[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0569132B2 - - Google Patents

Info

Publication number
JPH0569132B2
JPH0569132B2 JP60098398A JP9839885A JPH0569132B2 JP H0569132 B2 JPH0569132 B2 JP H0569132B2 JP 60098398 A JP60098398 A JP 60098398A JP 9839885 A JP9839885 A JP 9839885A JP H0569132 B2 JPH0569132 B2 JP H0569132B2
Authority
JP
Japan
Prior art keywords
weight
ethylene
copolymer
parts
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60098398A
Other languages
Japanese (ja)
Other versions
JPS61255951A (en
Inventor
Shigeki Yokoyama
Masaji Sunada
Satoshi Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP9839885A priority Critical patent/JPS61255951A/en
Publication of JPS61255951A publication Critical patent/JPS61255951A/en
Publication of JPH0569132B2 publication Critical patent/JPH0569132B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明は特定範囲のエチレン−α−オレフイン
共重合体を基体とし、可撓性を有し、耐熱性、機
械的特性および電気的特性のすぐれる難燃性エチ
レン系重合体組成物に関する。 (ロ) 従来技術 ポリエチレンは物理的性質および化学的性質に
すぐれるところから押出成形、射出成形、回転成
形等の種々の成形法で、フイルム、シート、パイ
プ、容器等に成形され、家庭用、工業用としての
多くの用途に用いられる最も需要の多い汎用樹脂
である。 上記ポリエチレンは易燃性であるため、難燃化
するための方法が従来から種々提案されている。 その最も一般的な方法は、該ポリエチレンにハ
ロゲンまたはリン等を含有する難燃剤を添加する
ことにより難燃化することができる。その難燃化
の度合は添加する難燃剤の添加量とともに増加す
る。しかしながら、その添加量の増加は、一方で
は機械的強度、加工性等の低下をもたらすばかり
でなく、可撓性、耐寒性等を著しく損う欠点を有
している。また、これら従来の難燃性組成物は、
防災上の見地から、より高度に難燃化することが
要求され、又一部にはそれが義務づけられるよう
な傾向にある昨今において、燃焼時に有害ガスの
発生がなく、低煙性で無公害型の難燃剤として、
水酸化マグネシウム、水酸化アルミニウム等の無
機系難燃剤は、そのニーズに合致し、急速に需要
を高めつつある(例えばそれらの技術としては、
特開昭51−132254号、同56−136832号、同60−
13832号公報等がある)。 しかるに、従来、市販されているポリエチレン
においては、無機系難燃剤の受容性が悪く、難燃
効果が低い。また、充填量を高めると、機械的強
度や可撓性、加工性等が低下し、実用に供し得な
いという欠点を有している。一方、上記無機系難
燃剤の充填率を高めるためにエチレン−酢酸ビニ
ル共重合体、あるいは塩素化ポリエチレン、エチ
レン−プロピレン共重合体ゴム等の軟質性樹脂を
用いる例がよく知られるところであるが、機械的
強度や耐熱性、耐油性等の点で劣るものとなる。 (ハ) 発明が解決しようとする問題点 本発明は上記の点に鑑み、耐熱性、機械的強
度、低温特性および可撓性等にすぐれる低煙性エ
チレン系重合体組成物を提供するものであり、特
に電気的特性にすぐれるところから、必要に応じ
て架橋し、電線、ケーブル等の絶縁・外被等の電
気材料として供される他、パツキング、シール
材、ホース類、フイルム等の押出成形品、射出成
形品等の成形用途向けや、マスターバツチ等とし
て利用されるものである。 (ニ) 問題点を解決する手段 本発明は (a) 密度が0.86〜0.91g/cm3、沸騰n−ヘキサン
不溶分が10重量%以上で、かつ示差走査熱量測
定で示される最大ピーク温度が100℃以上であ
るエチレン−α−オレフイン共重合体50〜90重
量部、 (b) エチレン50〜95重量%と不飽和カルボン酸も
しくはその誘導耐5〜50重量%との共重合体、
あるいはエチレン50〜95重量%と酢酸ビニル5
〜50重量%との共重合体10〜50重量部、 (c) 密度が0.91〜0.97g/cm3であり、かつ(a)成分
より高い密度のエチレン−α−オレフイン共重
合体0〜40重量部(但し、a+b+cの合計量
が100重量%である)からなる樹脂成分100重量
部に、 (d) 無機難燃剤40〜200重量部 を含有してなる低煙性エチレン重合体組成物を提
供するものである。 本発明の(a)成分であるエチレン−α−オレフイ
ン共重合体とは、エチレンと炭素数3〜12のα−
オレフインの共重合体である。具体的なα−オレ
フインとしては、プロピレン、ブテン−1、4−
メチルペンテン−1、ヘキセン−1、オクテン−
1、デセン−1、ドデセン−1等を挙げることが
できる。これらのうち特に好ましいのは、プロピ
レンとブテン−1である。エチレン−α−オレフ
イン共重合体中のα−オレフイン含量は5〜40モ
ル%であることが好ましい。 以下に、本発明において用いるエチレンとα−
オレフインの共重合体の製造法について説明す
る。 まず使用する触媒系は、マグネシウムおよびチ
タンを含有する固体触媒成分に有機アルミニウム
化合物を組み合わせたもので、該固体触媒成分と
しては、例えば金属マグネシウム、水酸化マグネ
シウム、炭酸マグネシウム、酸化マグネシウム、
塩化マグネシウム等、またケイ素、アルミニウ
ム、カルシウムから選ばれる金属とマグネシウム
原子とを含有する複塩、複酸化物、炭酸塩、塩化
物あるいは水酸化物等、さらにはこれらの無機質
固体化合物を含酸素化合物、含硫黄化合物、芳香
族炭化水素、ハロゲン含有物質で処理または反応
させたもの等のマグネシウムを含む無機質固体化
合物にチタン化合物を公知の方法により担持させ
たものが挙げられる。 上記の含酸素化合物としては、例えば水、アル
コール、フエノール、ケトン、アルデヒド、カル
ボン酸、エステル、ポリシロキサン、酸アミド等
の有機酸素化合物、金属アルコキシド、金属のオ
キシ塩化物等の無機含酸素化合物を例示すること
ができる。含硫黄化合物としては、チオール、チ
オエーテルの如き有機含硫黄化合物、二酸化硫
黄、三酸化硫黄、硫酸の如き無機硫黄化合物を例
示することができる。芳香族炭化水素としては、
ベンゼン、トルエン、キシレン、アントラセン、
フエナンスレンの如き各種単環および多環の芳香
族炭化水素化合物を例示することができる。ハロ
ゲン含有物質としては、塩素、塩化水素、金属塩
化物、有機ハロゲン化物の如き化合物等を例示す
ることができる。 チタン化合物としては、チタンのハロゲン化
物、アルコキシハロゲン化物、アルコキシド、ハ
ロゲン化酸化物等を挙げることができる。チタン
化合物としては4価のチタン化合物と3価のチタ
ン化合物が好適であり、4価のチタン化合物とし
ては具体的には一般式Ti(OR)oX4-o(ここでRは
炭素数1〜20のアルキル基、アリール基またはア
ラルキル基を示し、Xはハロゲン原子を示し、n
は0≦n≦4である)で示されるものが好まし
く、四塩化チタン、四臭化チタン、四ヨウ化チタ
ン、モノメトキシトリクロロチタン、ジメトキシ
ジクロロチタン、トリメトキシモノクロロチタ
ン、テトラメトキシチタン、モノエトキシトリク
ロロチタン、ジエトキシクロロチタン、トリエト
キシモノクロロチタン、テトラエトキシチタン、
モノイソプロポキシトリクロロチタン、ジイソプ
ロポキシジクロロチタン、トリイソプロポキシモ
ノクロロチタン、テトライソプロポキシチタン、
モノブトキシトリクロロチタン、ジブトキシジク
ロロチタン、モノペントキシトリクロロチタン、
モノフエノキシトリクロロチタン、ジフエノキシ
ジクロロチタン、トリフエノキシモノクロロチタ
ン、テトラフエノキシチタン等を挙げることがで
きる。3価のチタン化合物としては、四塩化チタ
ン、四臭化チタン等の四ハロゲン化チタンを水
素、アルミニウム、チタンあるいは周期律表〜
族金属の有機金属化合物により還元して得られ
る三ハロゲン化チタンが挙げられる。また一般式
Ti(OR)nX4-n(ここではRは炭素数1〜20のアル
キル基、アリール基またはアラルキル基を示し、
Xはハロゲン原子を示し、mは0≦m≦4であ
る)で示される4価のハロゲン化アルコキシチタ
ンを周期律表〜族金属の有機金属化合物によ
り還元して得られる3価のチタン化合物が挙げら
れる。 これらのチタン化合物のうち、4価のチタン化
合物が特に好ましい。 他の触媒系の例としては固体触媒成分として、
いわゆるグリニヤール化合物等の有機マグネシウ
ム化合物とチタン化合物との反応生成物を用い、
これに有機アルミニウム化合物を組み合わせた触
媒系を例示することができる。有機マグネシウム
化合物としては、例えば、一般式RMgX、
R2Mg、RMg(OR)等の有機マグネシウム化合
物(ここでRは炭素数1〜20の有機残基、Xはハ
ロゲンを示す)およびこれらのエーテル錯合体、
またこれらの有機マグネシウム化合物を、さらに
他の有機金属化合物、例えば有機ナトリウム、有
機リチウム、有機カリウム、有機ホウ素、有機カ
ルシウム、有機亜鉛等の各種化合物を加えて変性
したものを用いることができる。 また他の触媒系の例としては、固体触媒成分と
して、SiO2、Al2O3等の無機酸化物と前記の少な
くともマグネシウムおよびチタンを含有する固体
触媒成分を接触させて得られる固体物質を用い、
これに有機アルミニウム化合物を組み合わせたも
のを例示することができる。無機酸化物として
は、SiO2、Al2O3の他にCaO、B2O3、SnO2等を
挙げることができ、またこれらの酸化物の複酸化
物も何ら支障なく使用できる。これら各種の無機
酸化物とマグネシウムおよびチタンを含有する固
体触媒成分を接触させる方法としては公知の方法
を採用することができる。すなわち、不活性溶媒
の存在下あるいは不存在下に温度20〜400℃、好
ましくは50〜300℃で通常5分〜20時間反応させ
る方法、共粉砕処理による方法、あるいはこれら
の方法を適宜組み合わせることにより反応させて
もよい。 これらの触媒系において、チタン化合物を有機
カルボン酸エステルとの付加物として使用するこ
ともでき、また前記したマグネシウムを含む無機
固体化合物を有機カルボン酸エステルと接触処理
させたのち使用することもできる。また、有機ア
ルミニウム化合物を有機カルボン酸エステルとの
付加物として使用しても何ら支障がない。さらに
は、あらゆる場合において、有機カルボン酸エス
テルの存在下に調製された触媒系を使用すること
も何ら支障なく実施できる。 ここで有機カルボン酸エステルとしては各種の
脂肪族、脂環族、芳香族カルボン酸エステルが用
いられ、好ましくは炭素数7〜12の芳香族カルボ
ン酸エステルが用いられる。具体的な例としては
安息香酸、アニス酸、トルイル酸のメチル、エチ
ル等のアルキルエステルを挙げることができる。 上記した固定触媒成分と組み合わせるべき有機
アルミニウム化合物の具体的な例としては一般式
R3Al、R2AlX、RAlX2、R2AlOR、RAl(OR)
XおよびR3Al2X3の有機アルミニウム化合物(こ
こでRは炭素数1〜20のアルキル基、アリール基
またはアラルキル基、Xはハロゲン原子を示し、
Rは同一でもまた異なつてもよい)で示される化
合物が好ましく、トリエチルアルミニウム、トリ
イソブチルアルミニウム、トリヘキシルアルミニ
ウム、トリオクチルアルミニウム、ジエチルアル
ミニウムクロリド、ジエチルアルミニウムエトキ
シド、エチルアルミニウムセスキクロリドおよび
これらの混合物等が挙げられる。 有機アルミニウム化合物の使用量は特に制限さ
れないが通常チタン化合物に対して0.1〜1000モ
ル倍使用することができる。 また、前記の触媒系をα−オレフインと接触さ
せたのち重合反応に用いることによつて、その重
合活性を大巾に向上させ、未処理の場合よりも一
層安定に運転することもできる。このとき使用す
るα−オレフインとしては種々のものが使用可能
であるが、好ましくは炭素数3〜12のα−オレフ
インであり、さらに好ましくは炭素数3〜8のα
−オレフインが望ましい。これらのα−オレフイ
ンの例としては、例えばプロピレン、ブテン−
1、ペンテン−1、4−メチルペンテン−1、ヘ
キセン−1、オクテン−1、デセン−1、ドデセ
ン−1等およびこれらの混合物等を挙げることが
できる。触媒系とα−オレフインとの接触時の温
度、時間は広い範囲で選ぶことができ、例えば0
〜200℃、好ましくは0〜110℃で1分〜24時間で
接触処理させることができる。接触させるα−オ
レフインの最も広い範囲で選べるが、通常、前記
固体触媒成分1g当り1〜50000g、好ましくは
5〜30000g程度のα−オレフインで処理し、前
記固体触媒成分1g当り1〜500gのα−オレフ
インを反応させることが望ましい。このとき、接
触時の圧力は任意に選ぶことができるが、通常、
−1〜100Kg/cm2・Gの圧力下に接触させること
が望ましい。α−オレフイン処理の際、使用する
有機アルミニウム化合物を全量、前記固触媒成分
と組み合わせたのちα−オレフインと接触させて
もよいし、また、使用する有機アルミニウム化合
物のうち一部を前記固体触媒成分と組み合わせた
のちα−オレフインと接触させ、残りの有機アル
ミニウム化合物を重合の際に別途添加して重合反
応を行なつてもよい。また、触媒系とα−オレフ
インとの接触時に、水素ガスが共存しても支障な
く、また、窒素、アルゴン、ヘリウム等その他の
不活性ガスが共存しても何ら支障ない。 重合反応は通常のチーグラー型触媒によるオレ
フインの重合反応と同様にして行なわれる。すな
わち反応はすべて実質的に酸素、水素を絶つた状
態で、気相、または不活性溶媒の存在下、または
モノマー自体を溶媒として行なわれる。オレフイ
ンの重合条件は温度は20〜300℃、好ましくは40
〜200℃であり、圧力は常圧ないし70Kg/cm2・G、
好ましくは2Kg/cm2・Gないし60Kg/cm2・Gであ
る。分子量の調節は重合温度、触媒のモル比等の
重合条件を変えることによつてもある程度調節で
きるが、重合系中に水素を添加することにより効
果的に行なわれる。もちろん、水素濃度、重合温
度等の重合条件の異なつた2段階ないしそれ以上
の多段階の重合反応も何ら支障なく実施できる。 この様にして製造される本発明の(a)成分である
エチレン−α−オレフンン共重合体は、 (イ) 密度が0.86〜0.91g/cm3、 (ロ) 沸騰n−ヘキサン不溶分が10重量%以上、 (ハ) 示差走査熱量測定(DSC)で示される最大
