JPH0571659B2 - - Google Patents
Info
- Publication number
- JPH0571659B2 JPH0571659B2 JP25114284A JP25114284A JPH0571659B2 JP H0571659 B2 JPH0571659 B2 JP H0571659B2 JP 25114284 A JP25114284 A JP 25114284A JP 25114284 A JP25114284 A JP 25114284A JP H0571659 B2 JPH0571659 B2 JP H0571659B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor bronze
- processing
- hot
- present
- working
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000906 Bronze Inorganic materials 0.000 claims description 21
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 21
- 239000010974 bronze Substances 0.000 claims description 21
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 11
- 238000005098 hot rolling Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005482 strain hardening Methods 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Description
〔産業上の利用分野〕
本発明はりん青銅の加工方法の改良に関するも
のであり、特に熱間加工を可能にして製造工程の
合理化を図つたものである。
〔従来の技術〕
一般にSn3〜12wt%、P0.01〜0.5wt%、残部
Cuからなる合金はりん青銅とよばれ、優れた強
度と、他の非鉄ばね材料に比して優れたばね鉄性
を有するため電気磁器及び電子機器の部品として
広く使用されている。然しながらりん青銅を加工
するにおいて熱間加工性が悪いため専ら冷間加工
のみで加工されているため必然的にその製品はコ
ストアツプになつている。
即ちりん青銅の鋳塊を熱間圧延すると圧延板の
表面に大きな亀裂を生じその後の圧延加工を不可
能にする。従つて従来は冷間圧延のみで加工を行
つているものである。又りん青銅は加工硬化が大
きいため中間焼鈍を多数回行う必要があり、これ
が製品の工程を複雑化してコストアツプに著しい
影響を及ぼしているものである。
〔発明が解決しようとする問題点〕
本発明はかかる現状に鑑み鋭意研究を行つた結
果、りん青銅の加工方法としてりん青銅の鋳塊を
熱間加工により圧延するも冷間加工の場合に比し
て何等遜色のない表面状態即ち何等割れを発生し
ない製品をうる加工方法を開発したものである。
〔問題点を解決するための手段〕
本発明方法はSn3〜12wt%、P0.01〜0.5wt%、
残部Cuからなるりん青銅の鋳塊を加工率10〜30
%にて熱間加工を行つた後、冷却し再度加熱して
熱間加工を施すことを特徴とするものである。
即ちりん青銅の鋳塊について種々の加工率にて
熱間加工例えば熱間圧延を行つたところ、1回目
の熱間圧延率を10〜30%の範囲により行い、一旦
冷却した後再度加熱することにより通常の銅合金
にて行われている90〜95%程度の熱間圧延を行つ
ても何等亀裂を生じないことを見出したものであ
る。
本発明方法は第1回目の熱間加工を10〜30%の
加工率にて行うことが極めて重要であり、この加
工率を10〜30%に限定した理由は、10%未満にて
行つた場合には、加工が不十分なため熱間加工後
の冷却過程及び再熱過程において微細な再結晶粒
が充分に生成せず更に熱間加工を行わんとすると
表面に亀裂を生ずるためである。又30%を超えた
場合には圧延板の表面に亀裂を生じ2回目の熱間
加工時にこれが大きな亀裂に成長するためであ
る。
なお熱間加圧の加熱温度は600〜800℃の範囲に
て行うことが望ましく、600℃未満では十分に加
工することが出来ず、800℃を超えた場合には、
加熱に余分なエネルギーを要し、経済的でないた
めである。
又本発明方法において熱間加工後、冷却するも
のがあるが、その温度は常温附近まで冷却するこ
とが必要である。
〔作用〕
本発明方法はりん青銅の加工方法において熱間
加工により行いうるため従来の冷間加工に対し変
形抵抗を極めて小さくして加工を行うことが出来
る。即ちりん青銅は硬質な銅合金であるため冷間
加工による場合には前記の如く中間焼鈍にて加工
し莫大な動力並に特種な工具を必要とするもので
あるが、熱間加工を行うことにより上記の中間焼
鈍を行うことなく、動力費は低減し且つ通常の工
具により加工することが出来る。
〔実施例〕
高周波溶解炉により銅を溶解し、これにSnを
添加した後、Pで脱酸し連続水冷鋳造により鋳造
を行つて、第1表に示す組成からなるりん青銅鋳
塊(厚さ100mm、巾250mm、300Kg/1チヤージ)
を作製した。この鋳塊を600°〜750℃の範囲で加
熱し、種々の加工率にて熱間圧延を行い、常温に
冷却せしめた後、再度600°〜750℃の範囲で加熱
を行つて厚さ10mm及び5mmまで熱間圧延を行つて
本発明りん青銅板をえた。
なお本発明りん青銅板と比較するために、上記
のりん青銅鋳塊を第1表に示す如く本発明方法以
外の条件にて圧延を行つて比較例りん青銅板をえ
た。
斯くして得た本発明りん青銅板及び比較例りん
青銅板について、その表面のわれ発生の有無を試
験した。その結果は第1表に示す通りである。
[Industrial Field of Application] The present invention relates to an improvement in a method for processing phosphor bronze, and in particular, to rationalize the manufacturing process by making hot processing possible. [Conventional technology] Generally Sn3~12wt%, P0.01~0.5wt%, balance
An alloy made of Cu is called phosphor bronze, and it is widely used as parts of electric ceramics and electronic devices because it has excellent strength and spring ferrous properties compared to other non-ferrous spring materials. However, since phosphor bronze has poor hot workability, it is processed exclusively by cold working, which inevitably increases the cost of the product. That is, when a phosphor bronze ingot is hot-rolled, large cracks occur on the surface of the rolled plate, making subsequent rolling impossible. Therefore, conventionally, processing has been carried out only by cold rolling. Furthermore, since phosphor bronze is highly work hardened, it is necessary to perform intermediate annealing many times, which complicates the manufacturing process and significantly increases costs. [Problems to be Solved by the Invention] The present invention has been made as a result of intensive research in view of the current situation.As a processing method for phosphor bronze, a phosphor bronze ingot is rolled by hot working, but compared to the case of cold working. We have developed a processing method that yields a product with a surface condition that is comparable to that of the previous one, that is, without any cracks. [Means for solving the problems] The method of the present invention uses Sn3 to 12wt%, P0.01 to 0.5wt%,
Processing rate of 10 to 30 for phosphor bronze ingots with remainder Cu
%, then cooled, heated again, and hot worked. That is, when a phosphor bronze ingot is subjected to hot working, for example, hot rolling, at various working rates, the first hot rolling rate is in the range of 10 to 30%, and then once cooled, it is heated again. It was discovered that no cracks were formed even when the copper alloy was subjected to about 90 to 95% hot rolling, which is the method used for ordinary copper alloys. In the method of the present invention, it is extremely important to perform the first hot working at a processing rate of 10 to 30%, and the reason for limiting this processing rate to 10 to 30% is that In some cases, insufficient processing results in insufficient formation of fine recrystallized grains during the cooling and reheating processes after hot processing, resulting in cracks on the surface when further hot processing is attempted. . Moreover, if it exceeds 30%, cracks will occur on the surface of the rolled plate, which will grow into large cracks during the second hot working. It is preferable that the heating temperature for hot pressing be in the range of 600 to 800℃; if it is less than 600℃, sufficient processing cannot be achieved, and if it exceeds 800℃,
This is because heating requires extra energy and is not economical. In some methods of the present invention, cooling is performed after hot working, but the temperature must be cooled to around room temperature. [Function] Since the method of the present invention can be carried out by hot working in a phosphor bronze processing method, processing can be carried out with extremely low deformation resistance compared to conventional cold working. In other words, since phosphor bronze is a hard copper alloy, cold working requires intermediate annealing as described above, which requires a huge amount of power and special tools, but hot working is not possible. Therefore, the power cost can be reduced and processing can be performed using ordinary tools without performing the above-mentioned intermediate annealing. [Example] After melting copper in a high-frequency melting furnace and adding Sn to it, deoxidizing it with P and casting by continuous water cooling casting, a phosphor bronze ingot (thickness: 100mm, width 250mm, 300Kg/1 charge)
was created. This ingot was heated in the range of 600° to 750°C, hot rolled at various processing rates, cooled to room temperature, and then heated again in the range of 600° to 750°C to a thickness of 10 mm. Then, hot rolling was performed to a thickness of 5 mm to obtain a phosphor bronze plate of the present invention. In order to compare with the phosphor bronze plate of the present invention, the above phosphor bronze ingot was rolled under conditions other than the method of the present invention as shown in Table 1 to obtain a comparative phosphor bronze plate. The thus obtained phosphor bronze plates of the present invention and comparative phosphor bronze plates were tested for the presence or absence of cracks on their surfaces. The results are shown in Table 1.
