定時の低外気所条件下における
圧縮機のステップの容量値変化を示す図である。
FIG. 3 is a diagram showing a change in capacity value of a step of the compressor under low outside air condition when the on-off valve is opened and closed.

【図4】実施例2に係る冷凍装置及びチリングユニット
の配管系統及び信号経路を示す図である。
FIG. 4 is a diagram showing a piping system and a signal path of a refrigeration system and a chilling unit according to a second embodiment.

【図5】実施例3に係る冷凍装置及びチリングユニット
の配管系統及び信号経路を示す図である。
FIG. 5 is a diagram showing a piping system and a signal path of a refrigeration system and a chilling unit according to a third embodiment.

【図6】開閉弁の開閉固定時の高低差圧増大条件下にお
ける圧縮機の各ステップにの容量値変化を示す図であ
る。
FIG. 6 is a diagram showing a change in capacity value at each step of the compressor under a condition of increasing differential pressure between high and low when the open / close valve is opened and closed.

【図7】実施例4に係る冷凍装置及びチリングユニット
の配管系統及び信号経路を示す図である。
FIG. 7 is a diagram showing a piping system and a signal path of a refrigeration system and a chilling unit according to a fourth embodiment.

【図8】実施例5に係る冷凍装置及びチリングユニット
の配管系統及び信号経路を示す図である。
FIG. 8 is a diagram showing a piping system and a signal path of a refrigeration system and a chilling unit according to a fifth embodiment.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 主減圧機構(主キャピラリチュ―ブ) 4 蒸発器 6 冷媒回路 7 ホットガスバイパス路 8 容量調節機構 9 容量切換機構 20 コントローラ(容量制御手段) 21 切換回路(切換手段) 22 設定回路(設定手段) HP 高圧圧力センサ(高圧検出手段) HLP 差圧スイッチ(差圧検出手段) Tha 外気温度センサ(熱媒体温度検出手段) 1 Compressor 2 Condenser 3 Main decompression mechanism (main capillary tube) 4 Evaporator 6 Refrigerant circuit 7 Hot gas bypass passage 8 Capacity adjustment mechanism 9 Capacity switching mechanism 20 Controller (capacity control means) 21 Switching circuit (switching means) 22 Setting circuit (setting means) HP High pressure sensor (high pressure detection means) HLP Differential pressure switch (differential pressure detection means) Tha Outside air temperature sensor (heat medium temperature detection means)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(1)、凝縮器(2)、主減圧機
構(3)及び蒸発器(4)を順次接続してなる冷媒回路
(6)を備えた冷凍装置において、 上記冷媒回路(6)の吐出管と主減圧機構(3)−蒸発
器(4)間の液管とをバイパス接続するホットガスバイ
パス路(7)と、該ホットガスバイパス路(7)に介設
され、減圧機構(Cn)(n=1,2,…)とこれに直
列接続される開閉弁(Rn)とからなる複数の組を互い
に並列に接続してなる減圧度調節機構(8)と、利用側
熱交換器となる蒸発器(4)側の要求能力に応じて、上
記減圧度調節機構(8)の各開閉弁(Rn)を個別に開
き、圧縮機(1)の容量を複数のステップに制御する容
量制御手段(20)とを備えるとともに、 熱源側熱交換器となる凝縮器(2)の熱源側熱媒体の温
度を検出する熱媒体温度検出手段(Tha)と、該熱媒体
温度検出手段(Tha)の出力を受け、熱源側熱媒体の温
度が一定温度以下になったときには、各ステップにおけ
るホットガスバイパス量を増大させるように上記容量制
御手段(20)により開かれる開閉弁(Rn)を切換え
る切換手段(21A)とを備えたことを特徴とする冷凍
装置の運転制御装置。
1. A refrigeration system comprising a refrigerant circuit (6) in which a compressor (1), a condenser (2), a main decompression mechanism (3) and an evaporator (4) are sequentially connected to each other. A hot gas bypass passage (7) for bypass-connecting the discharge pipe of (6) and the liquid pipe between the main decompression mechanism (3) and the evaporator (4), and the hot gas bypass passage (7), A decompression degree adjusting mechanism (8) in which a plurality of groups of a decompression mechanism (Cn) (n = 1, 2, ...) And an on-off valve (Rn) connected in series to the decompression mechanism are connected in parallel to each other. Each opening / closing valve (Rn) of the pressure reduction degree adjusting mechanism (8) is individually opened according to the required capacity on the side of the evaporator (4) serving as a side heat exchanger, and the capacity of the compressor (1) is set in a plurality of steps. A heat source side heat medium of a condenser (2) which is a heat source side heat exchanger. When the temperature of the heat medium temperature detecting means (Tha) for detecting the temperature and the output of the heat medium temperature detecting means (Tha) is received and the temperature of the heat medium on the heat source side becomes below a certain temperature, the hot gas bypass amount in each step And a switching means (21A) for switching the on-off valve (Rn) opened by the capacity control means (20) so as to increase the temperature.
