[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0568454B2 - - Google Patents

Info

Publication number
JPH0568454B2
JPH0568454B2 JP60055966A JP5596685A JPH0568454B2 JP H0568454 B2 JPH0568454 B2 JP H0568454B2 JP 60055966 A JP60055966 A JP 60055966A JP 5596685 A JP5596685 A JP 5596685A JP H0568454 B2 JPH0568454 B2 JP H0568454B2
Authority
JP
Japan
Prior art keywords
benzyl
parts
weight
reaction
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60055966A
Other languages
Japanese (ja)
Other versions
JPS61215340A (en
Inventor
Shinsuke Tanaka
Kaoru Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP60055966A priority Critical patent/JPS61215340A/en
Publication of JPS61215340A publication Critical patent/JPS61215340A/en
Publication of JPH0568454B2 publication Critical patent/JPH0568454B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明はベンジルエーテル及びその誘導体(以
下、これらを総称してベンジルエーテル類とい
う)を一段反応により短時間且つ高収率で合成す
る方法に関する。 (従来技術およびその問題点) ベンジルエーテル類の合成方法として、ベンジ
ルハライドまたはその核置換体(以下、これらを
総称してベンジルハライド類という)と酢酸のア
ルカリ金属塩とを反応させてベンジルエステル類
を合成し、次いで該ベンジルエステル類を加水分
解しベンジルアルコール類とした後、さらに該ベ
ンジルアルコール類とベンジルハライド類をアル
コール以外の水に対して親和性の良好な有機溶媒
中でアルカリ金属水酸化物水溶液と共に長時間加
熱攪拌してベンジルエーテル類を得る方法があ
る。 しかしながら、上記した合成方法は反応に多段
階を要するため操作が煩雑であり、また熱に対し
て反応活性な置換基を有するベンジルハライド誘
導体を原料とした場合には、長時間加熱により生
成物の分解や重合及び副生物の生成を伴うため収
率が低下する等の問題があつた。特に熱に対して
反応活性な置換基を有するベンジルハライド誘導
体を原料として使用した場合には、合成物も熱に
対して反応活性な化合物となることが多く、高温
で必要以上に長時間の反応を続けるとポリマーを
生成したり、分解物を生じるし、また反応時間が
短かすぎると収率が低くなるなど、目的とする合
成物を高収率で得るための反応時間のコントロー
ルが困難であつた。 (問題を解決するための手段) 本発明者等は上記問題に対して、各段階におけ
る反応機構について鋭意検討した結果、特定の溶
媒を用いることにより反応が一段階で出来、さら
に特定の触媒を併用することにより、ベンジルエ
ーテル類を短時間かつ高収率で合成出来ることを
見い出し、本発明を完成するに至つた。即ち、本
発明はジメチルスルホキシド及びジメチルホルム
アミドの内の少なくとも1種の溶媒中で相関移動
触媒の存在下にベンジルハライド類とアルカリ金
属水酸化物水溶液とを反応することを特徴とする
ベンジルエーテル類の合成方法である。 本発明に用いられるベンジルハライド類は、一
般式
(Technical Field of the Invention) The present invention relates to a method for synthesizing benzyl ether and derivatives thereof (hereinafter collectively referred to as benzyl ethers) in a short time and in high yield by a one-step reaction. (Prior art and its problems) As a method for synthesizing benzyl ethers, benzyl halides or their nuclear substituted products (hereinafter collectively referred to as benzyl halides) are reacted with an alkali metal salt of acetic acid to produce benzyl esters. The benzyl esters are then hydrolyzed to produce benzyl alcohols, and then the benzyl alcohols and benzyl halides are subjected to alkali metal hydroxylation in an organic solvent other than alcohol that has good affinity for water. There is a method of obtaining benzyl ethers by heating and stirring them together with an aqueous solution for a long period of time. However, the above synthesis method requires multiple steps for the reaction and is complicated to operate, and when a benzyl halide derivative having a heat-reactive substituent is used as a raw material, the product cannot be formed by heating for a long time. There were problems such as a decrease in yield due to decomposition, polymerization, and generation of by-products. In particular, when a benzyl halide derivative having a heat-reactive substituent is used as a raw material, the synthesized product often becomes a heat-reactive compound, and the reaction takes an unnecessarily long time at high temperatures. It is difficult to control the reaction time to obtain the desired compound in high yield, as if the reaction time is too short, the yield will be low. It was hot. (Means for solving the problem) The inventors of the present invention solved the above problem by intensively studying the reaction mechanism at each stage, and found that by using a specific solvent, the reaction can be performed in one step, and by using a specific catalyst. It has been discovered that benzyl ethers can be synthesized in a short time and in high yield by using these in combination, and the present invention has been completed. That is, the present invention provides a method for producing benzyl ethers, which is characterized by reacting benzyl halides with an aqueous alkali metal hydroxide solution in at least one solvent selected from dimethyl sulfoxide and dimethyl formamide in the presence of a phase transfer catalyst. This is a synthesis method. The benzyl halides used in the present invention have the general formula

〔作用機構及び効果〕[Mechanism of action and effects]

本発明によれば、次の様な反応機構(1)式を有す
ると考えられる。
According to the present invention, the following reaction mechanism (1) is considered to exist.

【化】 (但し、Kはアルカリ金属である) 即ち、ベンジルクロライドとアルカリ金属水酸
化物水溶液は特定した溶媒及び相関移動触媒を用
いることにより、溶媒層と水層の界面で(1)式の如
く反応が速やかに行なわれる。即ち、ベンジルク
ロライドaは加水分解を受けベンジルアルコール
bとなり、それがアルカリ金属塩cとなり、その
ベンジルアルコキシアニオンが(1)式の矢印の如
く、未反応のベンジルクロライドa′のベンジル位
炭素を攻撃してエーテル結合を生じ、ベンジルエ
ーテルdとなる一段反応となる。このことは、反
応中間体となるベンジルアルコールbが反応副生
成物として得られることよりも明らかである。特
に本発明においては、相関移動触媒を用いること
により、上記した個々の反応が速やかに完結され
るため、副生物や分解物等の生成が抑制され収率
が上がる。 従つて、熱に対して反応活性な置換基を有する
原料等を用いた場合においても、70%以上の高収
率で目的物を得ることが出来る。 (実施例) 以下、本発明を実施例に基づき詳細に説明す
る。 実施例 1 還流冷却管、攪拌棒および温度計を備えた2
の三ツ口フラスコ中にジメチルスルホキシド900
ml仕込み、オイルバスにより外部から該ジメチル
スルホキシドを加熱し100℃にした。この溶媒中
にクロルメチルスチレン380gを加え、次に水酸
化カリウム170gと臭化テトラブチルアンモニウ
ム2gを水400mlに溶かした溶液を一気に加えた。
その後、反応温度を100℃に保ち15分間の攪拌を
続け反応を完結した。反応終了後、フラスコを氷
冷した。そして反応によつて生成した沈殿を別
し、液は分液ロートに移し500mlのジエチルエ
ーテルと500mlの水を加えよく振り、水層と有機
層が分離するのを待ち下層の水層を除いた。有機
層だけが残つた分液ロートに水を500ml加え有機
層を洗浄した。その操作を3回行なつた後、有機
層を1の三角フラスコに移し該フラスコ中に少
量の無水硫酸マグネシウムを添加した。乾燥剤を
別し、液は減圧下でジエチルエーテルを除き
目的物であるオレンジ色のビスビニルベンジルエ
ーテルを得た。収率と生成物の構造の確認は、ガ
スクロマトグラフイー質量分析計で行なつた。こ
の結果、目的物であるビスビニルベンジルエーテ
ルの収率は70%、副生成物としてビニルベンジル
アルコール25%を得た。 実施例 2 原料のベンジルハライドとしてベンジルクロラ
イド138gを用い、水酸化カリウム58g、臭化テ
トラブチルアンモニウム1gを水200mlに溶かし
た溶液とジメチルスルホキシド900mlで実施例1
と同じ条件下反応を行なつた。その結果ジベンジ
ルエーテルを80%、ベンジルアルコールを20%の
収率で得た。 実施例 3 クロルメチルスチレン380g、水酸化カリウム
140gと相関移動触媒としてジベンゾ18−クラウ
ン6の1gを水400mlに溶かした溶液とジメチル
スルホキシド900mlを用いて、実施例1と同じ条
件下で反応させた。その結果ビスビニルベンジル
エーテルを50%、ビニルベンジルアルコールを40
%の収率で得た。 実施例 4 原料のベンジルハライドとしてベンジルクロラ
イド138gを用い、水酸化カリウム58gと臭化テ
トラブチルアンモニウム1gを水200mlに溶かし
た溶液とジメチルホルムアミド900mlで実施例1
と同じ条件下で反応を行つた。 その結果、ベンジルエーテル及びベンジルアル
コールの収率は、それぞれ80%、20%であつた。 比較例 1 ベンジルクロライド138g、水酸化カリウム50
gと臭化テトラブチルアンモニウム1gを水200
mlに溶かした溶液と反応溶媒として各種有機溶媒
(テトラヒドロフラン、ジオキサン、ジエチルエ
ーテル、n−ヘキサン、ベンゼン、アセトニトリ
ル)を用いて、実施例1と同じ条件で反応させた
時、目的物は得られず、原料回収に終つた。また
反応時間を延長し、6時間かけて反応した場合も
目的とするジベンジルエーテル体は得られなかつ
た。 比較例 2 実施例1の反応条件のうち反応時間を15分から
2時間に変更し相関移動触媒を用いなかつた場
合、オレンジ色の弾性のある個体(ビニルベンジ
ルエーテルのポリマー)が生成し目的物であるベ
ンジルエーテル体は得られなかつた。
[Chemical formula] (However, K is an alkali metal.) That is, by using a specified solvent and a phase transfer catalyst, benzyl chloride and alkali metal hydroxide aqueous solution can form the formula (1) at the interface between the solvent layer and the water layer. The reaction takes place quickly. That is, benzyl chloride a undergoes hydrolysis to become benzyl alcohol b, which becomes an alkali metal salt c, and the benzyl alkoxy anion attacks the benzylic carbon of unreacted benzyl chloride a′ as shown by the arrow in formula (1). This leads to the formation of an ether bond, resulting in a one-step reaction to form benzyl ether d. This is clearer than the fact that benzyl alcohol b, which is a reaction intermediate, is obtained as a reaction by-product. In particular, in the present invention, by using a phase transfer catalyst, the individual reactions described above are quickly completed, thereby suppressing the production of by-products, decomposition products, etc., and increasing the yield. Therefore, even when using a raw material having a heat-reactive substituent, the desired product can be obtained with a high yield of 70% or more. (Examples) Hereinafter, the present invention will be described in detail based on Examples. Example 1 2 equipped with reflux condenser, stir bar and thermometer
900 g of dimethyl sulfoxide in a three-necked flask.
ml and heated the dimethyl sulfoxide externally to 100°C using an oil bath. 380 g of chloromethylstyrene was added to this solvent, and then a solution of 170 g of potassium hydroxide and 2 g of tetrabutylammonium bromide dissolved in 400 ml of water was added all at once.
Thereafter, the reaction temperature was maintained at 100°C and stirring was continued for 15 minutes to complete the reaction. After the reaction was completed, the flask was cooled on ice. Then, the precipitate generated by the reaction was separated, the liquid was transferred to a separating funnel, 500 ml of diethyl ether and 500 ml of water were added, shaken well, and the aqueous layer and organic layer were separated.The lower aqueous layer was removed. . 500 ml of water was added to the separating funnel in which only the organic layer remained to wash the organic layer. After performing this operation three times, the organic layer was transferred to Erlenmeyer flask No. 1, and a small amount of anhydrous magnesium sulfate was added to the flask. The drying agent was separated, and diethyl ether was removed from the liquid under reduced pressure to obtain the desired product, orange bisvinylbenzyl ether. The yield and structure of the product were confirmed using gas chromatography and mass spectrometry. As a result, the yield of the target product, bisvinylbenzyl ether, was 70%, and the by-product, vinylbenzyl alcohol, was 25%. Example 2 Example 1 was prepared using 138 g of benzyl chloride as the raw material benzyl halide, a solution of 58 g of potassium hydroxide and 1 g of tetrabutylammonium bromide dissolved in 200 ml of water, and 900 ml of dimethyl sulfoxide.
The reaction was carried out under the same conditions. As a result, dibenzyl ether and benzyl alcohol were obtained in a yield of 80% and 20%, respectively. Example 3 380g of chloromethylstyrene, potassium hydroxide
A reaction was carried out under the same conditions as in Example 1 using 140 g of dibenzo 18-crown 6 as a phase transfer catalyst dissolved in 400 ml of water and 900 ml of dimethyl sulfoxide. The result is 50% bisvinylbenzyl ether and 40% vinylbenzyl alcohol.
% yield. Example 4 Using 138 g of benzyl chloride as the raw material benzyl halide, Example 1 was prepared using a solution of 58 g of potassium hydroxide and 1 g of tetrabutylammonium bromide dissolved in 200 ml of water and 900 ml of dimethylformamide.
The reaction was carried out under the same conditions. As a result, the yields of benzyl ether and benzyl alcohol were 80% and 20%, respectively. Comparative example 1 138g of benzyl chloride, 50g of potassium hydroxide
g and 1 g of tetrabutylammonium bromide to 200 g of water.
ml and various organic solvents (tetrahydrofuran, dioxane, diethyl ether, n-hexane, benzene, acetonitrile) as reaction solvents under the same conditions as Example 1, the target product was not obtained. , resulting in raw material recovery. Further, even when the reaction time was extended to 6 hours, the desired dibenzyl ether product was not obtained. Comparative Example 2 When the reaction time was changed from 15 minutes to 2 hours under the reaction conditions of Example 1 and a phase transfer catalyst was not used, an orange elastic solid (vinyl benzyl ether polymer) was produced and the target product was not obtained. A certain benzyl ether compound could not be obtained.

Claims (1)

【特許請求の範囲】 1 ジメチルスルホキシド及びジメチルホルムア
ミドの内の少なくとも1種の溶媒中で相関移動触
媒の存在下に、一般式【式】 (式中のR1,R2は水素またはアルキル、R3
水素、Xはハロゲン)であるベンジルハライド類
とアルカリ金属水酸化物水溶液とを反応すること
を特徴とするベンジルエーテル類の合成方法。 2 ベンジルハライド類がジメチルスルホキシド
及びジメチルホルムアミドの内の少なくとも1種
の溶媒100重量部に対して10〜50重量部である特
許請求の範囲第1項記載の合成方法。 3 アルカリ金属水酸化物水溶液が、アルカリ金
属水酸化物20重量%以上の水溶液で、且つ該水溶
液中のアルカリ金属水酸化物がベンジルハライド
誘導体100重量部に対して30〜60重量部である特
許請求の範囲第1項記載の合成方法。 4 相関移動触媒がベンジルハライド類100重量
部に対して0.1〜1.0重量部である特許請求の範囲
第1項記載の合成方法。
[Claims] 1. In the presence of a phase transfer catalyst in at least one solvent selected from dimethyl sulfoxide and dimethyl formamide, a compound of the general formula [Formula] (wherein R 1 and R 2 are hydrogen or alkyl, R A method for synthesizing benzyl ethers, which comprises reacting benzyl halides ( 3 is hydrogen, X is halogen) with an aqueous alkali metal hydroxide solution. 2. The synthesis method according to claim 1, wherein the benzyl halide is used in an amount of 10 to 50 parts by weight per 100 parts by weight of at least one of dimethyl sulfoxide and dimethyl formamide. 3. A patent in which the aqueous alkali metal hydroxide solution is an aqueous solution containing 20% by weight or more of alkali metal hydroxide, and the alkali metal hydroxide in the aqueous solution is 30 to 60 parts by weight based on 100 parts by weight of the benzyl halide derivative. A synthesis method according to claim 1. 4. The synthesis method according to claim 1, wherein the phase transfer catalyst is used in an amount of 0.1 to 1.0 parts by weight based on 100 parts by weight of the benzyl halide.
JP60055966A 1985-03-22 1985-03-22 Synthesis method of benzyl ethers Granted JPS61215340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055966A JPS61215340A (en) 1985-03-22 1985-03-22 Synthesis method of benzyl ethers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055966A JPS61215340A (en) 1985-03-22 1985-03-22 Synthesis method of benzyl ethers

Publications (2)

Publication Number Publication Date
JPS61215340A JPS61215340A (en) 1986-09-25
JPH0568454B2 true JPH0568454B2 (en) 1993-09-29

Family

ID=13013813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055966A Granted JPS61215340A (en) 1985-03-22 1985-03-22 Synthesis method of benzyl ethers

Country Status (1)

Country Link
JP (1) JPS61215340A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104016837B (en) * 2014-05-26 2016-08-24 武汉有机实业有限公司 The preparation method of 4,4 '-dimethyl dibenzyl ether

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118533A (en) * 1982-01-07 1983-07-14 Mitsui Toatsu Chem Inc 3-phenoxy-4-fluorobenzyl 2-(4-ethoxyphenyl)-2- methylpropyl ether, its preparation and insecticidal and miticidal agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118533A (en) * 1982-01-07 1983-07-14 Mitsui Toatsu Chem Inc 3-phenoxy-4-fluorobenzyl 2-(4-ethoxyphenyl)-2- methylpropyl ether, its preparation and insecticidal and miticidal agent

Also Published As

Publication number Publication date
JPS61215340A (en) 1986-09-25

Similar Documents

Publication Publication Date Title
CA2521695C (en) Method for producing 3-substituted 2-chloro-5-fluoro-pyridine or its salt
JPH0717533B2 (en) Method for producing (2,2) -paracyclophane and derivatives thereof
JPS6113449B2 (en)
JPH0251908B2 (en)
JP5155148B2 (en) Method for synthesizing 6- [3- (1-adamantyl) -4-methoxyphenyl] -2-naphthoic acid
JPH0568454B2 (en)
JP3986200B2 (en) Method for producing 3-cyanotetrahydrofuran
WO2022260168A1 (en) Hydroxy thienoimidazole derivative, vinyl sulfide derivative, n-butylidene sulfide derivative, and production method for saturated straight-chain hydrocarbon-substituted thienoimidazole derivative
JP4667593B2 (en) Process for producing 2-alkyl-2-adamantyl (meth) acrylates
CA2409853A1 (en) Method for the production of trifluoroethoxy-substituted benzoic acids
CN115260103B (en) Preparation method of 4,5-dihalogen-1- (difluoromethyl) -1H-imidazole
CN110015946B (en) Preparation method of 1, 5-diaryl-4-pentene-1-alcohol compound
JP2588783B2 (en) Preparation of alkynyl ketone derivatives
JP4435447B2 (en) Method for producing methoxymethyltriarylphosphonium chloride
JP2743198B2 (en) Cyclopentanes
JPH0653698B2 (en) Process for producing 1- (3-phenoxyphenyl) -4- (4-alkoxyphenyl) -4-methylpentane derivative
JPS625137B2 (en)
JPS6094933A (en) Production of alpha-perfluoroalkylacrylic acid
JPH0572895B2 (en)
JP2024160422A (en) 1-halo-2,6,14-trimethyloctadecane compound and process for preparing 5,13,17-trimethylalkane compound using the same
JPS6357429B2 (en)
JPH0762024B2 (en) Process for producing D-glucofuranose or D-xylofuranose derivative
JPH0465065B2 (en)
JPH0544448B2 (en)
JPS642110B2 (en)