ピーク温度(Tm)が100℃以上であることが
肝要である。 上記密度が0.91g/cm3を超える場合には組成物
としての可撓性がなくなる懸念を生じ、密度が
0.86g/cm3未満においては融点が低くなり、耐熱
性の劣るものとなる。 また、エチレン−α−オレフイン共重合体の沸
騰n−ヘキサン不溶分が10重量%未満において
は、非晶質部分や低分子量成分が多くなり、耐油
性および強度の劣るものとなる。 一方、示差走査熱量測定(DSC)の最大ピー
ク温度(Tm)が100℃未満のものはやはり耐熱
性の劣るものとなる。 該エチレン−α−オレフイン共重合体のメルト
インデクツ(以下MIと略す)は0.05〜50g/10
分、好ましくは0.1〜20g/10分の範囲である。 なお、本発明における沸騰n−ヘキサン不溶分
およびDSCの測定方法は次の通りである。 [沸騰n−ヘキサン不溶分の測定法] 熱プレスを用いて、厚さ200μmのシートを成
形し、そこから縦横それぞれ20mm×30mmのシート
を3枚切り取り、それを2重管式ソツクスレー抽
出器を用いて、沸騰n−ヘキサンで5時間抽出を
行なう。n−ヘキサン不溶分を取り出し、真空乾
燥(7時間、真空下、50℃)後、次式により沸騰
n−ヘキサン不溶分を算出する。 沸騰n−ヘキサン不溶分(重量%) =(抽出済シート重量/未抽出シート重量) ×100(重量%) [DSCによる測定法] 熱プレス成形した厚さ100μmのフイルムから
約5mgの試料を秤量し、それをDSC装置にセツ
トし、170℃に昇温してその温度で15min保持し
た後昇温速度2.5℃/分で0℃まで冷却する。次
に、この状態から昇温速度10℃/分で170℃まで
昇温して測定を行なう。0℃から170℃に昇温す
る間に現われたピークの最大の頂点の位置の温度
をもつてTmとする。 本発明で用いるエチレン−α−オレフイン共重
合体は固体触媒成分としてバナジウムを含有する
ものを使用して得られるエチレン−α−オレフイ
ン共重合体とは明確に区別される。 すなわち、従来のエチレンプロピレン共重合体
等はほとんど結晶性を有しておらず、結晶部分が
存在しても極めて微量であり、DSCにより最大
ピーク温度(Tm)も100℃には満たない。 このことは耐熱性や機械的強度等を要求される
用途には用いることができないことを示すもので
ある。 本発明の(b)成分であるエチレンと不飽和カルボ
ン酸もしくはその誘導体との共重合体とは、エチ
レンと不飽和カルボン酸またはそのエステルとの
共重合体、例えば、エチレン−アクリル酸共重合
体、エチレン−メタクリル酸共重合体、エチレン
−アクリル酸エチル共重合体、エチレン−メタク
リル酸共重合体、エチレン−無水マレイン酸共重
合体等、およびそれらの金属塩(例えばアイオノ
マー樹脂等)を包含する。上記不飽和カルボン酸
もしくはその誘導体の含有量は5〜50重量%、好
ましくは10〜40重量%の範囲である。 本発明の他の(b)成分としてエチレンと酢酸ビニ
ルとの共重合体がある。酢酸ビニルの含有量は5
〜50重量%、好ましくは10〜40重量%の範囲であ
る。 これらの中でも特にエチレン−アクリル酸エチ
ル共重合体、アイオノマー樹脂もしくはエチレン
−酢酸ビニル共重合体が好ましい。 上記エチレン−アクリル酸エチル共重合体(以
下単にEEAと略す)はアクリル酸エチル含量が
5〜50重量%、好ましくは10〜30重量%の範囲の
ものが選択される。 本発明の(c)成分であるエチレン−α−オレフイ
ン共重合体には、低、中、高密度のエチレン−α
−オレフイン共重合体が包含されるものであつ
て、密度が0.91〜0.97g/cm3の範囲のもので、か
つ(a)成分の密度よりも常に高い密度のものが用い
られるもので、特に密度が0.91〜0.94g/cm3の範
囲のもの、すなわち、通常、線状低密度ポリエチ
レンと呼ばれているものが、前記(a)および(b)成分
との相溶性が良く、かつ成形加工性および可撓性
等を容易に保持できるという点で好ましい。 上記(c)成分のエチレン−α−オレフイン共重合
体のメルトインデツクスは0.05〜50g/10分、好
ましくは0.1〜20g/10分の範囲から選択される。 本発明の無機難燃剤としては、水酸化アルミニ
ウム、水酸化マグネシウム、水酸化ジルコニウ
ム、塩基性炭酸マグネシウム、ドロマイト、ハイ
ドロタルサイト、水酸化カルシウム、水酸化バリ
ウム、酸化スズの水和物、硼砂等の無機金属化合
物の水和物、ホウ酸亜鉛、メタホウ酸亜鉛、メタ
ホウ酸バリウム、炭酸亜鉛、炭酸マグネシウム−
カルシウム、炭酸カルシウム、炭酸バリウム、酸
化マグネシウム、酸化モリブデン、酸化ジルコニ
ウム、酸化スズ、酸化アンチモン、赤リン等が挙
げられる。これらは1種でも2種以上を併用して
もよい。この中でも特に、水酸化マグネシウム、
水酸化アルミニウム、塩基性炭酸マグネシウム、
ハイドロタルサイトからなる群から選ばれた少な
くとも1種が難燃効果が良く、経済的にも有利で
ある。またこれら難燃剤の粒径は種類によつて異
なるが、水酸化マグネシウム、水酸化アルミニウ
ム等においては平均粒径20μ以下が好ましい。 上記無機難燃剤の量は樹脂100重量部に対して
40〜200重量部、好ましくは70〜150重量部の範囲
である。該難熱剤の量が40重量%未満においては
難燃効果が小さく、200重量部を超えると機械的
強度、伸びが低下し、可撓性が失なわれ、脆くな
り、かつ低温特性も悪化する。 本発明においては上記添加型難燃剤の少なくと
も1種が用いられ、特にハロゲン系難燃剤を用い
る場合においては三酸化アンチモンと併用される
ことが好ましい。また本発明では無機充填材と難
燃剤とを併用することにより、難燃剤の添加量を
減少させることもできるし、他の特性を付与させ
ることもできる。 本発明で用いられる任意成分としての無機充填
材としては、粉粒状、平板状、鱗片状、針状、球
状または中空状および繊維状等が挙げられ、具体
的には、炭酸カルシウム、炭酸マグネシウム、硫
酸カルシウム、珪酸カルシウム、クレー、珪藻
土、タルク、アルミナ、珪砂、ガラス粉、酸化
鉄、金属粉、三酸化アンチモン、グラフアイト、
炭化珪素、窒化珪素、シリカ、窒化ホウ素、窒化
アルミニウム、カーボンブラツクなどの粉粒状充
填材、雲母、ガラス板、セリサイト、パイロフイ
ライト、アルミフレークなどの金属箔、黒煙など
の平板状もしくは鱗片状充填材、シラスバルー
ン、金属バルーン、ガラスバルーン、軽石などの
中空状充填材、ガラス繊維、炭素繊維、グラフア
イト繊維、ウイスカー、金属繊維、シリコンカー
バイド繊維、アスベスト、ウオラストナイトなど
の鉱物繊維などの例を挙げることができる。 これらの添加量は本発明の組成物100重量部に
対して、100重量部程度まで適用される。 上記添加量が100重量部を超えると成形品の衝
撃強度等の機械的強度が低下するので好ましくな
い。 本発明の組成物は、(a)密度が0.86〜0.91g/
cm3、沸騰n−ヘキサン不溶分10重量%以上で、か
つ示差走査熱量測定(DSC)で示される最大ピ
ーク温度(Tm)が100℃以上である特定範囲の
エチレン−α−オレフイン共重合体50〜90重量部
と、(b)エチレン50〜95重量%と不飽和カルボン酸
もしくはその誘導体5〜50重量%との共重合体、
あるいはエチレン50〜95重量%と酢酸ビニル5〜
50重量%との共重合体10〜50重量部、および(c)密
度が0.91〜0.97g/cm3であり、かつ(a)成分より高
い密度のエチレン−α−オレフイン共重合体0〜
40重量部(但し、a+b+cの合計量が100重量
%である。)からなる樹脂成分100重量部に、(d)無
機難燃剤40〜200重量部を含有してなる低煙性の
無公害型の難燃性組成物であり、特定範囲のエチ
レン−α−オレフイン共重合体を基体とするた
め、可撓性を失なわずに、耐熱性を保持すること
ができ、かつ、エチレン−アクリル酸エチル共重
合体等の含酸素樹脂を用いることによつて、難燃
剤を受容量を増大させるとともに、相剰的難燃効
果を高めることができる。 上記(a)成分の配合量は50〜90重量部の範囲であ
ることが肝要である。該配合量が50重量部未満に
おいては耐熱性が低下し、90重量部を超える場合
においては難燃性の相剰効果が乏しくなるので望
ましくない。 またさらに、所望によりc成分を配合すること
により、より一層耐熱性の向上および機械的強度
等の改良がはかれるものである。但し、配合量が
40重量部を超える場合においては、可撓性が失な
われる懸念を生じる。 また、本発明においては、前記無機難燃剤もし
くは無機充填材を使用する場合においては、該無
機材料の表面をステアリン酸、オレイン酸、パル
ミチル酸等の脂肪族またはそれらの金属塩、パラ
フイン、ワツクス、ポリエチレンワツクスまたは
それらの変性物、有機シラン、有機ボラン、有機
チタネート等で被覆するなどの表面処理を施すこ
とが好ましい。 本発明の組成物は、特定範囲のエチレン−α−
オレフイン共重合体と難燃剤、所望により無機充
填材、添加剤等をバンバリーミキサー、加圧ニー
ダー、混練押出機、二軸押出機、ロール等の通例
用いられる混練機により溶融混練し、ペレツト化
等にして、成形品またはマスターバツチ等として
供される他、上記樹脂成分と難燃剤、添加剤等を
ドライブレンドしたものでもよい。 本発明では、他の合成樹脂、酸化防止剤、滑
剤、有機・無機系の各種顔料、紫外線防止剤、分
散剤、銅害防止剤、中和剤、発泡剤、可塑剤、気
泡防止剤、架橋剤、流れ性改良剤、ウエルド強度
改良剤、核剤等の添加剤を本発明の効果を著しく
損わない範囲で添加しても差支えない。 (ホ) 実施例 次に実施例を述べる。 実施例1〜9および比較例1〜6 <使用樹脂> (a) 成分 実質的に無水の塩化マグネシウム、1、2−ジ
クロルエタンおよび四塩化チタンから得られた
固体触媒成分とトリエチルアルミニウムからな
る触媒を用いて、エチレンとプロピレンおよび
ブテン−1との重合を行ない、下記に示される
ような各種(a)成分であるエチレン−α−オレフ
イン共重合体を得た。 (A) エチレン−ブテン−1共重合体 (MI=1.0g/10分、密度=0.905g/cm3) (B) エチレン−ブテン−1共重合体 (MI=0.8g/10分、密度=0.900g/cm3) (C) エチレン−プロピレン共重合体 (MI=0.5g/10分、密度=0.890g/cm3) (b) 成分 (D) エチレン−アクリル酸エチル共重合体 (EA含量15重量%、MI=0.8g/10分) (E) エチレン−アクリル酸エチル共重合体 (EA含量10重量%、MI=0.5g/10分) (F) エチレン−酢酸ビニル共重合体 (VA含量15重量%、MI=0.1g/10分) (c) 成分 (G) エチレン−ブテン−1共重合体 (MI=0.8g/10分、密度=0.935g/cm3) (商品名:日石リニレツクスAM1720、日本
石油化学(株)社製) (H) エチレン−ブテン−1共重合体 (MI=1.0g/10分、密度=0.922g/cm3) (商品名:日石リニレツクスAF2320、日本
石油化学(株)社製) 上記(a)成分、(b)成分および(c)成分の所定量から
なる樹脂成分100重量部に難燃剤として水酸化マ
グネシウム(商品名:キスマ5B、協和化学(株)社
製)所定量を添加し、物性評価した結果を第1表
に示した。 比較例 7〜10 比較例として、本発明の(a)成分の代わりに本発
明の範囲外の下記の市販の樹脂で行なつた結果を
第1表に示した。 (I) エチレン−ブテン−1共重合体 (MI=4.0g/10分、密度=0.887g/cm3) (商品名:タフマーA4085、三井化学(株)社製) (J) エチレン−プロピレン共重合体 (MI=1.9g/10分、密度=0.86g/cm3) (商品名:EP02、日本合成ゴム(株)社製) <試験法> 1 引張強度 厚さ1m/mのシートから3号ダンベルを打
ち抜いた試験片で、テンシロンを用い、引張速
度200mm/分の速度で測定した。 2 耐熱性(加熱変形率) 厚さ6m/m、直径10m/mの円柱を100℃
のオイルバス中で、荷重2.64Kgで加圧し、30分
後の変形率を求めた。 3 難燃性 UL−規格のV−2に基づく。(すなわち、平
均自己消化時間25秒以下、かつ最大消化時間が
30秒以下である。) 4 加工性 ブロー成形機(スクリユー径25m/m〓)を
使用し、内径9m/m〓、外径10m/m〓のダイ
スを使用し、設定温度150℃、スクリユー回転
数50rpmで押出した時の表面状態を目視判定し
た。 5 酸素指数 (O.I)…D.2863−A.S.T.M O.I=酸素流量/酸素流量+窒素流量×100 試料の燃焼時間が3分以上継続して燃焼する
か、燃焼流さが50m/m以上燃え続けるに必要
な最低の酸素濃度。
(a) Industrial application field The present invention is a flame-retardant ethylene that is based on a specific range of ethylene-α-olefin copolymer, has flexibility, and has excellent heat resistance, mechanical properties, and electrical properties. The present invention relates to a polymer composition. (b) Prior art Because polyethylene has excellent physical and chemical properties, it is molded into films, sheets, pipes, containers, etc. using various molding methods such as extrusion molding, injection molding, and rotary molding, and is used for household, It is a general-purpose resin with the highest demand for use in many industrial applications. Since the above-mentioned polyethylene is easily flammable, various methods for making it flame retardant have been proposed. The most common method is to add a flame retardant containing halogen or phosphorus to the polyethylene to make it flame retardant. The degree of flame retardation increases with the amount of flame retardant added. However, an increase in the amount added not only causes a decrease in mechanical strength, workability, etc., but also has the disadvantage of significantly impairing flexibility, cold resistance, etc. In addition, these conventional flame retardant compositions
From the perspective of disaster prevention, there is a trend in recent years to demand, and in some cases even mandate, a higher degree of flame retardancy. As a mold flame retardant,
Inorganic flame retardants such as magnesium hydroxide and aluminum hydroxide meet these needs and are rapidly increasing in demand (for example, their technologies include:
JP-A-51-132254, JP-A No. 56-136832, JP-A No. 60-
(Publication No. 13832, etc.) However, conventionally commercially available polyethylene has poor receptivity to inorganic flame retardants and low flame retardant effects. In addition, when the filling amount is increased, mechanical strength, flexibility, workability, etc. decrease, resulting in a disadvantage that it cannot be put to practical use. On the other hand, it is well known that soft resins such as ethylene-vinyl acetate copolymer, chlorinated polyethylene, and ethylene-propylene copolymer rubber are used to increase the filling rate of the inorganic flame retardant. It becomes inferior in terms of mechanical strength, heat resistance, oil resistance, etc. (c) Problems to be solved by the invention In view of the above points, the present invention provides a low-smoke ethylene polymer composition that has excellent heat resistance, mechanical strength, low-temperature properties, flexibility, etc. Because of its particularly excellent electrical properties, it can be crosslinked as necessary and used as electrical materials such as insulation and sheathing for electric wires and cables, as well as for packing, sealing materials, hoses, films, etc. It is used for molding applications such as extrusion molded products and injection molded products, and as a master batch. (d) Means for Solving Problems The present invention provides (a) a material having a density of 0.86 to 0.91 g/cm 3 , a boiling n-hexane insoluble content of 10% by weight or more, and a maximum peak temperature shown by differential scanning calorimetry. 50 to 90 parts by weight of an ethylene-α-olefin copolymer having a temperature of 100°C or higher; (b) a copolymer of 50 to 95% by weight of ethylene and 5 to 50% by weight of an unsaturated carboxylic acid or its induction resistance;
or ethylene 50-95% by weight and vinyl acetate 5%
10 to 50 parts by weight of a copolymer with ~50% by weight; (c) 0 to 40 parts by weight of an ethylene-α-olefin copolymer having a density of 0.91 to 0.97 g/cm 3 and a higher density than component (a); (d) A low-smoke ethylene polymer composition containing 40 to 200 parts by weight of an inorganic flame retardant to 100 parts by weight of a resin component consisting of parts by weight (however, the total amount of a+b+c is 100% by weight). This is what we provide. The ethylene-α-olefin copolymer which is component (a) of the present invention is composed of ethylene and α-olefin having 3 to 12 carbon atoms.
It is a copolymer of olefin. Specific α-olefins include propylene, butene-1, 4-
Methylpentene-1, hexene-1, octene-1
1, decene-1, dodecene-1, and the like. Particularly preferred among these are propylene and butene-1. The α-olefin content in the ethylene-α-olefin copolymer is preferably 5 to 40 mol%. Below, ethylene used in the present invention and α-
A method for producing an olefin copolymer will be explained. First, the catalyst system used is a combination of a solid catalyst component containing magnesium and titanium with an organoaluminum compound. Examples of the solid catalyst component include magnesium metal, magnesium hydroxide, magnesium carbonate, magnesium oxide,
Oxygen-containing compounds such as magnesium chloride, double salts, double oxides, carbonates, chlorides, or hydroxides containing magnesium atoms and metals selected from silicon, aluminum, and calcium, as well as these inorganic solid compounds Examples include those in which a titanium compound is supported by a known method on an inorganic solid compound containing magnesium, such as one treated or reacted with a sulfur-containing compound, an aromatic hydrocarbon, or a halogen-containing substance. Examples of the above oxygen-containing compounds include organic oxygen-containing compounds such as water, alcohol, phenol, ketone, aldehyde, carboxylic acid, ester, polysiloxane, and acid amide, and inorganic oxygen-containing compounds such as metal alkoxides and metal oxychlorides. I can give an example. Examples of the sulfur-containing compound include organic sulfur-containing compounds such as thiol and thioether, and inorganic sulfur compounds such as sulfur dioxide, sulfur trioxide, and sulfuric acid. As aromatic hydrocarbons,
benzene, toluene, xylene, anthracene,
Examples include various monocyclic and polycyclic aromatic hydrocarbon compounds such as phenanthrene. Examples of the halogen-containing substance include compounds such as chlorine, hydrogen chloride, metal chlorides, and organic halides. Examples of the titanium compound include titanium halides, alkoxy halides, alkoxides, and halogenated oxides. Preferred titanium compounds are tetravalent titanium compounds and trivalent titanium compounds, and specific examples of tetravalent titanium compounds include the general formula Ti(OR) o X 4-o (where R is 1 carbon number) ~20 alkyl, aryl or aralkyl groups, X represents a halogen atom, n
is 0≦n≦4), titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, monomethoxytrichlorotitanium, dimethoxydichlorotitanium, trimethoxymonochlorotitanium, tetramethoxytitanium, monoethoxy trichlorotitanium, diethoxychlorotitanium, triethoxymonochlorotitanium, tetraethoxytitanium,
Monoisopropoxytrichlorotitanium, diisopropoxydichlorotitanium, triisopropoxymonochlorotitanium, tetraisopropoxytitanium,
Monobutoxytrichlorotitanium, dibutoxydichlorotitanium, monopentoxytrichlorotitanium,
Examples include monophenoxytrichlorotitanium, diphenoxydichlorotitanium, triphenoxymonochlorotitanium, and tetraphenoxytitanium. As trivalent titanium compounds, titanium tetrahalides such as titanium tetrachloride and titanium tetrabromide are combined with hydrogen, aluminum, titanium, or the periodic table ~
Examples include titanium trihalides obtained by reduction with organometallic compounds of group metals. Also general formula
Ti(OR ) n
A trivalent titanium compound obtained by reducing a tetravalent halogenated alkoxytitanium represented by Can be mentioned. Among these titanium compounds, tetravalent titanium compounds are particularly preferred. Examples of other catalyst systems include solid catalyst components such as
Using a reaction product of an organomagnesium compound such as a so-called Grignard compound and a titanium compound,