【請求項2】 圧縮機(1)、凝縮器(2)、主減圧機
構(3)及び蒸発器(4)を順次接続してなる冷媒回路
(6)を備えた冷凍装置において、 上記冷媒回路(6)の吐出管と主減圧機構(3)−蒸発
器(4)間の液管とをバイパス接続するホットガスバイ
パス路(7)と、該ホットガスバイパス路(7)に介設
され、減圧機構(Cn)(n=1,2,…)とこれに直
列接続される開閉弁(Rn)とからなる複数の組を互い
に並列に接続してなる減圧度調節機構(8)と、利用側
熱交換器となる蒸発器(4)側の要求能力に応じ、上記
減圧度調節機構(8)の各開閉弁(Rn)を個別に開い
て圧縮機(1)の容量を複数のステップに制御する容量
制御手段(20)とを備えるとともに、 高圧側圧力を検出する高圧検出手段(HP )と、該高圧
検出手段(HP)の出力を受け、高圧側圧力が一定圧力
以下になったときには、各ステップにおけるホットガス
バイパス量を増大させるように上記容量制御手段(2
0)により開かれる開閉弁(Rn)を切換える切換手段
(21B)とを備えたことを特徴とする冷凍装置の運転
制御装置。
2. A refrigeration system comprising a refrigerant circuit (6) in which a compressor (1), a condenser (2), a main decompression mechanism (3) and an evaporator (4) are sequentially connected, the refrigeration circuit comprising: A hot gas bypass passage (7) for bypass-connecting the discharge pipe of (6) and the liquid pipe between the main decompression mechanism (3) and the evaporator (4), and the hot gas bypass passage (7), A decompression degree adjusting mechanism (8) in which a plurality of groups of a decompression mechanism (Cn) (n = 1, 2, ...) And an on-off valve (Rn) connected in series to the decompression mechanism are connected in parallel to each other. Depending on the required capacity on the side of the evaporator (4) serving as a side heat exchanger, each opening / closing valve (Rn) of the above-mentioned pressure reduction degree adjusting mechanism (8) is individually opened to set the capacity of the compressor (1) to a plurality of steps. A high-pressure detecting means (HP) for detecting the high-pressure side pressure, and a high-capacity detecting means (HP) Receiving the output of the detection means (HP), when the high side pressure is below a predetermined pressure, the capacity control means to increase the hot gas bypass amount in each step (2
0) An operation control device for a refrigerating machine, comprising: a switching means (21B) for switching an on-off valve (Rn) opened by 0).
【請求項3】 圧縮機(1)、凝縮器(2)、主減圧機
構(3)及び蒸発器(4)を順次接続してなる冷媒回路
(6)を備えた冷凍装置において、 上記冷媒回路(6)の吐出管と主減圧機構(3)−蒸発
器(4)間の液管とをバイパス接続するホットガスバイ
パス路(7)と、該ホットガスバイパス路(7)に介設
され、減圧機構(Cn)(n=1,2,…)とこれに直
列接続される開閉弁(Rn)とからなる複数の組を互い
に並列に接続してなる減圧度調節機構(8)と、利用側
熱交換器となる蒸発器(4)側の要求能力に応じ、上記
各減圧度調節機構(8)の開閉弁(Rn)を個別に開い
て圧縮機(1)の容量を複数のステップに制御する容量
制御手段(20)とを備えるとともに、 上記ホットガスバイパス路(7)内で上記減圧度調節機
構(8)に対して直列に接続され、互いに並列に接続さ
れる開閉弁(R0)と減圧機構(C0)とからなる減圧
度切換機構(9)と、上記冷媒回路(6)の高圧側圧力
と低圧側圧力との差圧が一定値以下のときを検出する差
圧検出手段(HLP) と、該差圧検出手段(HLP)の出力
を受け、差圧が一定値よりも低いときには上記減圧度切
換機構(9)の開閉弁(R0)を開く一方、差圧が一定
値以上になると、上記減圧度切換機構(9)の開閉弁
(R0)を閉じるよう切換える切換手段(21C)とを
備えたことを特徴とする冷凍装置の運転制御装置。
3. A refrigeration system comprising a refrigerant circuit (6) in which a compressor (1), a condenser (2), a main decompression mechanism (3) and an evaporator (4) are sequentially connected, the refrigeration circuit comprising: A hot gas bypass passage (7) for bypass-connecting the discharge pipe of (6) and the liquid pipe between the main decompression mechanism (3) and the evaporator (4), and the hot gas bypass passage (7), A decompression degree adjusting mechanism (8) in which a plurality of groups of a decompression mechanism (Cn) (n = 1, 2, ...) And an on-off valve (Rn) connected in series to the decompression mechanism are connected in parallel to each other. Depending on the required capacity on the side of the evaporator (4) serving as the side heat exchanger, the on-off valves (Rn) of the pressure reduction degree adjusting mechanisms (8) are individually opened to set the capacity of the compressor (1) to a plurality of steps. And a capacity control means (20) for controlling, and adjusting the degree of pressure reduction in the hot gas bypass passage (7). Decompression degree switching mechanism (9) consisting of an on-off valve (R0) and decompression mechanism (C0) connected in series to the structure (8) and connected in parallel, and the high pressure side of the refrigerant circuit (6). The differential pressure detecting means (HLP) for detecting when the differential pressure between the pressure and the low-pressure side pressure is below a certain value, and the output of the differential pressure detecting means (HLP). A switching means (21C) for switching the opening / closing valve (R0) of the pressure reduction degree switching mechanism (9) while closing the opening / closing valve (R0) of the pressure reduction degree switching mechanism (9) when the differential pressure exceeds a certain value. An operation control device for a refrigeration system, comprising:
【請求項4】 圧縮機(1)、凝縮器(2)、主減圧機
構(3)及び蒸発器(4)を順次接続してなる冷媒回路
(6)を備えた冷凍装置において、 上記冷媒回路(6)の吐出管と主減圧機構(3)−蒸発
器(4)間の液管とをバイパス接続するホットガスバイ
パス路(7)と、該ホットガスバイパス路(7)に介設
され、減圧機構(Cn)(n=1,2,…)とこれに直
列接続される開閉弁(Rn)とからなる複数の組を互い
に並列に接続してなる減圧度調節機構(8)と、利用側
熱交換器となる蒸発器(4)側の要求能力に応じ、上記
各減圧度調節機構(8)の開閉弁(Rn)を個別に開い
て圧縮機(1)の容量を複数のステップに制御する容量
制御手段(20)とを備えるとともに、 上記ホットガスバイパス路(7)内で上記減圧度調節機
構(8)に対して直列に接続され、互いに並列に接続さ
れる開閉弁(R0)と減圧機構(C0)とからなる減圧
度切換機構(9)と、上記凝縮器(2)の熱源側熱媒体
の温度を検出する熱媒体温度検出手段(Tha)と、上記
蒸発器(4)の冷却対象となる利用側熱媒体の出口温度
の制御目標値を設定する設定手段(22)と、上記熱媒
体温度検出手段(Tha)の出力を受け、常時は上記減圧
度切換機構(9)の開閉弁(R0)を開く一方、熱源側
熱媒体の温度が一定温度以上で、かつ上記設定手段(2
2)で設定される利用側熱媒体の出口温度の制御目標温
度が所定温度以下のときには上記減圧度切換機構(9)
の開閉弁(R0)を閉じるよう切換える切換手段(21
D)とを備えたことを特徴とする冷凍装置の運転制御装
置。
4. A refrigeration system provided with a refrigerant circuit (6) in which a compressor (1), a condenser (2), a main decompression mechanism (3) and an evaporator (4) are sequentially connected, wherein A hot gas bypass passage (7) for bypass-connecting the discharge pipe of (6) and the liquid pipe between the main decompression mechanism (3) and the evaporator (4), and the hot gas bypass passage (7), A decompression degree adjusting mechanism (8) in which a plurality of groups of a decompression mechanism (Cn) (n = 1, 2, ...) And an on-off valve (Rn) connected in series to the decompression mechanism are connected in parallel to each other. Depending on the required capacity on the side of the evaporator (4) serving as the side heat exchanger, the on-off valves (Rn) of the pressure reduction degree adjusting mechanisms (8) are individually opened to set the capacity of the compressor (1) to a plurality of steps. And a capacity control means (20) for controlling, and adjusting the degree of pressure reduction in the hot gas bypass passage (7). A pressure reduction degree switching mechanism (9) including an on-off valve (R0) and a pressure reduction mechanism (C0) connected in series to the structure (8) and connected in parallel to each other, and a heat source side of the condenser (2). Heat medium temperature detecting means (Tha) for detecting the temperature of the heat medium, setting means (22) for setting a control target value of the outlet temperature of the use side heat medium to be cooled by the evaporator (4), and While receiving the output of the heat medium temperature detecting means (Tha), the opening / closing valve (R0) of the decompression degree switching mechanism (9) is normally opened, while the temperature of the heat medium on the heat source side is equal to or higher than a certain temperature and the setting means ( Two