【表】【table】
以上詳述した如く本発明方法によれば製造工程
を短縮しうると共に製造コストを著しく低減しう
る等工業的に極めて有用である。
As detailed above, the method of the present invention is extremely useful industrially, as it can shorten the manufacturing process and significantly reduce manufacturing costs.
Claims (1)
らなるりん青銅の鋳塊を加工率10〜30%にて熱間
加工を行つた後、冷却し再度加熱して熱間加工を
施すことを特徴とするりん青銅の加工方法。 2 熱間加工温度を600°〜800℃の範囲にて行う
ことを特徴とする特許請求の範囲第1項記載のり
ん青銅の加工方法。[Claims] 1. A phosphor bronze ingot consisting of 3 to 12 wt% Sn, 0.01 to 0.5 wt% P, and the balance Cu is hot worked at a processing rate of 10 to 30%, then cooled and heated again. A method of processing phosphor bronze characterized by subjecting it to hot working. 2. The method for processing phosphor bronze according to claim 1, characterized in that hot working is carried out at a temperature in the range of 600° to 800°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25114284A JPS61130478A (en) | 1984-11-28 | 1984-11-28 | Method for working phosphor bronze |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25114284A JPS61130478A (en) | 1984-11-28 | 1984-11-28 | Method for working phosphor bronze |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61130478A JPS61130478A (en) | 1986-06-18 |
JPH0571659B2 true JPH0571659B2 (en) | 1993-10-07 |
Family
ID=17218295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25114284A Granted JPS61130478A (en) | 1984-11-28 | 1984-11-28 | Method for working phosphor bronze |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61130478A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3999676B2 (en) | 2003-01-22 | 2007-10-31 | Dowaホールディングス株式会社 | Copper-based alloy and method for producing the same |
ES2697748T3 (en) * | 2013-03-15 | 2019-01-28 | Materion Corp | Procedure to produce a uniform grain size in a hot worked spinodal alloy |
-
1984
- 1984-11-28 JP JP25114284A patent/JPS61130478A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61130478A (en) | 1986-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3522112A (en) | Process for treating copper base alloy | |
CN105861935B (en) | Excellent Fe 36Ni invar alloy materials of a kind of thermoplasticity and preparation method thereof | |
EP0202336B1 (en) | Process for producing a thin plate of a high ferrosilicon alloy | |
US2859143A (en) | Ferritic aluminum-iron base alloys and method of producing same | |
JPH0790520A (en) | Production of high-strength cu alloy sheet bar | |
JPS5893860A (en) | Manufacture of high strength copper alloy with high electric conductivity | |
CN116005078B (en) | Manufacturing method of lamellar heterogeneous structure high-strength steel | |
JPH0571659B2 (en) | ||
JP2738130B2 (en) | High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same | |
JPS623232B2 (en) | ||
JPH0424420B2 (en) | ||
JPH0243811B2 (en) | RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO | |
US3376171A (en) | Copper alloy | |
JPS61143564A (en) | Manufacture of high strength and highly conductive copper base alloy | |
JP2530657B2 (en) | Copper alloy and method for producing the same | |
KR102633119B1 (en) | Aluminum-copper Composite and Manufacturing Method of the Same | |
JPH04210438A (en) | Continuous casting mold material made of high strength cu alloy | |
JP3872753B2 (en) | Aluminum alloy for hole expansion processing and manufacturing method | |
JPH02111850A (en) | Manufacture of copper alloy for lead frame | |
JPH02111828A (en) | Manufacture of copper alloy for lead frame | |
JPS58221603A (en) | Method for preventing cracking in hot rolling of extra- low carbon steel | |
JPH0413421B2 (en) | ||
JPH0336246A (en) | Production of phosphor bronze alloy | |
JPH0243350A (en) | Production of precipitation-hardening type copper alloy | |
JPH046233A (en) | Continuous casting mold material made of cu alloy having high cooling power and its manufacture |