An example of a catalyst system is a combination of this and an organoaluminum compound. Examples of organomagnesium compounds include general formula RMgX,
Organomagnesium compounds such as R 2 Mg and RMg (OR) (where R is an organic residue having 1 to 20 carbon atoms, and X is a halogen) and ether complexes thereof,
Further, these organomagnesium compounds may be modified by adding other organometallic compounds, such as various compounds such as organosodium, organolithium, organopotassium, organoboron, organocalcium, and organozinc. In addition, as an example of another catalyst system, a solid material obtained by contacting an inorganic oxide such as SiO 2 or Al 2 O 3 with a solid catalyst component containing at least magnesium and titanium is used as a solid catalyst component. ,
A combination of this and an organoaluminum compound can be exemplified. Inorganic oxides include CaO, B 2 O 3 , SnO 2 and the like in addition to SiO 2 and Al 2 O 3 , and double oxides of these oxides can also be used without any problem. Any known method can be used to bring these various inorganic oxides into contact with the solid catalyst component containing magnesium and titanium. That is, a method of reacting in the presence or absence of an inert solvent at a temperature of 20 to 400°C, preferably 50 to 300°C for usually 5 minutes to 20 hours, a method of co-pulverization, or a combination of these methods as appropriate. The reaction may be carried out by In these catalyst systems, a titanium compound can be used as an adduct with an organic carboxylic acid ester, or the above-described magnesium-containing inorganic solid compound can be used after being brought into contact with an organic carboxylic acid ester. Moreover, there is no problem in using an organoaluminum compound as an adduct with an organic carboxylic acid ester. Furthermore, in all cases it is also possible to use catalyst systems prepared in the presence of organic carboxylic esters without any problems. Here, various aliphatic, alicyclic, and aromatic carboxylic esters are used as the organic carboxylic ester, and aromatic carboxylic esters having 7 to 12 carbon atoms are preferably used. Specific examples include alkyl esters of benzoic acid, anisic acid, toluic acid, such as methyl and ethyl. A specific example of an organoaluminum compound to be combined with the above-mentioned fixed catalyst component is the general formula
R 3 Al, R 2 AlX, RAlX 2 , R 2 AlOR, RAl(OR)
An organoaluminum compound of X and R 3 Al 2 X 3 (where R is an alkyl group, aryl group or aralkyl group having 1 to 20 carbon atoms,
R may be the same or different) Compounds such as triethylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, diethylaluminum chloride, diethylaluminum ethoxide, ethylaluminum sesquichloride, and mixtures thereof are preferred. can be mentioned. The amount of the organoaluminum compound to be used is not particularly limited, but it can usually be used in an amount of 0.1 to 1000 times the amount of the titanium compound. Furthermore, by bringing the catalyst system into contact with an α-olefin and then using it in the polymerization reaction, the polymerization activity can be greatly improved and the system can be operated more stably than in the case of no treatment. Various α-olefins can be used as the α-olefin used at this time, but α-olefins having 3 to 12 carbon atoms are preferable, and α-olefins having 3 to 8 carbon atoms are more preferable.
-Olefins are preferred. Examples of these α-olefins include propylene, butene-olefin, etc.
Examples include 1, pentene-1, 4-methylpentene-1, hexene-1, octene-1, decene-1, dodecene-1, and mixtures thereof. The temperature and time during the contact between the catalyst system and the α-olefin can be selected within a wide range, for example,
The contact treatment can be carried out at ~200°C, preferably 0~110°C, for 1 minute to 24 hours. The α-olefin to be contacted can be selected from the widest range, but usually, 1 to 50,000 g of α-olefin is used per 1 g of the solid catalyst component, preferably 5 to 30,000 g, and 1 to 500 g of α-olefin is used per 1 g of the solid catalyst component. - It is desirable to react olefins. At this time, the pressure at the time of contact can be arbitrarily selected, but usually
It is desirable that the contact be made under a pressure of -1 to 100 kg/cm 2 ·G. During the α-olefin treatment, the entire amount of the organoaluminum compound used may be combined with the solid catalyst component and then brought into contact with the α-olefin, or a part of the organoaluminum compound used may be combined with the solid catalyst component. After combining with α-olefin, the remaining organoaluminum compound may be added separately during polymerization to carry out the polymerization reaction. Further, when the catalyst system and the α-olefin are brought into contact, there is no problem even if hydrogen gas coexists, and there is no problem even if other inert gases such as nitrogen, argon, helium, etc. coexist. The polymerization reaction is carried out in the same manner as an ordinary olefin polymerization reaction using a Ziegler type catalyst. That is, all reactions are carried out substantially in the absence of oxygen and hydrogen, in a gas phase, in the presence of an inert solvent, or using the monomer itself as a solvent. The polymerization conditions for olefin are the temperature of 20 to 300℃, preferably 40℃.
~200℃, pressure is normal pressure to 70Kg/ cm2・G,
Preferably it is 2Kg/cm 2 ·G to 60Kg/cm 2 ·G. Although the molecular weight can be controlled to some extent by changing polymerization conditions such as polymerization temperature and catalyst molar ratio, it is effectively carried out by adding hydrogen to the polymerization system. Of course, a two-stage or more multi-stage polymerization reaction with different polymerization conditions such as hydrogen concentration and polymerization temperature can be carried out without any problem. The ethylene-α-olefin copolymer which is component (a) of the present invention produced in this manner has (a) a density of 0.86 to 0.91 g/cm 3 and (b) a boiling n-hexane insoluble content of 10 (c) It is important that the maximum peak temperature (Tm) shown by differential scanning calorimetry (DSC) is 100°C or more. If the above density exceeds 0.91 g/ cm3 , there is a concern that the composition will lose its flexibility, and the density will decrease.