When the control target temperature of the outlet temperature of the heat medium on the use side set in 2) is equal to or lower than a predetermined temperature, the decompression degree switching mechanism (9)
Switching means (21) for switching to close the on-off valve (R0) of
D) and an operation control device for a refrigerating apparatus.
【請求項5】圧縮機(1)、凝縮器(2)、主減圧機構
(3)及び蒸発器(4)を順次接続してなる冷媒回路
(6)を備えた冷凍装置において、 上記冷媒回路(6)の吐出管と主減圧機構(3)−蒸発
器(4)間の液管とをバイパス接続するホットガスバイ
パス路(7)と、該ホットガスバイパス路(7)に介設
され、減圧機構(Cn)(n=1,2,…)とこれに直
列接続される開閉弁(Rn)とからなる複数の組を互い
に並列に接続してなる減圧度調節機構(8)と、利用側
熱交換器となる蒸発器(4)側の要求能力に応じ、上記
各減圧度調節機構(8)の開閉弁(Rn)を個別に開い
て圧縮機(1)の容量を複数のステップに制御する容量
制御手段(20)とを備えるとともに、 上記ホットガスバイパス路(7)内で上記減圧度調節機
構(8)に対して直列に接続され、互いに並列に接続さ
れる開閉弁(R0)と減圧機構(C0)とからなる減圧
度切換機構(9)と、上記冷媒回路(6)の高圧側圧力
を検出する高圧検出手段(HP )と、該高圧検出手段
(HP )の出力を受け、高圧側圧力が一定値よりも低い
ときには上記減圧度切換機構(9)の開閉弁(R0)を
開く一方、高圧側圧力が一定値以上のときには、上記減
圧度切換機構(9)の開閉弁(R0)を閉じるよう切換
える切換手段(21E)とを備えたことを特徴とする冷
凍装置の運転制御装置。
5. A refrigeration system provided with a refrigerant circuit (6) in which a compressor (1), a condenser (2), a main decompression mechanism (3) and an evaporator (4) are sequentially connected, wherein A hot gas bypass passage (7) for bypass-connecting the discharge pipe of (6) and the liquid pipe between the main decompression mechanism (3) and the evaporator (4), and the hot gas bypass passage (7), A decompression degree adjusting mechanism (8) in which a plurality of groups of a decompression mechanism (Cn) (n = 1, 2, ...) And an on-off valve (Rn) connected in series to the decompression mechanism are connected in parallel to each other. Depending on the required capacity on the side of the evaporator (4) serving as the side heat exchanger, the on-off valves (Rn) of the pressure reduction degree adjusting mechanisms (8) are individually opened to set the capacity of the compressor (1) to a plurality of steps. And a capacity control means (20) for controlling, and adjusting the degree of pressure reduction in the hot gas bypass passage (7). Decompression degree switching mechanism (9) consisting of an on-off valve (R0) and decompression mechanism (C0) connected in series to the structure (8) and connected in parallel, and the high pressure side of the refrigerant circuit (6). The high pressure detecting means (HP) for detecting the pressure and the output of the high pressure detecting means (HP) are received, and when the high pressure side pressure is lower than a certain value, the opening / closing valve (R0) of the pressure reducing degree switching mechanism (9) is opened. On the other hand, when the high-pressure side pressure is equal to or higher than a certain value, there is provided a switching means (21E) for switching the opening / closing valve (R0) of the decompression degree switching mechanism (9) so as to be closed. ..
JP23188291A 1991-09-11 1991-09-11 Refrigeration equipment capacity control device Expired - Fee Related JP2630128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23188291A JP2630128B2 (en) 1991-09-11 1991-09-11 Refrigeration equipment capacity control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23188291A JP2630128B2 (en) 1991-09-11 1991-09-11 Refrigeration equipment capacity control device

