[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0568887A - Waste gas cleaning catalystic device - Google Patents

Waste gas cleaning catalystic device

Info

Publication number
JPH0568887A
JPH0568887A JP3234678A JP23467891A JPH0568887A JP H0568887 A JPH0568887 A JP H0568887A JP 3234678 A JP3234678 A JP 3234678A JP 23467891 A JP23467891 A JP 23467891A JP H0568887 A JPH0568887 A JP H0568887A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nox
cleaning
purification rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3234678A
Other languages
Japanese (ja)
Inventor
Kazuya Komatsu
一也 小松
Masahiko Shigetsu
雅彦 重津
Takashi Takemoto
崇 竹本
Makoto Kyogoku
誠 京極
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP3234678A priority Critical patent/JPH0568887A/en
Publication of JPH0568887A publication Critical patent/JPH0568887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To clean enough hydrocarbon and CO in waste gas to improve NOx cleaning efficiency and to put a cleaning method to practical for an engine of a motor car in oxygen excess atmosphere, in a catalytic device for cleaning waste gas from a motor car. CONSTITUTION:A NOx cleaning catalyst 2 formed by supporting a transition metal on a zeolite upon ion-exchanged is attached to an exhausting path 1. A secondary catalyst 3 inhibiting ability of cleaning CO and cleaning hydrocarbon is attached to the exhausting path 1 at the upper course to the NOx cleaning catalyst 2. The secondary catalyst is formed, for example, by impregnating Pb to oxidation catalyst or catalytic converter rhodium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車の排気ガスを浄
化する排気ガス浄化用触媒装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst device for purifying automobile exhaust gas.

【0002】[0002]

【従来の技術】近年、燃料消費率の低いリーン燃焼エン
ジンの開発が進められている。このリーン燃焼エンジン
を搭載した自動車は、従来のディーゼルエンジンと同
様、エンジン燃焼室を酸素過剰雰囲気下(リーン)に置
いて運転されている。その際、有毒ガスであるNOxが
エンジンから多量に排出されるため、このNOxを除去
し大気中への放出を防がねばならない。
2. Description of the Related Art In recent years, the development of lean-burn engines with low fuel consumption has been underway. An automobile equipped with this lean combustion engine is operated with the engine combustion chamber placed in an excess oxygen atmosphere (lean), as in the case of a conventional diesel engine. At this time, a large amount of NOx, which is a toxic gas, is discharged from the engine, so this NOx must be removed to prevent its release into the atmosphere.

【0003】従来、排気ガス中のNOxを除去する技術
としては、主に、Pt−Rh系等の三元触媒を用いる方
法、アンモニア,尿素等による選択的還元法、および各
種吸着剤でNOxを吸着するNOx吸収法がある。とこ
ろが、上記選択的還元法では、装置が大型であるという
問題があり、さらにアンモニアが大気中に排出されて2
次公害を起こすという問題があった。また、上記NOx
吸収法では、吸着剤に吸着したNOxを水洗い等で後処
理しなければならないという問題があった。しかも、上
記3つの従来方法では、酸素過剰雰囲気下においては効
果を発揮できず、NOxを充分に除去できないという問
題があった。
Conventionally, as a technique for removing NOx in exhaust gas, a method using a three-way catalyst such as Pt-Rh system, a selective reduction method with ammonia, urea, etc., and NOx with various adsorbents have been mainly used. There is a NOx absorption method of adsorbing. However, in the above-mentioned selective reduction method, there is a problem that the apparatus is large, and further, ammonia is discharged into the atmosphere and
There was a problem of causing next pollution. In addition, the above NOx
The absorption method has a problem that NOx adsorbed on the adsorbent must be post-treated by washing with water or the like. Moreover, the above-mentioned three conventional methods have a problem in that the effect cannot be exhibited in an oxygen excess atmosphere and NOx cannot be sufficiently removed.

【0004】そこで、NOxを直接NおよびO等に
接触分解する銅イオン交換ゼオライトが発明され、実験
室段階で90%を越えるNOx浄化率を得ることができ
た。この銅イオン交換ゼオライトは、ゼオライトに銅を
イオン交換担持してなるもので、酸素過剰雰囲気下でN
Oxを浄化し得る還元触媒として注目されており、この
銅イオン交換ゼオライトをエンジンの排気系に設置した
排気ガス浄化用触媒装置が既に公知である。
Then, a copper ion-exchanged zeolite was invented, which directly decomposes NOx into N 2 and O 2, etc., and was able to obtain a NOx purification rate of more than 90% in the laboratory stage. This copper ion-exchanged zeolite is prepared by carrying out copper ion-exchange support on zeolite and is
As a reduction catalyst that can purify Ox, it has attracted attention, and an exhaust gas purifying catalyst device in which this copper ion-exchanged zeolite is installed in the exhaust system of an engine is already known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
排気ガス浄化用触媒装置は、走行中の自動車における酸
素過剰雰囲気下では未だ適用されておらず、実用化でき
ないという問題がある。その理由は、銅イオン交換ゼオ
ライトは触媒の酸化能力が弱いため、HCおよびCOに
ついては浄化性能が不十分であるからである。
However, the above exhaust gas purifying catalyst device has a problem that it cannot be put into practical use because it has not been applied yet in an excess oxygen atmosphere in a running automobile. The reason is that the copper ion-exchanged zeolite has a weak oxidizing ability of the catalyst, and therefore has insufficient purification performance for HC and CO.

【0006】すなわち、図1は、排気中のHC濃度が銅
イオン交換ゼオライトのNO浄化率に及ぼす影響を測定
した結果を示し、この測定は、NOを2100ppm と、
を7.5%と、COを0.18%と、Hを650
ppm と、COを9.4%と、Nバランスとで合成し
た排気ガスを、SV(空間速度)25,000hr-1で表
面温度400℃の銅イオン交換ゼオライトへ流し、HC
濃度を変えて行った。この結果、銅イオン交換ゼオライ
トは、酸素過剰雰囲気下では、排気ガス中にNOと共存
するHCの濃度と比例してNO浄化率が向上することが
分かった。したがって、酸素過剰雰囲気下の排気ガスに
対してNO浄化率を高めるためには、銅イオン交換ゼオ
ライトへHC濃度の高い排気ガスを流すことが考えられ
る。
That is, FIG. 1 shows the results of measuring the effect of the HC concentration in the exhaust gas on the NO purification rate of the copper ion-exchanged zeolite. In this measurement, NO was 2100 ppm,
O 2 at 7.5%, CO at 0.18%, H 2 at 650
Exhaust gas synthesized with ppm, CO 2 of 9.4%, and N 2 balance is flowed at a SV (space velocity) of 25,000 hr −1 to a copper ion-exchanged zeolite having a surface temperature of 400 ° C.
The concentration was changed. As a result, it was found that the copper ion-exchanged zeolite has an improved NO purification rate in proportion to the concentration of HC coexisting with NO in the exhaust gas in an oxygen excess atmosphere. Therefore, in order to increase the NO purification rate with respect to the exhaust gas in an oxygen-excess atmosphere, it is conceivable to flow the exhaust gas having a high HC concentration to the copper ion-exchanged zeolite.

【0007】ところが、銅イオン交換ゼオライトを排気
系に配置した実験車両を使用し、USAの排気ガス規制
であるLA−IVモードで走行したところ、NOx浄化率
は36%で規制に適合したが、HC浄化率は88%、C
O浄化率は38%で共に規制をクリアできなかった。な
お、実験車両は、定常走行時、空燃比約22程度のリー
ン燃焼エンジンを搭載した。このように、銅イオン交換
ゼオライトは、HCおよびCOについては浄化性能が不
十分である。
However, when an experimental vehicle having a copper ion-exchanged zeolite arranged in the exhaust system was used and the vehicle was run in LA-IV mode, which is the exhaust gas regulation of USA, the NOx purification rate was 36%, which complied with the regulation. HC purification rate is 88%, C
The O purification rate was 38% and both could not pass the regulation. The test vehicle was equipped with a lean-burn engine with an air-fuel ratio of about 22 during steady running. Thus, the copper ion-exchanged zeolite has insufficient purification performance for HC and CO.

【0008】そこで、銅イオン交換ゼオライトの下流側
に、HCおよびCOに対する浄化率が高い三元触媒を配
設することが考えられる。しかしながら、三元触媒は低
温時の活性が悪いため、下流側に設けられた場合には温
度が上がらず、HCおよびCOに対する浄化性能を充分
に発揮できないという問題がある。
Therefore, it is conceivable to dispose a three-way catalyst having a high purification rate for HC and CO on the downstream side of the copper ion-exchanged zeolite. However, since the three-way catalyst has poor activity at low temperatures, there is a problem in that the temperature does not rise when it is provided on the downstream side, and the purification performance for HC and CO cannot be sufficiently exhibited.

【0009】一方、銅イオン交換ゼオライトの上流側に
白金・ロジューム系の三元触媒を配設し、かつ上記と同
じリーン燃焼エンジンを搭載した実験車両を使用し、上
記LA−IVモードで走行したところ、HC浄化率は98
%、CO浄化率は94%で共に規制に適合したが、NO
x浄化率は12%で規制をクリアできなかった。すなわ
ち、この場合には、三元触媒がHCを浄化してしまうた
め、銅イオン交換ゼオライトのNOx浄化率が低下して
しまうという問題が発生する。
On the other hand, an experimental vehicle equipped with a platinum / rhodium-based three-way catalyst on the upstream side of the copper ion-exchanged zeolite and equipped with the same lean combustion engine as above was used to run in the LA-IV mode. However, the HC purification rate is 98
%, CO purification rate is 94%, both of which meet the regulations, but NO
x The purification rate was 12%, which failed to clear the regulation. That is, in this case, since the three-way catalyst purifies HC, there arises a problem that the NOx purification rate of the copper ion-exchanged zeolite decreases.

【0010】本発明はこのような諸点に鑑みてなされた
もので、その目的とするところは、排気ガス中のHCお
よびCOを充分に浄化させるとともに、NOx浄化率を
も高め、酸素過剰雰囲気下の自動車のエンジンに実用化
させうる排気ガス浄化用触媒装置を提供しようとするも
のである。
The present invention has been made in view of the above points, and an object of the present invention is to sufficiently purify HC and CO in exhaust gas and also to increase the NOx purification rate in an oxygen excess atmosphere. The present invention aims to provide an exhaust gas purifying catalyst device that can be put to practical use in the automobile engine.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
め、請求項1記載の発明は、排気ガスの排気路に設けら
れ、ゼオライトに遷移金属をイオン交換担持してなるN
Ox浄化用触媒と、このNOx浄化用触媒の上流側に配
設され、COを浄化しかつHCを浄化する能力を抑制さ
せた第2触媒とを備える構成とするものである。
In order to achieve the above-mentioned object, the invention according to claim 1 is provided in an exhaust passage of exhaust gas, and N is formed by carrying out ion exchange loading of transition metal on zeolite.
It is configured to include an Ox purification catalyst and a second catalyst that is disposed on the upstream side of the NOx purification catalyst and that suppresses the ability to purify CO and reduce HC.

【0012】請求項2記載の発明は、第2触媒を、酸化
触媒もしくは三元触媒に鉛を含浸させてなる構成とする
ものである。
According to a second aspect of the present invention, the second catalyst comprises an oxidation catalyst or a three-way catalyst impregnated with lead.

【0013】請求項3記載の発明は、NOx浄化用触媒
を、ゼオライトにコバルトもしくは銅をイオン交換担持
してなるものとし、第2触媒を、金担持フェライトとす
る構成とするものである。
According to a third aspect of the present invention, the NOx purification catalyst is a zeolite in which cobalt or copper is ion-exchanged and supported, and the second catalyst is gold-supported ferrite.

【0014】[0014]

【作用】上記の構成により、請求項1記載の発明では、
排気ガス中のCOと一部のHCとが排気路上流側の第2
触媒により浄化されるとともに、排気路下流側へはHC
濃度の高い排気ガスが流れるので、NOxとHCとがN
Ox浄化用触媒により高い浄化率で浄化される。
With the above construction, in the invention according to claim 1,
CO in the exhaust gas and a part of HC are the second on the upstream side of the exhaust passage.
It is purified by a catalyst and HC is discharged to the downstream side of the exhaust passage.
Since exhaust gas with high concentration flows, NOx and HC are
It is purified at a high purification rate by the Ox purification catalyst.

【0015】[0015]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図2は、本発明の第1実施例に係る排気ガ
ス浄化用触媒装置を示す。この排気ガス浄化用触媒装置
は、車両の排気ガスの排気路1に設けられたNOx浄化
用触媒2と、排気路1の上記NOx浄化用触媒2より上
流側に配設された第2触媒3とを備えている。
FIG. 2 shows an exhaust gas purifying catalyst device according to a first embodiment of the present invention. This exhaust gas purification catalyst device includes a NOx purification catalyst 2 provided in an exhaust passage 1 for exhaust gas of a vehicle, and a second catalyst 3 arranged upstream of the NOx purification catalyst 2 in the exhaust passage 1. It has and.

【0017】上記NOx浄化用触媒2は、ゼオライトに
銅をイオン交換担持してなる銅イオン交換ゼオライトか
らなる。
The NOx purification catalyst 2 is made of copper ion-exchanged zeolite in which copper is ion-exchanged and supported on zeolite.

【0018】上記第2触媒3は、白金およびロジューム
がイオン交換によりモノリス担持された白金・ロジュー
ム三元触媒に、鉛が含浸されてなる。その鉛の含浸処理
と後処理とは次のようにして行われる。すなわち、上記
白金・ロジューム三元触媒に、酢酸鉛水溶液を含浸さ
せ、これを大気中で約3時間放置した後、電気炉内で4
00℃で2時間焼成する。
The second catalyst 3 is formed by impregnating lead with a platinum-rhodium ternary catalyst in which platinum and rhodium are supported on a monolith by ion exchange. The lead impregnation treatment and the post-treatment are performed as follows. That is, the above platinum-rhodium ternary catalyst was impregnated with an aqueous solution of lead acetate, allowed to stand in the atmosphere for about 3 hours, and then placed in an electric furnace for 4 hours.
Bake for 2 hours at 00 ° C.

【0019】次に、本実施例の作用について説明する。
排気ガス中のCOと一部のHCとが排気路1の上流側の
第2触媒3により浄化されるとともに、排気路1の下流
側へはHC濃度の高い排気ガスが流れるので、NOxと
HCとがNOx浄化用触媒2により高い浄化率で浄化さ
れる。すなわち、排気ガス中のHCおよびCOが充分に
浄化されるとともに、NOx浄化率を向上させることが
できるので、酸素過剰雰囲気下の自動車のエンジンに実
用化できる。
Next, the operation of this embodiment will be described.
Since CO and a part of HC in the exhaust gas are purified by the second catalyst 3 on the upstream side of the exhaust passage 1, the exhaust gas having a high HC concentration flows to the downstream side of the exhaust passage 1, so that NOx and HC And are purified by the NOx purification catalyst 2 at a high purification rate. That is, since HC and CO in the exhaust gas can be sufficiently purified and the NOx purification rate can be improved, it can be put to practical use in an automobile engine under an oxygen excess atmosphere.

【0020】また、本実施例の排気ガス浄化用触媒装置
は、排気路1にNOx浄化用触媒2と第2触媒3とが配
設された簡単な構造であるため、装置全体を小型化する
ことができ、しかも安価に製造することができる。さら
に、NOxを浄化するに当たり、触媒による接触分解作
用を利用するので、NOxが排気路中に残ることはな
く、定期的に触媒を取り出してNOx除去のための後処
理を行うという手間を省くことができる。しかも、NO
x浄化のために有害物質を使用しておらず、有害物質が
大気中に放出されることがないので、2次公害を発生さ
せることがない。
Further, since the exhaust gas purifying catalyst device of this embodiment has a simple structure in which the NOx purifying catalyst 2 and the second catalyst 3 are arranged in the exhaust passage 1, the entire device is miniaturized. It can be manufactured at low cost. Further, since the catalytic cracking action by the catalyst is used in purifying NOx, NOx does not remain in the exhaust passage, and the trouble of periodically taking out the catalyst and performing post-treatment for removing NOx is omitted. You can Moreover, NO
x Since no harmful substances are used for purification and no harmful substances are released into the atmosphere, secondary pollution will not occur.

【0021】上記第2触媒3の排気ガスに対する浄化性
能を測定したところ、図3に示す結果を得た。同図にみ
るように、上記白金・ロジューム三元触媒に適度な鉛の
含浸処理を施すことによって、酸素過剰雰囲気下(リー
ン)の排気ガスに対して、COおよびNOxの浄化率を
高率に維持したままで、HCの浄化率のみを抑制するこ
とができた。しかも、図3に示すように、空燃比λ=1
運転時(加速域)のCOおよびNOxの浄化率も向上さ
せることができた。ここで、COの浄化率が向上する理
由は、低温時の活性が悪い三元触媒からなる第2触媒3
が、NOx浄化用触媒2より上流側に配設されており、
そのさらに上流側に排気ガスの温度を低下させるものが
存在しないので、温度が上昇しやすく、COに対する浄
化性能を発揮するのに温度的に有利であるからである。
When the purification performance of the second catalyst 3 against exhaust gas was measured, the results shown in FIG. 3 were obtained. As shown in the figure, by appropriately impregnating the platinum-rhodium three-way catalyst with lead, the purification rate of CO and NOx can be increased with respect to exhaust gas in an oxygen excess atmosphere (lean). It was possible to suppress only the purification rate of HC while maintaining it. Moreover, as shown in FIG. 3, the air-fuel ratio λ = 1
It was also possible to improve the CO and NOx purification rates during operation (acceleration region). Here, the reason why the purification rate of CO is improved is that the second catalyst 3 composed of a three-way catalyst is poor in activity at low temperatures.
Is disposed upstream of the NOx purification catalyst 2,
This is because there is no one that lowers the temperature of the exhaust gas further upstream thereof, so that the temperature easily rises, and it is advantageous in terms of temperature to exert the purification performance for CO.

【0022】そこで、上記第2触媒3を上記NOx浄化
用触媒2の排気路上流側に配設し、かつリーン燃焼エン
ジンを搭載した実験車両を使用してLA−IVモードで走
行したところ、HC浄化率は95%、CO浄化率は98
%、NOx浄化率は42%であり、全て規制に適合し
た。
Therefore, when the second catalyst 3 is arranged upstream of the NOx purification catalyst 2 in the exhaust passage and an experimental vehicle equipped with a lean combustion engine is used to run in the LA-IV mode, the Purification rate is 95%, CO purification rate is 98
%, The NOx purification rate was 42%, which all complied with the regulations.

【0023】図4は、本発明の第2実施例に係る排気ガ
ス浄化用触媒装置を示す。この排気ガス浄化用触媒装置
は、車両の排気ガスの排気路1に設けられたコバルトイ
オン交換ゼオライトからなるNOx浄化用触媒4と、排
気路1の上記NOx浄化用触媒4より上流側に配設され
た金担持フェライトからなる第2触媒5とを備えてい
る。
FIG. 4 shows an exhaust gas purifying catalyst device according to a second embodiment of the present invention. This exhaust gas purification catalyst device is provided in the exhaust passage 1 for exhaust gas of a vehicle and is provided with NOx purification catalyst 4 made of cobalt ion-exchanged zeolite and in the exhaust passage 1 upstream of the NOx purification catalyst 4. And a second catalyst 5 made of gold-supported ferrite.

【0024】上記コバルトイオン交換ゼオライトは、ゼ
オライトにコバルトをイオン交換担持してなる触媒であ
り、上記金担持フェライトは、フェライトに金を担持し
てなる触媒である。
The cobalt ion-exchanged zeolite is a catalyst in which cobalt is ion-exchanged and supported on zeolite, and the gold-supported ferrite is a catalyst in which gold is supported on ferrite.

【0025】次に、本実施例の作用について説明する。
排気ガス中のCOと一部のHCとが排気路1の上流側の
第2触媒5により浄化されるとともに、排気路1の下流
側へはHC濃度の高い排気ガスが流れるので、NOxと
HCとがNOx浄化用触媒4により高い浄化率で浄化さ
れる。すなわち、排気ガス中のHCおよびCOが充分に
浄化されるとともに、NOx浄化率を向上させることが
できるので、酸素過剰雰囲気下の自動車のエンジンに実
用化できる。
Next, the operation of this embodiment will be described.
Since CO and a part of HC in the exhaust gas are purified by the second catalyst 5 on the upstream side of the exhaust passage 1, and the exhaust gas having a high HC concentration flows to the downstream side of the exhaust passage 1, NOx and HC And are purified by the NOx purification catalyst 4 at a high purification rate. That is, since HC and CO in the exhaust gas can be sufficiently purified and the NOx purification rate can be improved, it can be put to practical use in an automobile engine under an oxygen excess atmosphere.

【0026】また、本実施例の排気ガス浄化用触媒装置
についても、第1実施例と同様、装置全体を小型化する
ことができ、しかも安価に製造することができる。さら
に、NOx除去のための後処理を行う手間を省くことが
できる。しかも、2次公害を発生させることがない。
As with the first embodiment, the exhaust gas purifying catalyst device of the present embodiment can be downsized and can be manufactured at low cost. Further, it is possible to save the trouble of performing the post-treatment for removing NOx. Moreover, secondary pollution does not occur.

【0027】そこで、上記第2触媒5を上記NOx浄化
用触媒4の排気路上流側に配設し、かつリーン燃焼エン
ジンを搭載した実験車両を使用してLA−IVモードで走
行したところ、HC浄化率は93%、CO浄化率は96
%、NOx浄化率は39%であり、全て規制に適合し
た。
Therefore, when the second catalyst 5 is arranged on the upstream side of the exhaust passage of the NOx purifying catalyst 4 and an experimental vehicle equipped with a lean combustion engine is used to run in the LA-IV mode, the Purification rate 93%, CO purification rate 96
%, The NOx purification rate was 39%, all of which complied with regulations.

【0028】このように、本実施例の排気ガス浄化用触
媒装置によって、排気ガス中のHC、COおよびNOx
の全ての規制に適合できる理由は次のとおりである。
As described above, the exhaust gas purifying catalyst device of this embodiment uses HC, CO and NOx in the exhaust gas.
The reasons for being able to comply with all of the regulations are as follows.

【0029】すなわち、金担持フェライト(第2触媒
5)が優先的にCO−NO反応を起こしてCOを選択的
に酸化脱離することにより、図5に示すように、COに
対して高い浄化率を示すが、HCに対しては浄化率が低
い。また、コバルトイオン交換ゼオライト(NOx浄化
用触媒4)は、HC−NO−O反応を選択的に起こす
ので、多量のHCが流れ込まれると、図6に示すよう
に、HCおよびNOに対して高い浄化率を示す。なお、
図5および図6において、排気ガスの温度の測定は各触
媒の入り口で行った。
That is, the gold-supported ferrite (the second catalyst 5) preferentially causes the CO-NO reaction to selectively oxidize and desorb CO, and as shown in FIG. However, the purification rate is low for HC. Further, the cobalt ion exchanged zeolite (catalyst for NOx purification 4), since the HC-NO-O 2 reaction selectively causing, when a large amount of HC is flowing, as shown in FIG. 6, with respect to HC and NO It shows a high purification rate. In addition,
In FIGS. 5 and 6, the temperature of the exhaust gas was measured at the entrance of each catalyst.

【0030】なお、NOx浄化用触媒は、上記第1およ
び第2実施例のものに限られるものではなく、銅やコバ
ルト以外の遷移金属をゼオライトにイオン交換担持して
なる触媒であっても良い。
The NOx purifying catalyst is not limited to those of the first and second embodiments, but may be a catalyst in which a transition metal other than copper or cobalt is ion-exchanged and supported on zeolite. ..

【0031】また、上記第1実施例では、第2触媒3
は、白金・ロジューム三元触媒に鉛が含浸されてなるも
のであったが、これに限られるものではなく、上記以外
の三元触媒に鉛が含浸されてなるものや、酸化触媒に鉛
が含浸されてなるものであっても良い。
In the first embodiment, the second catalyst 3
Was a platinum-rhodium three-way catalyst impregnated with lead, but is not limited to this.Three-way catalysts other than the above are impregnated with lead, and the oxidation catalyst contains lead. It may be impregnated.

【0032】[0032]

【発明の効果】以上のように、本発明の排気ガス浄化用
触媒装置によれば、排気路の上流側の第2触媒が排気ガ
ス中のCOと一部のHCとを浄化するとともに、下流側
へはHC濃度の高い排気ガスが流れるので、NOx浄化
用触媒が高い浄化率でNOxとHCとを浄化する。すな
わち、排気ガス中のHCおよびCOが充分に浄化される
とともに、NOx浄化率を向上させることができるの
で、酸素過剰雰囲気下の自動車のエンジンに実用化でき
る。
As described above, according to the exhaust gas purifying catalyst device of the present invention, the second catalyst on the upstream side of the exhaust passage purifies CO and a part of HC in the exhaust gas, and also downstream. Since exhaust gas having a high HC concentration flows to the side, the NOx purification catalyst purifies NOx and HC at a high purification rate. That is, since HC and CO in the exhaust gas can be sufficiently purified and the NOx purification rate can be improved, it can be put to practical use in an automobile engine under an oxygen excess atmosphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】排気ガス中のHC濃度が銅イオン交換ゼオライ
トのNO浄化率に及ぼす影響を示すグラフである。
FIG. 1 is a graph showing the effect of HC concentration in exhaust gas on the NO purification rate of copper ion-exchanged zeolite.

【図2】本発明の第1実施例を示す排気ガス浄化用触媒
装置の構成図である。
FIG. 2 is a configuration diagram of an exhaust gas purifying catalyst device showing a first embodiment of the present invention.

【図3】第1実施例における第2触媒の排気ガスに対す
る浄化率を示すグラフである。
FIG. 3 is a graph showing a purification rate of exhaust gas of a second catalyst in the first embodiment.

【図4】本発明の第2実施例を示す図2相当図である。FIG. 4 is a view, corresponding to FIG. 2, showing a second embodiment of the present invention.

【図5】第2実施例における第2触媒の排気ガスに対す
る浄化率を示すグラフである。
FIG. 5 is a graph showing a purification rate of exhaust gas of a second catalyst in the second embodiment.

【図6】第2実施例におけるNOx浄化用触媒の排気ガ
スに対する浄化率を示すグラフである。
FIG. 6 is a graph showing the purification rate of the NOx purification catalyst for exhaust gas in the second embodiment.

【符号の説明】[Explanation of symbols]

1 排気路 2,4 NOx浄化用触媒 3,5 第2触媒 1 Exhaust passage 2,4 NOx purification catalyst 3,5 Second catalyst

───────────────────────────────────────────────────── フロントページの続き (72)発明者 京極 誠 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Kyogoku 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Mazda Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排気ガスの排気路に設けられ、ゼオライ
トに遷移金属をイオン交換担持してなるNOx浄化用触
媒と、このNOx浄化用触媒の上流側に配設され、CO
を浄化しかつHCを浄化する能力が抑制された第2触媒
とを備えたことを特徴とする排気ガス浄化用触媒装置。
1. A NOx purification catalyst, which is provided in an exhaust gas exhaust passage and has a zeolite carrying a transition metal by ion exchange, and a NOx purification catalyst disposed upstream of the NOx purification catalyst.
An exhaust gas purifying catalyst device, comprising: a second catalyst having an ability to purify HC and suppress HC.
【請求項2】 第2触媒は、酸化触媒もしくは三元触媒
に鉛が含浸されてなるものである請求項1記載の排気ガ
ス浄化用触媒装置。
2. The exhaust gas purifying catalyst device according to claim 1, wherein the second catalyst is an oxidation catalyst or a three-way catalyst impregnated with lead.
【請求項3】 NOx浄化用触媒はゼオライトにコバル
トもしくは銅をイオン交換担持してなるものであり、第
2触媒は金担持フェライトである請求項1記載の排気ガ
ス浄化用触媒装置。
3. The exhaust gas purifying catalyst device according to claim 1, wherein the NOx purifying catalyst is a zeolite in which cobalt or copper is ion-exchanged and supported, and the second catalyst is gold-supporting ferrite.
JP3234678A 1991-09-13 1991-09-13 Waste gas cleaning catalystic device Pending JPH0568887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3234678A JPH0568887A (en) 1991-09-13 1991-09-13 Waste gas cleaning catalystic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3234678A JPH0568887A (en) 1991-09-13 1991-09-13 Waste gas cleaning catalystic device

Publications (1)

Publication Number Publication Date
JPH0568887A true JPH0568887A (en) 1993-03-23

Family

ID=16974747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3234678A Pending JPH0568887A (en) 1991-09-13 1991-09-13 Waste gas cleaning catalystic device

Country Status (1)

Country Link
JP (1) JPH0568887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001217A1 (en) * 1997-07-02 1999-01-14 Engelhard Corporation Catalyst for selective oxidation of carbon monoxide and method using the same
US7763214B2 (en) 2005-09-26 2010-07-27 Denso Corporation Reducing agent forming device and exhaust gas control system using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001217A1 (en) * 1997-07-02 1999-01-14 Engelhard Corporation Catalyst for selective oxidation of carbon monoxide and method using the same
US6548446B1 (en) 1997-07-02 2003-04-15 Engelhard Corporation Catalyst for selective oxidation of carbon monoxide
US7763214B2 (en) 2005-09-26 2010-07-27 Denso Corporation Reducing agent forming device and exhaust gas control system using the same

Similar Documents

Publication Publication Date Title
KR101841905B1 (en) Catalytic converter for removing nitrogen oxides from the exhaust gas of diesel engines
US5727385A (en) Lean-burn nox catalyst/nox trap system
US20080282683A1 (en) Device for the purification of exhaust gas
US8062618B2 (en) Exhaust aftertreatment system and method of treating exhaust gas
BRPI0717470B1 (en) Method and system for reducing nitrogen oxides present in a poor gas stream comprising nitric oxide
JPH0615016B2 (en) Automotive exhaust gas purification device
JP4703818B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3157556B2 (en) Exhaust gas purification catalyst device
JP3282344B2 (en) Exhaust gas purification device
JPH10118457A (en) Exhaust gas cleaning apparatus for internal combustion engine
KR101274468B1 (en) Oxidation Catalyst for purifying the exhaust gas of diesel engine
JP5094199B2 (en) Exhaust gas purification device
JP3137496B2 (en) Exhaust purification catalyst for diesel engines
JPH0568887A (en) Waste gas cleaning catalystic device
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JPH06319953A (en) Purification of nitrogen oxide
JPH0568888A (en) Waste gas cleaning catalyst
JP2000002111A (en) Catalyst for exhaust gas emission control
JP3414808B2 (en) Hydrocarbon adsorbent in exhaust gas
JPH0663359A (en) Nitrogen oxides purifying method and waste gas treating device
JPH06142520A (en) Hydrocarbon adsorptive catalyst
JP3527759B2 (en) Method for purifying exhaust gas containing nitrogen oxides
JP3291316B2 (en) Exhaust gas purification catalyst
JPH11303625A (en) Exhaust emission control device for internal combustion engine and exhaust emission control method using it
KR100300179B1 (en) catalyst system reducing NOx for gasoline GDI/lean burn engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020305