JPH056879A - Dry etching method - Google Patents
Dry etching methodInfo
- Publication number
- JPH056879A JPH056879A JP15674191A JP15674191A JPH056879A JP H056879 A JPH056879 A JP H056879A JP 15674191 A JP15674191 A JP 15674191A JP 15674191 A JP15674191 A JP 15674191A JP H056879 A JPH056879 A JP H056879A
- Authority
- JP
- Japan
- Prior art keywords
- etching
- etched
- ion beam
- substrate
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は励起ビ−ムと反応性ガス
を用いた半導体のドライエッチング方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor dry etching method using an excitation beam and a reactive gas.
【0002】[0002]
【従来の技術】従来から反応性ガスと励起ビ−ムとして
イオンビ−ムを用いた化合物半導体のドライエッチング
方法が知られており、その一例が吉川等によって報告さ
れている(平成3年春季応用物理学会講演会予稿集31
p−K−6)。このドライエッチング方法においては、
アルゴンイオンを試料基板に垂直に照射すると同時に反
応性ガスとして塩素ガスをノズルから供給し、イオンビ
−ム励起によってInP基板のエッチングを行ってい
る。2. Description of the Related Art A dry etching method for a compound semiconductor using a reactive gas and an ion beam as an excitation beam has been conventionally known, and an example thereof has been reported by Yoshikawa et al. Proceedings of the Physical Society of Japan 31
p-K-6). In this dry etching method,
The sample substrate is irradiated with argon ions vertically, and chlorine gas is supplied from the nozzle as a reactive gas at the same time, and the InP substrate is etched by the ion beam excitation.
【0003】[0003]
【発明が解決しようとする課題】しかしながら上述した
従来のドライエッチング方法においては、基板温度が約
200℃以上で平滑なエッチング底面が得られるもの
の、ガスエッチングによるサイドエッチング量が大き
く、エッチング形状の垂直性がそこなわれエッチング幅
の制御が困難であるという問題点があった。また基板温
度を100℃程度まで下げるとサイドエッチングが抑制
され垂直性が得られるが、エッチング底面が荒れるとい
う問題点があった。However, in the above-described conventional dry etching method, although a smooth etching bottom surface can be obtained at a substrate temperature of about 200 ° C. or higher, the side etching amount by gas etching is large and the vertical etching shape However, there is a problem that the etching width is difficult to control and the etching width is difficult to control. Further, when the substrate temperature is lowered to about 100 ° C., side etching is suppressed and verticality is obtained, but there is a problem that the etching bottom surface becomes rough.
【0004】本発明の目的は、エッチング底面が平滑で
ありかつサイドエッチング量が小さいため、エッチング
形状の垂直性が良好でありエッチング幅の制御性に優れ
たドライエッチング方法を提供することにある。An object of the present invention is to provide a dry etching method in which the etching bottom surface is smooth and the side etching amount is small, so that the verticality of the etching shape is good and the control of the etching width is excellent.
【0005】[0005]
【課題を解決するための手段】本発明は、励起ビ−ムと
反応性ガスを用いた半導体のドライエッチング方法にお
いて、少なくとも水素イオン或は水素ラジカル原子のい
ずれかを含む半導体表面改質種を照射することにより半
導体表面近傍に電子枯渇層を形成し、側面におけるガス
エッチングを抑制する工程を有することを特徴とするド
ライエッチング方法である。SUMMARY OF THE INVENTION The present invention provides a method for dry etching a semiconductor using an excited beam and a reactive gas, wherein a semiconductor surface modifying species containing at least either hydrogen ion or hydrogen radical atom is used. This is a dry etching method characterized by comprising a step of forming an electron depletion layer in the vicinity of the semiconductor surface by irradiation and suppressing gas etching on the side surface.
【0006】[0006]
【作用】半導体基板に水素等のイオン或はラジカル原子
を照射すると、これらの原子は半導体基板表面近傍に注
入され半導体中の電子を捕獲する。そのため半導体基板
表面近傍に電子枯渇層が形成される。一方、塩素ガス等
の反応性ガスを用いたガスエッチングにおいては、半導
体基板に付着した反応性ガス分子が基板から電子をもら
い負イオンとラジカル原子に解離し、基板構成原子と反
応することによりエッチングが進行する。When the semiconductor substrate is irradiated with ions or radical atoms such as hydrogen, these atoms are injected near the surface of the semiconductor substrate and trap electrons in the semiconductor. Therefore, an electron depletion layer is formed near the surface of the semiconductor substrate. On the other hand, in gas etching using a reactive gas such as chlorine gas, the reactive gas molecules attached to the semiconductor substrate receive electrons from the substrate, dissociate into negative ions and radical atoms, and react with the substrate constituent atoms to perform etching. Progresses.
【0007】本発明のドライエッチング方法によれば、
エッチング時に半導体表面近傍には一様に電子枯渇層が
形成されるため半導体基板に付着した反応性ガス分子は
熱エネルギ−だけでは解離出来ない。このときイオンビ
−ムが照射されている底面部分ではイオン励起により反
応性ガス分子が解離しエッチングが進行するが、イオン
ビ−ムが当たらない側面では反応性ガス分子は解離出来
ないためエッチングは進行しない。従って垂直性の良好
なエッチング形状が得られ、エッチング幅を均一に制御
することが出来る。According to the dry etching method of the present invention,
Since an electron depletion layer is uniformly formed in the vicinity of the semiconductor surface during etching, the reactive gas molecules attached to the semiconductor substrate cannot be dissociated only by thermal energy. At this time, the reactive gas molecules are dissociated by ion excitation at the bottom portion irradiated with the ion beam and etching proceeds, but the reactive gas molecules cannot be dissociated at the side where the ion beam is not hit so that etching does not proceed. .. Therefore, an etching shape with good verticality can be obtained, and the etching width can be uniformly controlled.
【0008】[0008]
【実施例】次に本発明の実施例について図面を参照にし
て詳細に説明する。図1は本発明の一実施例を説明する
ための模式図である。Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a schematic diagram for explaining an embodiment of the present invention.
【0009】本実施例では励起ビ−ムとして不活性ガス
イオンを用い、反応性ガスは分子状で供給してエッチン
グを行うイオンビ−ムアシストエッチング(IBAE)
方法を用いた。また半導体基板にはInP基板1を用
い、フォトリソグラフィ法によりストライプ状に加工し
たSio2 膜をエッチングマスク2として用いた。EC
R(Electron Cyclotron Reso
nance)プラズマ室に不活性ガスとしてアルゴン
(Ar)を、半導体表面改質種として水素(H2 )を導
入してプラズマ化し、引出し電極により加速してアルゴ
ンイオンビ−ム3及び水素イオンビ−ム4を基板上に照
射する。またこのとき水素ラジカル原子5は拡散により
基板に達する。反応性ガスとしては塩素ガスを用い基板
近傍のノズルから塩素分子6として基板に照射した。エ
ッチング条件の一例として、加速電圧約500V、塩素
ガス圧約8×10- 4 Torr、基板温度約200℃の
時エッチングレ−トは約1μm/minで平滑なエッチ
ング底面が得られる。このときエッチング底面及び側面
には水素イオンビ−ム4及び水素ラジカル原子5が照射
されているので半導体表面近傍全体に電子枯渇層7が形
成される。エッチング底面に付着した塩素分子6は、質
量の大きなアルゴンイオンビ−ムのイオンアシスト効果
により解離し基板構成元素であるインジウム(In)原
子と反応してインジウム塩化物を形成し脱離する。一
方、エッチング側面にも塩素分子6は照射されるが側面
にも電子枯渇層が形成されており、またアルゴンイオン
ビ−ム3は直接照射されないので塩素分子6は解離出来
ずエッチングは進行しない。従って反応性ガスによるサ
イドエッチングは生じず、垂直性が良好であり、エッチ
ング幅がマスク幅のみによって定まる制御性の高いエッ
チングが可能となる。In this embodiment, an ion beam assisted etching (IBAE) is used in which an inert gas ion is used as an excitation beam and a reactive gas is supplied in a molecular state for etching.
The method was used. An InP substrate 1 was used as a semiconductor substrate, and a Sio 2 film processed into a stripe shape by a photolithography method was used as an etching mask 2. EC
R (Electron Cyclotron Reso
Argon (Ar) as an inert gas and hydrogen (H 2 ) as a semiconductor surface modifying species are introduced into the plasma chamber to generate plasma, which is accelerated by the extraction electrode to accelerate the argon ion beam 3 and the hydrogen ion beam 4. Is irradiated onto the substrate. At this time, the hydrogen radical atoms 5 reach the substrate by diffusion. Chlorine gas was used as the reactive gas, and the substrate was irradiated with chlorine molecules 6 from a nozzle near the substrate. As an example of the etching conditions, an acceleration voltage of about 500V, a chlorine gas pressure of about 8 × 10 - 4 Torr, a substrate temperature of about 200 ° C. when etching rate - DOO smooth etching bottom is obtained in about 1 [mu] m / min. At this time, since the hydrogen ion beam 4 and the hydrogen radical atom 5 are irradiated on the bottom surface and the side surface of the etching, the electron depletion layer 7 is formed in the whole vicinity of the semiconductor surface. The chlorine molecule 6 attached to the etching bottom surface is dissociated by the ion assist effect of a large mass of argon ion beam and reacts with the indium (In) atom which is a constituent element of the substrate to form an indium chloride to be desorbed. On the other hand, the chlorine molecule 6 is also irradiated on the etching side surface, but the electron depletion layer is also formed on the side surface, and since the argon ion beam 3 is not directly irradiated, the chlorine molecule 6 cannot be dissociated and the etching does not proceed. Therefore, side etching due to the reactive gas does not occur, verticality is excellent, and etching with high controllability in which the etching width is determined only by the mask width becomes possible.
【0010】なおここで電子枯渇層形成に用いた水素原
子は、エッチング後に基板を約400℃以上に加熱する
ことにより容易に半導体中から脱離するので、電子枯渇
層7を消滅させることが出来る。従ってエッチングプロ
セス時に形成された電子枯渇層7がその後のプロセス工
程に障害を及ぼすかまたはデバイス特性の劣化をもたら
す場合でも上記熱処理工程により容易に回避することが
出来る。The hydrogen atoms used for forming the electron depletion layer are easily desorbed from the semiconductor by heating the substrate to about 400 ° C. or higher after etching, so that the electron depletion layer 7 can be eliminated. .. Therefore, even if the electron depletion layer 7 formed during the etching process impairs subsequent process steps or deteriorates the device characteristics, it can be easily avoided by the heat treatment step.
【0011】上記実施例においてエッチング方式はイオ
ンビ−ムアシストエッチング(IBAE)方法を用いた
がこれに限らず、電子ビ−ム励起エッチングや光励起エ
ッチング等他のドライエッチング方法を用いる場合にも
本発明は適用できる。In the above embodiment, the ion beam assisted etching (IBAE) method was used as the etching method, but the present invention is not limited to this, and the present invention is also applicable to other dry etching methods such as electron beam excited etching and photoexcited etching. Is applicable.
【0012】上記実施例においては、被エッチング半導
体基板はInPとしたがこれに限らず、他の半導体基板
例えばGaAsを用いても本発明は適用できる。In the above embodiment, the semiconductor substrate to be etched is InP, but the present invention is not limited to this, and the present invention can be applied to other semiconductor substrates such as GaAs.
【0013】上記実施例においては不活性性ガスイオン
種としてアルゴンを、反応性ガス種として塩素を用いた
がこれに限らず、他の元素例えば不活性ガスイオン種と
してキセノン(Xe)等の不活性ガスを、反応性ガス種
として臭素(Br)、ヨウ素(I)などのハロゲン元素
を用いても本発明は適用できる。In the above embodiment, argon was used as the inert gas ion species and chlorine was used as the reactive gas species, but the present invention is not limited to this. For example, other elements such as xenon (Xe) may be used as the inert gas ion species. The present invention can be applied even when the active gas is a halogen element such as bromine (Br) or iodine (I) as the reactive gas species.
【0014】また上記実施例においては半導体表面改質
種として水素を用いたがこれに限らず、例えば重水素の
ような半導体表面近傍に電子枯渇層を形成することが出
来る他の原子を用いても本発明は適用できる。Although hydrogen is used as the semiconductor surface modifying species in the above embodiments, the present invention is not limited to this, and other atoms such as deuterium capable of forming an electron depletion layer near the semiconductor surface may be used. The present invention can also be applied.
【0015】[0015]
【発明の効果】以上説明したように本発明によれば、サ
イドエッチング量が小さいため、エッチング形状の垂直
性が良好であり、エッチング幅の制御性に優れたドライ
エッチングを行うことが出来る。As described above, according to the present invention, since the side etching amount is small, the verticality of the etching shape is good, and the dry etching with the excellent controllability of the etching width can be performed.
【図1】本発明の一実施例を説明するための模式図であ
る。FIG. 1 is a schematic diagram for explaining an embodiment of the present invention.
1 InP基板 2 エッチングマスク 3 アルゴンイオンビ−ム 4 水素イオンビ−ム 5 水素ラジカル原子 6 塩素分子 7 電子枯渇層 1 InP substrate 2 Etching mask 3 Argon ion beam 4 Hydrogen ion beam 5 Hydrogen radical atom 6 Chlorine molecule 7 Electron depletion layer
Claims (1)
のドライエッチング方法において、少なくとも水素イオ
ン或は水素ラジカル原子のいずれかを含む半導体表面改
質種を照射することにより半導体表面近傍に電子枯渇層
を形成し、側面におけるガスエッチングを抑制する工程
を有することを特徴とするドライエッチング方法。Claim: What is claimed is: 1. A method for dry etching a semiconductor using an excited beam and a reactive gas, which comprises irradiating a semiconductor surface modifying species containing at least either hydrogen ion or hydrogen radical atom. Thus, the dry etching method is characterized in that the method has a step of forming an electron depletion layer in the vicinity of the semiconductor surface and suppressing gas etching on the side surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15674191A JPH056879A (en) | 1991-06-27 | 1991-06-27 | Dry etching method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15674191A JPH056879A (en) | 1991-06-27 | 1991-06-27 | Dry etching method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH056879A true JPH056879A (en) | 1993-01-14 |
Family
ID=15634306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15674191A Pending JPH056879A (en) | 1991-06-27 | 1991-06-27 | Dry etching method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH056879A (en) |
-
1991
- 1991-06-27 JP JP15674191A patent/JPH056879A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6329298B1 (en) | Apparatus for treating samples | |
JP3275043B2 (en) | Post-treatment method of etching | |
JPS61136229A (en) | Dry etching device | |
JP2002083799A (en) | Semiconductor etching device, and etching method for semiconductor device utilizing the same | |
JP3444793B2 (en) | Method of manufacturing gas discharge panel | |
JPH056879A (en) | Dry etching method | |
JPS63141316A (en) | Low temperature dry-etching method | |
US5133830A (en) | Method of pretreatment and anisotropic dry etching of thin film semiconductors | |
JPH0590230A (en) | Dry etching method | |
JP3170849B2 (en) | Dry etching method | |
RU2029411C1 (en) | Method of plasma etching of thin films | |
JP3002033B2 (en) | Dry etching method | |
JPH04242933A (en) | Formation of oxide film | |
JPH07130712A (en) | Method for etching pt-based alloy | |
JP3117687B2 (en) | Aperture plate and processing method thereof | |
JP2615070B2 (en) | Etching method | |
JPS61240635A (en) | Dry etching method | |
JPH1050680A (en) | Dry etching platinum thin film | |
JPS6030098B2 (en) | Spatsuta etching method | |
JPS6191930A (en) | Cleaning method of semiconductor substrate | |
JP2728483B2 (en) | Sample post-treatment method and device | |
JP3009209B2 (en) | Surface protection method | |
JPH0590180A (en) | Dry-cleaning method of plasma cvd processor | |
JPH08153703A (en) | Dry-etching method for 2-6 group compound semiconductor | |
JPH01278023A (en) | Method and device for dry etching |