Publications (2)

Publication Number Publication Date
JPH0571807A true JPH0571807A (en) 1993-03-23
JP2630128B2 JP2630128B2 (en) 1997-07-16

Family

ID=16930508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23188291A Expired - Fee Related JP2630128B2 (en) 1991-09-11 1991-09-11 Refrigeration equipment capacity control device

Country Status (1)

Country Link
JP (1) JP2630128B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132818A (en) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd Control method for refrigerating cycle device, and refrigerating cycle device using the same
JP2007017095A (en) * 2005-07-08 2007-01-25 Mitsubishi Heavy Ind Ltd Refrigeration unit
JP2022134359A (en) * 2021-03-03 2022-09-15 ダイキン工業株式会社 heat exchange unit
CN115164428A (en) * 2022-07-07 2022-10-11 四川长虹空调有限公司 Air-cooled chiller system and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132818A (en) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd Control method for refrigerating cycle device, and refrigerating cycle device using the same
JP2007017095A (en) * 2005-07-08 2007-01-25 Mitsubishi Heavy Ind Ltd Refrigeration unit
JP2022134359A (en) * 2021-03-03 2022-09-15 ダイキン工業株式会社 heat exchange unit
CN115164428A (en) * 2022-07-07 2022-10-11 四川长虹空调有限公司 Air-cooled chiller system and control method thereof

Also Published As

Publication number Publication date
JP2630128B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
US5467604A (en) Multiroom air conditioner and driving method therefor
JPH09310927A (en) Device for controlling refrigerant of air conditioner
JPH09119736A (en) Multi-chamber type cooling and heating apparatus and operating method therefor
US11187447B2 (en) Refrigeration cycle apparatus
US7578137B2 (en) Air-conditioning system with multiple indoor and outdoor units and control system therefor
JP2023503192A (en) air conditioner
JP2008190758A (en) Air conditioner
CN114151935A (en) Air conditioning system
JPH11173628A (en) Air conditioner
JP2630128B2 (en) Refrigeration equipment capacity control device
JP2001272149A (en) Show case cooling device
JP2760500B2 (en) Multi-room air conditioner
JPH08226721A (en) Operation controller for air conditioning equipment for multiple room
JPH05215437A (en) Multi-chamber type air conditioner
JP3021987B2 (en) Refrigeration equipment
JP3661014B2 (en) Refrigeration equipment
JPH05332637A (en) Air conditioner
JP2765970B2 (en) Air conditioner
JPH0682113A (en) Multi-room air-conditioning apparatus
JP2508306B2 (en) Operation control device for air conditioner
JP3059886B2 (en) Refrigeration equipment
JP2522371B2 (en) Air conditioner
JP2002013777A (en) Air conditioner
JPH0350466A (en) Air conditioner
JP2024036963A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees