【発明の詳細な説明】[Detailed description of the invention]
[産業上の利用分野]
本発明は石綿をまつたく使用しない繊維補強軽
量セメント板の製造方法に関するものである。
[従来の技術]
昨今、石綿繊維による粉塵あるいは発癌性物質
含有等による公害が問題となつているが、建築用
内外装材として一般に使用されている多くは石綿
繊維混入のセメント板であり、石綿をまつたく使
用しない繊維混入セメント板の出現が望まれてい
る。
このため、従来においても種々の提案がなされ
ているが、一般にはポルトランドセメントを主原
料とし、これに石綿の全部または一部の代替とし
てガラス繊維、カーボン繊維、アラミド繊維、ナ
イロン繊維、ポリプロピレン繊維、アクリル繊
維、ビニロン繊維、スチール繊維などが使用され
ている。
[発明が解決しようとする問題点]
しかしながら、例えばガラス繊維はセメント硬
化時に長期にわたつて生成される水酸化カルシウ
ムの高アルカリ性雰囲気中で浸食され、セメント
板の曲げ強度、耐衝撃性が低下する欠点がある。
また、従来主原料として使用されているポルト
ランドセメントは、硬化時の収縮率が大きいた
め、セメント板の寸法安定性が劣るなどの欠点が
ある。このため、例えば特開昭62−105980号に開
示されているように、セメント原料として珪酸カ
ルシウム−アウイン−スラグ系低アルカリ性セメ
ントを使用し、これとエアーミルクを混練して気
泡径を極小にし、強度や寸法安定性を改善したセ
メント板も提案されている。しかしこの方法は気
泡剤の粒度調整がむずかしく、また成形法は打ち
込み成形であるため生産性が劣り、コスト的にも
高いという問題がある。
本発明はこのような従来の問題点を解決するた
めに鋭意検討を行なつた結果提案されたものであ
る。
即ち、本発明は石綿をまつたく使用せずに、生
産性、作業性に優れ、かつ軽量で曲げ強度が高
く、吸水性も低く、寸法安定性、耐久性の優れた
繊維補強軽量セメント板の製造方法を提供するこ
とをその目的とするものである。
[問題点を解決するための手段]
上記目的のために採用した本発明の手段は、曲
げ強度が200Kg/cm2以上の無石綿の繊維補強軽量
セメント板を製造する方法であつて、珪酸カルシ
ウム−アウイン−スラグ系アルカリ性セメントが
60〜95重量%であり、これに補強繊維を0.5〜4.0
重量%、補助繊維を1.0〜6.0重量%、軽量骨材を
0〜30重量%含有させたセメントスラリーを抄造
法により製造することを特徴とする。
本発明で使用するセメント原料は珪酸カルシウ
ム−アウイン−スラグ系低アルカリ性セメントが
最適である。このセメントは硬化過程において生
成する水酸化カルシウムとアウインとが反応しエ
トリンガイトを生成するため、普通ポルトランド
セメントに比べ低アルカリ性であり乾燥による収
縮率も低い。このため補強繊維としてガラス繊維
を用いた場合、セメントによるガラス繊維の浸食
が少なく補強効果が持続し、耐久性が高い。また
乾燥収縮率が小さいため、寸法安定性にも優れて
いる。
このようなセメントとしては、例えば3CaO・
SiO2、2CaO・SiO2などのカルシウムシリケート
を主成分とするポルトランドセメントクリンカ−
20〜70重量%、3CaO・3Al2O3・CaSO4を主成分
とするクリンカ−10〜40重量%、無水石コウまた
は二水石コウ10〜40重量%、高炉水砕スラグまた
はフライアツシユ20〜60重量%の組成で、かつ
(3Al2O3+1.5SiO2)/(CaO−SO3)がモル比で
1.0〜1.5であるものが好ましい。
本発明ではこのセメントを60〜95重量%使用す
る。好ましくは70〜90重量%の範囲が最適であり
60重量%以下ではセメント板の強度が低下してし
まい、95重量%以上では強度は得られるが比重が
増し軽量化が望めない。
補強繊維としてはガラス繊維、カーボン繊維、
アラミド繊維、ナイロン繊維、ポリプロピレン繊
維、アクリル繊維、ビニロン繊維、スチール繊維
などが使用できる。繊維長さは3〜100mm、好ま
しくは6〜25mmの範囲が最適である。3mm以下で
は補強効果が上らず、100mm以上では混練時に繊
維のからみ合いが生じ、セメント板中に均一に分
散させることができない。含有量は0.5〜4.0重量
%、好ましくは1.0〜2.5重量%が最適であり、0.5
重量%以下ではセメント板の補強効果が不足し、
3.0重量%以上では混練時に繊維がからみ均一分
散ができない。
また、抄造法においては抄造時にワイヤーシリ
ンダーからのセメント粒子等の固形分の流出を押
えるため、補助繊維としてパルプ、セルロースフ
アイバーなどを混練する。この補助繊維の含有量
は1.0〜6.0重量%で、好ましくは1.5〜4.5重量%
の範囲が最適である。1.0重量%以下ではスラリ
ー中の固形分の流出が激しく、6.0重量%以上で
はセメント板の吸水性が増し寸法安定性に欠け、
また有機質成分が増えるため、不燃性としての特
性が低下する。
軽量骨材としてはシラスバルーン、パーライ
ト、スラグ、フライアツシユ等が使用できる。こ
れら軽量骨材は0〜30重量%、好ましくは10〜20
重量%が最適である。30重量%を超えると著しく
軽量化されるが、強度、耐衝撃性等が低下し実用
上支障をきたしてしまう。
本発明の繊維補強軽量セメント板の製造方法と
しては、上記したセメント原料、補強繊維、補助
繊維、軽量骨材に水を所定量加え、均一に混合し
て得られるセメント系スラリーを通常の丸網式あ
るいは長網式等の抄造法により製造する。
上記スラリーの調整方法は任意であり、例えば
上記各原料を乾燥状態で撹拌した後、水を加えて
混合し、パツドへ供給する乾式法や、パルパーで
上記各原料と水を撹拌混合し、スラリー状とした
後、チエストに送りパツドへ供給する方式のいず
れを適用してもよい。
上記パツド内のセメントスラリーはワイヤ−シ
リンダー面に抄き上げられ、帯状の薄膜素材とな
つて搬送され、メーキングロールに加圧脱水され
ながら巻き取られる。該メーキングロールにより
積層状に所定の厚さとなるまで巻き取られた後、
切断され、平板状の生板が得られる。
この生板は、必要により波形、R形、L形に加
圧成形した後、養生を行なう。
養生は温度10℃〜60℃で行ない、好ましくは30
℃〜50℃の範囲で5時間以上行なうのが最適であ
り、蒸気あるいは製品積み重ねによる反応熱のど
ちらによつても同等の性能が得られる。
[発明の効果]
以上説明した本発明法によつて製造された繊維
補強軽量セメント板は、石綿をまつたく使用しな
いため、石綿による公害問題を生じることもなな
い。また本発明法により得られた無石綿セメント
板は、セメント板中に補強繊維、軽量骨材が均一
に分散すると共に、セメント原料と補助繊維によ
る緻密なマトリツクス組織が得られ、素地の層間
結合力も強固となる。このため軽量にもかかわら
ず200Kg/cm2以上の曲げ強度が得られ、寸法安定
性、耐久性、加工性にも優れている。さらに細気
孔化によつて吸水性も低くなり、耐凍結融解性に
も優れている。しかも大判サイズのものを低コス
トで製造することができ、生産性、作業性にも優
れている。したがつて建築用内外装材、屋根・天
井材、金属によるサンドイツチパネル、断熱材と
の貼り合わせパネルなどに最適である。
[実施例]
以下、抄造法による場合の実施例を示すが、本
発明はこれに限定されるものではない。
セメント77重量%、軽量骨材15.5〜26重量%、
パルプ3.0%、耐アルカリガラス繊維1.5重量%を
パルパーで十分混合し、シリンダーバツトに送り
抄造後、メーキングロールに巻き取り、切断し、
養生を行ない、得られた製品の比重、曲げ強度、
吸水率を測定した。養生は製品を積み重ね、硬化
時の反応熱により行なつた。
なお、セメントは珪酸カルシウム−アウイン−
スラグ系低アルカリ性セメント(セメントA)を
使用したものと、普通ポルトランドセメント(セ
メントB)を使用したもの並びに通常のパルプセ
メント板との比較を第1表に示す。
[Industrial Field of Application] The present invention relates to a method for manufacturing fiber-reinforced lightweight cement boards without using asbestos. [Prior art] Recently, pollution caused by dust caused by asbestos fibers and carcinogenic substances has become a problem, but most of the materials commonly used as interior and exterior materials for buildings are cement boards mixed with asbestos fibers. It is hoped that a fiber-containing cement board will emerge that does not require the use of fibers. For this reason, various proposals have been made in the past, but in general, Portland cement is used as the main raw material, and as a substitute for all or part of asbestos, glass fiber, carbon fiber, aramid fiber, nylon fiber, polypropylene fiber, Acrylic fibers, vinylon fibers, steel fibers, etc. are used. [Problems to be Solved by the Invention] However, for example, glass fibers are eroded in the highly alkaline atmosphere of calcium hydroxide that is produced over a long period of time during cement hardening, resulting in a decrease in the bending strength and impact resistance of the cement board. There are drawbacks. In addition, Portland cement, which has been conventionally used as the main raw material, has a large shrinkage rate during hardening, so it has drawbacks such as poor dimensional stability of the cement board. For this purpose, for example, as disclosed in JP-A-62-105980, calcium silicate-auin-slag low-alkaline cement is used as a cement raw material, and air milk is kneaded with this to minimize the bubble diameter. Cement boards with improved strength and dimensional stability have also been proposed. However, this method has problems in that it is difficult to adjust the particle size of the foaming agent, and since the molding method is injection molding, the productivity is low and the cost is high. The present invention was proposed as a result of intensive studies to solve these conventional problems. That is, the present invention provides a fiber-reinforced lightweight cement board that does not use asbestos, has excellent productivity and workability, is lightweight, has high bending strength, has low water absorption, and has excellent dimensional stability and durability. Its purpose is to provide a manufacturing method. [Means for Solving the Problems] The means of the present invention adopted for the above purpose is a method for manufacturing an asbestos-free, fiber-reinforced lightweight cement board having a bending strength of 200 kg/cm 2 or more, which comprises calcium silicate. - Auin - Slag-based alkaline cement
60 to 95% by weight, and reinforcing fibers are added to this by 0.5 to 4.0%.
The method is characterized in that a cement slurry containing 1.0 to 6.0 weight % of auxiliary fibers and 0 to 30 weight % of lightweight aggregate is produced by a papermaking method. The optimum cement raw material used in the present invention is calcium silicate-auin-slag based low alkaline cement. In this cement, calcium hydroxide produced during the hardening process reacts with auin to produce ettringite, so it is less alkaline than ordinary Portland cement and has a lower shrinkage rate upon drying. Therefore, when glass fibers are used as reinforcing fibers, the glass fibers are less eroded by cement and the reinforcing effect is sustained, resulting in high durability. Furthermore, since the drying shrinkage rate is low, it also has excellent dimensional stability. As such cement, for example, 3CaO・
Portland cement clinker whose main component is calcium silicate such as SiO 2 , 2CaO・SiO 2
20-70% by weight, clinker mainly composed of 3CaO・3Al2O3・CaSO4 , 10-40% by weight, anhydrite or dihydrite 10-40% by weight, granulated blast furnace slag or fly ash 20-60 % by weight Composition in weight% and (3Al 2 O 3 + 1.5SiO 2 )/(CaO−SO 3 ) in molar ratio
Preferably, it is between 1.0 and 1.5. In the present invention, 60 to 95% by weight of this cement is used. Preferably a range of 70-90% by weight is optimal.
If it is less than 60% by weight, the strength of the cement board will decrease, and if it is more than 95% by weight, strength can be obtained, but the specific gravity will increase and weight reduction cannot be expected. Reinforcing fibers include glass fiber, carbon fiber,
Aramid fibers, nylon fibers, polypropylene fibers, acrylic fibers, vinylon fibers, steel fibers, etc. can be used. The optimum fiber length is 3 to 100 mm, preferably 6 to 25 mm. If it is less than 3 mm, the reinforcing effect will not be improved, and if it is more than 100 mm, the fibers will become entangled during kneading and cannot be uniformly dispersed in the cement board. The content is optimally 0.5-4.0% by weight, preferably 1.0-2.5% by weight, and 0.5% by weight.
If it is less than % by weight, the reinforcing effect of the cement board will be insufficient,
If it exceeds 3.0% by weight, the fibers become entangled during kneading and uniform dispersion cannot be achieved. In addition, in the papermaking method, in order to suppress the outflow of solids such as cement particles from the wire cylinder during papermaking, pulp, cellulose fiber, etc. are kneaded as auxiliary fibers. The content of this auxiliary fiber is 1.0-6.0% by weight, preferably 1.5-4.5% by weight
A range of is optimal. If it is less than 1.0% by weight, the solid content in the slurry will flow out violently, and if it is more than 6.0% by weight, the water absorption of the cement board will increase, resulting in a lack of dimensional stability.
Furthermore, since the organic components increase, the nonflammability properties decrease. As lightweight aggregates, whitebait balloons, perlite, slag, fly ash, etc. can be used. These lightweight aggregates are 0-30% by weight, preferably 10-20%
% by weight is optimal. If it exceeds 30% by weight, the weight will be significantly reduced, but the strength, impact resistance, etc. will decrease, causing problems in practical use. The method for manufacturing the fiber-reinforced lightweight cement board of the present invention involves adding a predetermined amount of water to the above-mentioned cement raw materials, reinforcing fibers, auxiliary fibers, and lightweight aggregate, and mixing uniformly to obtain a cement-based slurry. Manufactured using a papermaking method such as a method or a fourdrinier method. The slurry may be prepared in any manner, such as a dry method in which each of the raw materials is stirred in a dry state, water is added and mixed, and the mixture is supplied to the pad, or a pulper is used to stir and mix the raw materials and water in a pulper to form a slurry. Any method of supplying the powder to the chest and then feeding it to the pad may be applied. The cement slurry in the pad is scooped up onto the wire-cylinder surface, conveyed as a strip-shaped thin film material, and wound up on a making roll while being dehydrated under pressure. After being rolled up into a laminated form by the making roll until it reaches a predetermined thickness,
It is cut to obtain a flat raw board. This raw board is pressure-formed into a corrugated, R-shaped, or L-shaped shape as required, and then cured. Curing is carried out at a temperature of 10°C to 60°C, preferably 30°C.
It is optimal to carry out the reaction at a temperature in the range of 50°C to 50°C for 5 hours or more, and equivalent performance can be obtained with either steam or reaction heat generated by stacking the products. [Effects of the Invention] Since the fiber-reinforced lightweight cement board manufactured by the method of the present invention described above does not use asbestos, it does not cause any pollution problems due to asbestos. In addition, the asbestos-free cement board obtained by the method of the present invention has reinforcing fibers and lightweight aggregates uniformly dispersed in the cement board, and a dense matrix structure made of cement raw materials and auxiliary fibers is obtained, and the interlayer bonding strength of the base material is also improved. Becomes strong. Therefore, despite its light weight, it has a bending strength of over 200 kg/cm 2 and has excellent dimensional stability, durability, and workability. Furthermore, the fine pores reduce water absorption and have excellent freeze-thaw resistance. Moreover, large-sized products can be manufactured at low cost, and are excellent in productivity and workability. Therefore, it is ideal for interior and exterior materials for buildings, roofing and ceiling materials, metal sandwich panels, panels laminated with insulation materials, etc. [Example] Hereinafter, an example in which a paper making method is used will be shown, but the present invention is not limited thereto. Cement 77% by weight, lightweight aggregate 15.5-26% by weight,
3.0% pulp and 1.5% by weight alkali-resistant glass fiber are thoroughly mixed in a pulper, sent to a cylinder vat for paper making, wound on a making roll, cut,
After curing, the specific gravity, bending strength,
The water absorption rate was measured. Curing was carried out by stacking the products and using the heat of reaction during curing. In addition, cement is calcium silicate -auin-
Table 1 shows a comparison between those using slag-based low alkaline cement (cement A), those using ordinary Portland cement (cement B), and ordinary pulp cement boards.
【表】
No.1は珪酸カルシウム−アウイン−スラグ系低
アルカリ性セメントを使用した抄造板
No.2は普通ポルトランドセメント使用の抄造板
No.3は通常のパルプセメント板なお、配合比は
重量%である。
以上の実施例より、珪酸カルシウム−アウイン
−スラグ系低アルカリ性セメントを使用したもの
は、普通ポルトランドセメント使用のものより軽
量で曲げ強度も高く、吸水性も低いものが得られ
た。[Table] No. 1 is a paper-made board using calcium silicate-auin-slag-based low-alkaline cement. No. 2 is a paper-made board using ordinary Portland cement. No. 3 is an ordinary pulp cement board. The blending ratio is in weight percent. be. From the above examples, it was found that those using calcium silicate-auin-slag type low alkaline cement were lighter than those using ordinary Portland cement, had higher bending strength, and had lower water absorption.