If it is less than 0.86 g/cm 3 , the melting point will be low and the heat resistance will be poor. Furthermore, if the boiling n-hexane insoluble content of the ethylene-α-olefin copolymer is less than 10% by weight, the amorphous portion and low molecular weight components will increase, resulting in poor oil resistance and strength. On the other hand, materials with a maximum peak temperature (Tm) measured by differential scanning calorimetry (DSC) of less than 100°C also have poor heat resistance. The melt index (hereinafter abbreviated as MI) of the ethylene-α-olefin copolymer is 0.05 to 50 g/10
min, preferably in the range of 0.1 to 20 g/10 min. The method for measuring the boiling n-hexane insoluble matter and DSC in the present invention is as follows. [Measurement method for boiling n-hexane insoluble matter] A sheet with a thickness of 200 μm is formed using a heat press, and three sheets of 20 mm x 30 mm in length and width are cut from it, and the sheets are passed through a double-tube Soxhlet extractor. Extraction is carried out using boiling n-hexane for 5 hours. After taking out the n-hexane insoluble matter and vacuum drying (7 hours under vacuum, 50° C.), the boiling n-hexane insoluble matter is calculated using the following formula. Boiling n-hexane insoluble content (weight %) = (extracted sheet weight / unextracted sheet weight) × 100 (weight %) [Measurement method by DSC] Weigh approximately 5 mg of sample from a 100 μm thick hot press-molded film. Then, it was set in a DSC device, heated to 170°C, held at that temperature for 15 minutes, and then cooled to 0°C at a heating rate of 2.5°C/min. Next, from this state, the temperature is raised to 170°C at a heating rate of 10°C/min, and measurement is performed. The temperature at the position of the maximum peak that appears during the temperature increase from 0°C to 170°C is defined as Tm. The ethylene-α-olefin copolymer used in the present invention is clearly distinguished from the ethylene-α-olefin copolymer obtained by using vanadium as a solid catalyst component. That is, conventional ethylene propylene copolymers and the like have almost no crystallinity, and even if a crystal part exists, it is extremely small, and the maximum peak temperature (Tm) according to DSC is less than 100°C. This indicates that it cannot be used in applications that require heat resistance, mechanical strength, etc. The copolymer of ethylene and an unsaturated carboxylic acid or its derivative, which is component (b) of the present invention, refers to a copolymer of ethylene and an unsaturated carboxylic acid or an ester thereof, such as an ethylene-acrylic acid copolymer. , ethylene-methacrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-maleic anhydride copolymer, etc., and metal salts thereof (e.g., ionomer resin, etc.). . The content of the unsaturated carboxylic acid or its derivative is in the range of 5 to 50% by weight, preferably 10 to 40% by weight. Another component (b) of the present invention is a copolymer of ethylene and vinyl acetate. The content of vinyl acetate is 5
~50% by weight, preferably 10-40% by weight. Among these, ethylene-ethyl acrylate copolymer, ionomer resin or ethylene-vinyl acetate copolymer are particularly preferred. The ethylene-ethyl acrylate copolymer (hereinafter simply referred to as EEA) has an ethyl acrylate content of 5 to 50% by weight, preferably 10 to 30% by weight. The ethylene-α-olefin copolymer which is the component (c) of the present invention includes low, medium and high density ethylene-α
- Includes olefin copolymers, with a density in the range of 0.91 to 0.97 g/cm 3 and always higher than the density of component (a), especially Polyethylene with a density in the range of 0.91 to 0.94 g/cm 3 , that is, what is usually called linear low-density polyethylene, has good compatibility with components (a) and (b) and is easy to mold and process. It is preferable in that it can easily maintain properties such as properties and flexibility. The melt index of the ethylene-α-olefin copolymer as component (c) is selected from the range of 0.05 to 50 g/10 minutes, preferably 0.1 to 20 g/10 minutes. Inorganic flame retardants of the present invention include aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, basic magnesium carbonate, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, tin oxide hydrate, borax, etc. Hydrates of inorganic metal compounds, zinc borate, zinc metaborate, barium metaborate, zinc carbonate, magnesium carbonate
Examples include calcium, calcium carbonate, barium carbonate, magnesium oxide, molybdenum oxide, zirconium oxide, tin oxide, antimony oxide, and red phosphorus. These may be used alone or in combination of two or more. Among these, magnesium hydroxide,
Aluminum hydroxide, basic magnesium carbonate,
At least one selected from the group consisting of hydrotalcite has a good flame retardant effect and is economically advantageous. The particle size of these flame retardants varies depending on the type, but for magnesium hydroxide, aluminum hydroxide, etc., the average particle size is preferably 20 μm or less. The above amount of inorganic flame retardant is based on 100 parts by weight of resin.
It ranges from 40 to 200 parts by weight, preferably from 70 to 150 parts by weight. If the amount of the heat retardant is less than 40% by weight, the flame retardant effect will be small, and if it exceeds 200 parts by weight, mechanical strength and elongation will decrease, flexibility will be lost, the product will become brittle, and low-temperature properties will also deteriorate. do. In the present invention, at least one of the above-mentioned additive flame retardants is used, and especially when a halogen flame retardant is used, it is preferably used in combination with antimony trioxide. Further, in the present invention, by using an inorganic filler and a flame retardant in combination, the amount of flame retardant added can be reduced and other properties can be imparted. Examples of the inorganic filler as an optional component used in the present invention include powder-like, tabular, scaly, needle-like, spherical or hollow, and fibrous, and specifically, calcium carbonate, magnesium carbonate, Calcium sulfate, calcium silicate, clay, diatomaceous earth, talc, alumina, silica sand, glass powder, iron oxide, metal powder, antimony trioxide, graphite,
Powder-like fillers such as silicon carbide, silicon nitride, silica, boron nitride, aluminum nitride, and carbon black, mica, glass plates, metal foils such as sericite, pyrofluorite, and aluminum flakes, and flat or scaly particles such as black smoke. hollow fillers such as glass balloons, metal balloons, glass balloons, pumice, mineral fibers such as glass fibers, carbon fibers, graphite fibers, whiskers, metal fibers, silicon carbide fibers, asbestos and wollastonite, etc. Examples can be given. The amount of these additives to be added is approximately 100 parts by weight per 100 parts by weight of the composition of the present invention. If the amount added exceeds 100 parts by weight, the mechanical strength such as impact strength of the molded article will decrease, which is not preferable. The composition of the present invention has (a) a density of 0.86 to 0.91 g/
cm 3 , boiling n-hexane insoluble content of 10% by weight or more, and maximum peak temperature (Tm) shown by differential scanning calorimetry (DSC) of 100°C or more, ethylene-α-olefin copolymer 50 in a specific range ~90 parts by weight; (b) a copolymer of 50 to 95% by weight of ethylene and 5 to 50% by weight of an unsaturated carboxylic acid or a derivative thereof;
Or 50-95% ethylene and 5-95% vinyl acetate
10 to 50 parts by weight of a copolymer with 50% by weight, and (c) an ethylene-α-olefin copolymer having a density of 0.91 to 0.97 g/cm 3 and a higher density than component (a).
A low-smoke, pollution-free type containing 40 to 200 parts by weight of (d) an inorganic flame retardant to 100 parts by weight of a resin component consisting of 40 parts by weight (however, the total amount of a+b+c is 100% by weight). This flame-retardant composition is based on a specific range of ethylene-α-olefin copolymer, so it can maintain heat resistance without losing flexibility. By using an oxygen-containing resin such as an ethyl copolymer, it is possible to increase the amount of flame retardant that can be accepted and to enhance the additive flame retardant effect. It is important that the amount of component (a) is in the range of 50 to 90 parts by weight. If the amount is less than 50 parts by weight, the heat resistance will decrease, and if it exceeds 90 parts by weight, the flame retardant effect will be poor, which is not desirable. Furthermore, by blending component c, if desired, it is possible to further improve heat resistance and mechanical strength. However, the amount of
If it exceeds 40 parts by weight, there is a concern that flexibility will be lost. In addition, in the present invention, when the inorganic flame retardant or inorganic filler is used, the surface of the inorganic material is coated with aliphatic acid such as stearic acid, oleic acid, palmitylic acid, or a metal salt thereof, paraffin, wax, etc. It is preferable to perform a surface treatment such as coating with polyethylene wax or a modified product thereof, organic silane, organic borane, organic titanate, or the like. The composition of the present invention comprises a specific range of ethylene-α-
The olefin copolymer, flame retardant, inorganic filler, additives, etc., if desired, are melt-kneaded using a commonly used kneader such as a Banbury mixer, pressure kneader, kneading extruder, twin screw extruder, roll, etc., and pelletized. In addition to being provided as a molded product or a masterbatch, it may also be a dry blend of the resin component, flame retardant, additives, etc. In the present invention, other synthetic resins, antioxidants, lubricants, various organic and inorganic pigments, ultraviolet inhibitors, dispersants, copper damage inhibitors, neutralizing agents, blowing agents, plasticizers, antifoaming agents, crosslinking agents, etc. Additives such as flow improvers, weld strength improvers, nucleating agents, etc. may be added to the extent that they do not significantly impair the effects of the present invention. (E) Example Next, an example will be described. Examples 1 to 9 and Comparative Examples 1 to 6 <Resin used> (a) Ingredients A solid catalyst component obtained from substantially anhydrous magnesium chloride, 1,2-dichloroethane and titanium tetrachloride, and a catalyst consisting of triethylaluminum. The polymerization of ethylene, propylene, and butene-1 was carried out using the following methods to obtain various ethylene-α-olefin copolymers as component (a) as shown below. (A) Ethylene-butene-1 copolymer (MI = 1.0 g/10 min, density = 0.905 g/cm 3 ) (B) Ethylene-butene-1 copolymer (MI = 0.8 g/10 min, density = 0.900g/cm 3 ) (C) Ethylene-propylene copolymer (MI = 0.5g/10 min, density = 0.890g/cm 3 ) (b) Component (D) Ethylene-ethyl acrylate copolymer (EA content 15% by weight, MI=0.8g/10min) (E) Ethylene-ethyl acrylate copolymer (EA content 10% by weight, MI=0.5g/10min) (F) Ethylene-vinyl acetate copolymer (VA Content 15% by weight, MI = 0.1 g/10 min) (c) Component (G) Ethylene-butene-1 copolymer (MI = 0.8 g/10 min, density = 0.935 g/cm 3 ) (Product name: Japan (H) Ethylene-butene-1 copolymer (MI = 1.0 g/10 min, density = 0.922 g/cm 3 ) (Product name: Nisseki Linirex AF2320, Nippon Petrochemical Co., Ltd.) Manufactured by Nippon Petrochemical Co., Ltd.) Add magnesium hydroxide (product name: Kisuma 5B, Kyowa Chemical Co., Ltd.) as a flame retardant to 100 parts by weight of the resin component consisting of specified amounts of components (a), (b) and (c) above. Co., Ltd.) was added in a predetermined amount and the physical properties were evaluated, and the results are shown in Table 1. Comparative Examples 7 to 10 As comparative examples, the following commercially available resins outside the scope of the present invention were used in place of component (a) of the present invention, and the results are shown in Table 1. (I) Ethylene-butene-1 copolymer (MI = 4.0 g/10 min, density = 0.887 g/cm 3 ) (Product name: Tafmer A4085, manufactured by Mitsui Chemicals, Inc.) (J) Ethylene-propylene copolymer Polymer (MI = 1.9 g/10 min, density = 0.86 g/cm 3 ) (Product name: EP02, manufactured by Japan Synthetic Rubber Co., Ltd.) <Test method> 1 Tensile strength 3 from a sheet with a thickness of 1 m/m Measurements were made using a test piece punched out of a No. 1 dumbbell using a tensilon at a tensile speed of 200 mm/min. 2 Heat resistance (heat deformation rate) A cylinder with a thickness of 6 m/m and a diameter of 10 m/m is heated to 100°C.
The specimen was pressurized with a load of 2.64 kg in an oil bath, and the deformation rate was determined after 30 minutes. 3 Flame retardancy Based on UL-Standard V-2. (i.e. average autolysis time less than 25 seconds and maximum digestion time
Less than 30 seconds. ) 4 Processability When extruded using a blow molding machine (screw diameter 25 m/m) using a die with an inner diameter of 9 m/m and an outer diameter of 10 m/m at a set temperature of 150°C and a screw rotation speed of 50 rpm. The surface condition was visually judged. 5 Oxygen index (OI)...D.2863-ASTM OI = Oxygen flow rate / Oxygen flow rate + Nitrogen flow rate x 100 Required for the sample to burn for more than 3 minutes or for the combustion flow to continue burning for more than 50 m/m minimum oxygen concentration.

【表】【table】

【表】 (ヘ) 発明の作用効果 上述の様に、本発明の難燃性組成物は、特定の
エチレン−α−オレフイン共重合体およびEEA
等を用いているので、可撓性を失なわずに耐熱
性、難燃剤等の充填率を向上せしめることがで
き、難燃剤として無機金属化合物の水和物、例え
ば水酸化アルミニウム、水酸化マグネシウム等を
使用することにより、燃焼時に有害ガスの発生が
なく、低煙性で無公害型の難燃性組成となり、高
度に難燃化することが要求されている昨今のニー
ズと合致するものとなる。 また、本発明の低煙性エチレ系重合体組成物は
所望により線状低密度ポリエチレン等を配合し、
耐熱性をより一層高めることができ、かつ電気的
特性にすぐれていることから、架橋されて、ある
いは架橋されずに、電線、ケーブル等の電気絶縁
材、外被材等の電気材料として用いることができ
る。特に、腐食ガス量を規定している原子力研究
所を初めとした各種発電プラント用ケーブル、化
学、鉄鋼、石油等のプラント用ケーブル、耐火電
線や一般家屋内配線等の高度の難燃性を要求され
る場所で好適に使用される。 また、フイルム、シート、パイプ等の押出成形
品あるいは射出成形品等の成形用途向けや、マス
ターバツチ等として利用され、繊維、電気、電
子、自動車、船舶、航空機、建築、土木等の諸分
野でパネル、包装梱包資材、家具、家庭用品等と
して活用される。
[Table] (f) Effects of the invention As mentioned above, the flame retardant composition of the present invention contains a specific ethylene-α-olefin copolymer and EEA.
etc., it is possible to improve heat resistance and the filling rate of flame retardants without losing flexibility, and hydrates of inorganic metal compounds such as aluminum hydroxide, magnesium hydroxide, By using such materials, a flame-retardant composition that does not generate harmful gases during combustion, is low smoke, and is non-polluting, meets the recent needs for highly flame-retardant properties. Become. In addition, the low smoke ethylene polymer composition of the present invention may optionally contain linear low density polyethylene, etc.
Because it can further increase heat resistance and has excellent electrical properties, it can be used as electrical materials such as electrical insulation materials and outer covering materials for electric wires and cables, with or without crosslinking. I can do it. In particular, a high degree of flame retardancy is required for cables used in various power generation plants, including nuclear power research institutes that specify the amount of corrosive gases, cables for chemical, steel, and petroleum plants, fire-resistant electric wires, and general household wiring. It is suitable for use in places where It is also used for molding applications such as extrusion molded products such as films, sheets, and pipes, or injection molded products, and as a master batch, and is used as a panel in various fields such as textiles, electricity, electronics, automobiles, ships, aircraft, architecture, and civil engineering. , packaging materials, furniture, household goods, etc.

Claims (1)

【特許請求の範囲】 1 (a) 密度が0.86〜0.91g/cm3、沸騰n−ヘキ
サン不溶分が10重量%以上で、かつ示差走査熱
量測定(DSC)で示される最大ピーク温度
(Tm)が100℃以上であるエチレン−α−オレ
フイン共重合体50〜90重量部、 (b) エチレン50〜95重量%と不飽和カルブン酸も
しくはその誘導体5〜50重量%との共重合体、
あるいはエチレン50〜95重量%と酢酸ビニル5
〜50重量%との共重合体10〜50重量部、 (c) 密度が0.91〜0.97g/cm3であり、かつ(a)成分
より高い密度のエチレン−α−オレフイン共重
合体0〜40重量部(但し、a+b+cの合計が
100重量%である)からなる樹脂成分100重量部
に、 (d) 無機難燃剤40〜200重量部 を含有してなる低煙性エチレン系重合体組成物。 2 前記(b)成分が、エチレン−酢酸ビニル共重合
体もしくはエチレン−アクリル酸エチル共重合体
である特許請求の範囲第1項に記載の低煙性エチ
レン系重合体組成物。 3 前記(c)成分が密度0.91〜0.94g/cm3の線状低
密度ポリエチレンである特許請求の範囲第1項ま
たは第2項に記載の低煙性エチレン系重合体組成
物。 4 前記無機難燃剤が無機金属化合物の水和物で
ある特許請求の範囲第1項、第2項または第3項
に記載の低煙性エチレン系重合体組成物。 5 前記無機金属化合物の水和物が水酸化アルミ
ニウムまたは水酸化マグネシウムである特許請求
の範囲第4項に記載の低煙性エチレン系重合体組
成物。
[Scope of Claims] 1 (a) Density is 0.86 to 0.91 g/cm 3 , boiling n-hexane insoluble content is 10% by weight or more, and maximum peak temperature (Tm) shown by differential scanning calorimetry (DSC) 50 to 90 parts by weight of an ethylene-α-olefin copolymer having a temperature of 100°C or higher; (b) a copolymer of 50 to 95% by weight of ethylene and 5 to 50% by weight of an unsaturated carboxylic acid or a derivative thereof;
or ethylene 50-95% by weight and vinyl acetate 5%
10 to 50 parts by weight of a copolymer with ~50% by weight; (c) 0 to 40 parts by weight of an ethylene-α-olefin copolymer having a density of 0.91 to 0.97 g/cm 3 and a higher density than component (a); Parts by weight (however, the total of a+b+c is
100 parts by weight of a resin component (100 parts by weight), and (d) 40 to 200 parts by weight of an inorganic flame retardant. 2. The low smoke ethylene polymer composition according to claim 1, wherein the component (b) is an ethylene-vinyl acetate copolymer or an ethylene-ethyl acrylate copolymer. 3. The low smoke ethylene polymer composition according to claim 1 or 2, wherein the component (c) is linear low density polyethylene having a density of 0.91 to 0.94 g/cm 3 . 4. The low smoke ethylene polymer composition according to claim 1, 2 or 3, wherein the inorganic flame retardant is a hydrate of an inorganic metal compound. 5. The low smoke ethylene polymer composition according to claim 4, wherein the hydrate of the inorganic metal compound is aluminum hydroxide or magnesium hydroxide.
JP9839885A 1985-05-09 1985-05-09 Lowly smoking ethylene polymer composition Granted JPS61255951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9839885A JPS61255951A (en) 1985-05-09 1985-05-09 Lowly smoking ethylene polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9839885A JPS61255951A (en) 1985-05-09 1985-05-09 Lowly smoking ethylene polymer composition

Publications (2)

Publication Number Publication Date
JPS61255951A JPS61255951A (en) 1986-11-13
JPH0569132B2 true JPH0569132B2 (en) 1993-09-30

Family

ID=14218729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9839885A Granted JPS61255951A (en) 1985-05-09 1985-05-09 Lowly smoking ethylene polymer composition

Country Status (1)

Country Link
JP (1) JPS61255951A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725953B2 (en) * 1986-04-09 1995-03-22 住友化学工業株式会社 Flame-retardant polyolefin resin composition
JPH083005B2 (en) * 1987-05-29 1996-01-17 日本石油化学株式会社 Thermoplastic polymer composition
JPH07116336B2 (en) * 1987-05-29 1995-12-13 日本石油化学株式会社 Molding material
JPH07103276B2 (en) * 1987-09-11 1995-11-08 日本石油化学株式会社 Ethylene-based thermoplastic resin composition
JP2838278B2 (en) * 1988-09-02 1998-12-16 株式会社フジクラ Power cable
JPH04253747A (en) * 1991-02-05 1992-09-09 Hitachi Cable Ltd Flame-retarding electrical-insulating composition
JP4145613B2 (en) * 2001-09-14 2008-09-03 昭和電工株式会社 Resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127955A (en) * 1976-04-19 1977-10-27 Nissan Chem Ind Ltd Flame-retardant polyolefin resin compositions
JPS57202336A (en) * 1981-06-03 1982-12-11 Showa Denko Kk Shock absorber
JPS59217741A (en) * 1983-05-25 1984-12-07 Furukawa Electric Co Ltd:The Flame-retardant polyolefin resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127955A (en) * 1976-04-19 1977-10-27 Nissan Chem Ind Ltd Flame-retardant polyolefin resin compositions
JPS57202336A (en) * 1981-06-03 1982-12-11 Showa Denko Kk Shock absorber
JPS59217741A (en) * 1983-05-25 1984-12-07 Furukawa Electric Co Ltd:The Flame-retardant polyolefin resin composition

Also Published As

Publication number Publication date
JPS61255951A (en) 1986-11-13

Similar Documents

Publication Publication Date Title
US4722959A (en) Flame-retardant olefin polymer composition
US4845146A (en) Flame-retardant olefin polymer composition
US5473016A (en) Matte film or sheet and method for preparing same
JPS62112644A (en) Non-rigid polyolefin composition
JPH0571050B2 (en)
WO1990002153A1 (en) Surface blush-resistant, fire-retardant polyolefin resin composition
GB2070625A (en) Ethylene polymer moulding compositions
EP0508415B1 (en) A mat film or sheet and method for preparing the same
JPH058743B2 (en)
JPS648657B2 (en)
JPH064733B2 (en) Highly rigid and impact resistant polyolefin resin composition
JPH0545621B2 (en)
JPH0218697B2 (en)
GB2175592A (en) Thermoplastic elastomer composition
JPS61255950A (en) Flame-retardant ethylene polymer composition having excellent heat resistance
JPH0569132B2 (en)
JPS6211745A (en) Flame-retardant olefin polymer composition having excellent heat-resistance
JPH07119324B2 (en) Flame-retardant olefin polymer resin composition with improved scratch whitening
JPH0615643B2 (en) Flame-retardant olefin polymer composition
JPS6228816B2 (en)
JPS63265940A (en) Thermoplastic elastomer composition
JPS61254647A (en) Flame-retardant ethylene copolymer composition
JPS61285236A (en) Flame-retardant ethylene-ethyl acrylate copolymer composition having improved heat resistance
JP3318342B2 (en) Matte film or sheet and method for producing the same
JP3318343B2 (en) Matte film or sheet and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees