[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0565595B2 - - Google Patents

Info

Publication number
JPH0565595B2
JPH0565595B2 JP58220030A JP22003083A JPH0565595B2 JP H0565595 B2 JPH0565595 B2 JP H0565595B2 JP 58220030 A JP58220030 A JP 58220030A JP 22003083 A JP22003083 A JP 22003083A JP H0565595 B2 JPH0565595 B2 JP H0565595B2
Authority
JP
Japan
Prior art keywords
finger
cathode
anode
chamber
cathode chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58220030A
Other languages
Japanese (ja)
Other versions
JPS60114583A (en
Inventor
Takao Sato
Masaki Murakami
Nobuhiro Kawasaki
Teruo Ichizaka
Shinji Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP58220030A priority Critical patent/JPS60114583A/en
Priority to IT23625/84A priority patent/IT1177236B/en
Priority to US06/673,122 priority patent/US4622113A/en
Publication of JPS60114583A publication Critical patent/JPS60114583A/en
Publication of JPH0565595B2 publication Critical patent/JPH0565595B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は既存のアスベストを隔膜として苛性ア
ルカリを製造している複極式隔膜法電解槽を用
い、アスベスト隔膜に代えて陽イオン交換膜を装
着して、低い電槽電圧で高濃度で、高純度の苛性
アルカリを製造する方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention uses an existing bipolar diaphragm electrolytic cell that produces caustic alkali using asbestos as a diaphragm, and replaces the asbestos diaphragm with a cation exchange membrane. The present invention relates to a method for producing highly concentrated and highly purified caustic alkali at low cell voltage.

(発明の背景と従来の技術) 塩化アルカリを電解して苛性アルカリを得る方
法は、公害防止の見地からそれまでの水銀を用い
る水銀法からアスベスト隔膜を用いる隔膜法に転
換され、現在この隔膜法が苛性アルカリを製造す
る方法の主流となつている。
(Background of the Invention and Prior Art) The method for obtaining caustic alkali by electrolyzing alkali chloride was changed from the mercury method using mercury to the diaphragm method using asbestos membranes from the viewpoint of pollution prevention.Currently, this diaphragm method has become the mainstream method for producing caustic alkali.

このようなアスベスト隔膜を用いて苛性アルカ
リを製造している既設の隔膜法電解槽の代表的な
一つとして、次のような堅型複極式隔膜法電解槽
が知られている。
The following rigid bipolar diaphragm electrolytic cell is known as one of the typical existing diaphragm electrolytic cells for producing caustic alkali using such an asbestos diaphragm.

すなわち、多数の電解槽を隔壁を仕切りとして
順次に並設し、多数並設した電解槽の端の隔壁は
別にして、中間の隔壁は、その片側において、水
平断面で延出先端が閉じた略U字状のフインガー
アノードを多数延出させ、また隔壁の反対側にお
いて、該隔壁から若千離間してカソードバツクス
クリーンを設置し、かつ前記フインガーアノード
と略同形状で反対向きのフインガーカソードをカ
ソードバツクスクリーンから延出させ、更に隔壁
を貫通する給電棒を用いて、隔壁両側のアノー
ド、カソードのフインガーを支持させると共に、
電気的に接続導通させるようにした構造とし、こ
のような隔壁で仕切られた一つ一つの電解槽は、
隣接対抗する一方の隔壁から延出するフインガー
アノードと他方の隔壁から延出するフインガーカ
ソードとをそれぞれの延出端が食い違い状に入り
込みしながら両者間の微小な間〓を保持させ、更
にアスベスト隔膜は、網目状のフインガーカソー
ド状に予めアスベストスラリーを層状に付着形成
させた複極式隔膜法電解槽である。
In other words, a large number of electrolytic cells are sequentially arranged side by side using partition walls as partitions, and apart from the partition walls at the ends of the large number of electrolytic cells arranged side by side, the middle partition wall has an extension end closed on one side in horizontal section. A large number of approximately U-shaped finger anodes are extended, and a cathode back screen is installed on the opposite side of the partition wall at a distance of a few thousand feet from the partition wall. The finger cathode is extended from the cathode back screen, and the anode and cathode fingers on both sides of the partition are supported using a power supply rod that penetrates the partition.
Each electrolytic cell is structured so that it can be electrically connected and conductive, and is partitioned by partition walls like this.
A finger anode extending from one partition wall and a finger cathode extending from the other partition wall, which are adjacent to each other, are inserted into each other in a staggered manner to maintain a small gap between the two, and The asbestos diaphragm is a bipolar diaphragm electrolytic cell in which asbestos slurry is preliminarily deposited in a layered manner on a mesh-like finger cathode.

また、かかる電解槽の給電方式は、多数並設し
た電解槽の一方の端の槽のアノード側を給電装置
の正極に接続し、また他方の端の槽のカソード側
を給電装置の負極に接続させて構成される。
In addition, the power supply method for such electrolytic cells is such that the anode side of the electrolytic cells at one end of a large number of electrolytic cells arranged side by side is connected to the positive electrode of the power supply device, and the cathode side of the cell at the other end is connected to the negative pole of the power supply device. be configured.

なお、各電解槽の内部は、アスベスト隔膜によ
り陽極室と陰極室に区画されるもので、具体的に
は、カソードバツクスクリーン周囲部が電解槽の
陰極室側フランジ部と接合することで、フインガ
ーカソード内及び隔壁とカソードバツクスクリー
ンとの間が陰極室を形成している。そして、以上
のような袋状のフインガーカソード上にアスベス
トスラリーをデポジツトして形成させたアスベス
ト隔膜を用いた塩化アルカリの電解においては、
陽極室へ供給する塩化アルカリの液レベルを高く
保ちながら電解を行ない陰極室より苛性アルカリ
を取得している。
The inside of each electrolytic cell is divided into an anode chamber and a cathode chamber by an asbestos diaphragm. Specifically, the surrounding area of the cathode back screen is joined to the flange on the cathode chamber side of the electrolytic cell, so that the flange of the electrolytic cell is closed. A cathode chamber is formed within the swinger cathode and between the partition wall and the cathode back screen. In electrolysis of alkali chloride using an asbestos diaphragm formed by depositing asbestos slurry on a bag-shaped finger cathode as described above,
Caustic alkali is obtained from the cathode chamber by performing electrolysis while maintaining a high level of alkali chloride solution supplied to the anode chamber.

しかし、前記のようなアスベスト隔膜を用いた
隔膜法電解槽おいては、アスベスト隔膜の液透過
性のため、陰極室より得られる苛性アルカリの濃
度は極めて薄く、且つ多量の塩化アルカリを含ん
でいる難点がある。例えば食塩水の電解において
は苛性ソーダ濃度は10〜13wt%で、且つ15〜
18wt%の食塩を含んでいる。したがつて工業的
用途向けのためには更に濃縮を行ない、該濃縮の
過程で析出してくる食塩を分離しているが、製品
となる約50wt%苛性ソーダ中には依然として約
1wt%の食塩を含有しており、レーヨン工業など
の分野への直接利用は難かしいのが実情である。
However, in the diaphragm electrolytic cell using an asbestos diaphragm as described above, the concentration of caustic alkali obtained from the cathode chamber is extremely low due to the liquid permeability of the asbestos diaphragm, and it also contains a large amount of alkali chloride. There are some difficulties. For example, in salt water electrolysis, the caustic soda concentration is 10 to 13 wt%, and 15 to 13 wt%.
Contains 18wt% salt. Therefore, for industrial use, it is further concentrated and the salt that precipitates during the concentration process is separated, but the approximately 50wt% caustic soda that becomes the product still contains approximately
Since it contains 1wt% of salt, it is difficult to use it directly in fields such as the rayon industry.

ところで、近時において、塩化アルカリを含ま
ずしかも高濃度で苛性アルカリが得られる同じ隔
膜法に属する電解法として、陽イオン交換膜を隔
膜として使用するイオン交換膜法が開発されてい
る。
Incidentally, recently, an ion exchange membrane method using a cation exchange membrane as a diaphragm has been developed as an electrolytic method belonging to the same diaphragm method that does not contain alkali chloride and can produce caustic alkali at a high concentration.

したがつて広義には同じ隔膜法に属する前記両
者の共通点を利用し、既存の設備が存在するアス
ベスト隔膜法電解槽に、隔膜として陽イオン交換
膜を交換装着して塩化アルカリの電解を行ない、
これによつて高純度で高濃度の苛性アルカリが得
られるのであれば、電解槽関係の多大な設備投資
を新たにせずにイオン交換膜法への交換が可能と
なるため、工業的メリツトは非常に大きいもので
ある。
Therefore, in a broad sense, taking advantage of the common features of both of the above, which belong to the same diaphragm method, electrolysis of alkali chloride is carried out by replacing and installing a cation exchange membrane as a diaphragm in an asbestos diaphragm electrolytic cell with existing equipment. ,
If high-purity and high-concentration caustic alkali can be obtained by this method, it will be possible to replace it with the ion-exchange membrane method without making large capital investments in electrolyzers, which would have great industrial merits. It is a big one.

(発明が解決しようとする課題) そこで本発明者らは、かかる点に鑑み、前述の
複極式隔膜法電解槽に、従来のアスベストに代え
て陽イオン交換膜を取り付けて塩化アルカリの電
解を行ない、苛性アルカリを製造する方法につい
て検討した。
(Problems to be Solved by the Invention) In view of this, the present inventors installed a cation exchange membrane in place of the conventional asbestos in the above-mentioned bipolar diaphragm electrolytic cell to electrolyze alkali chloride. We conducted a study on a method for producing caustic alkali.

しかし、前記した隔膜の単純な交換適用では、
以下に述べるいくつかの問題のあることが明らか
となつた。
However, in the application of simple replacement of the diaphragm mentioned above,
It has become clear that there are several problems described below.

即ち、陽イオン交換膜で製作した袋状の多数の
膜をフインガーカソードの上に一つ一つ被せると
共に、個々のフインガーカソードと袋状陽イオン
交換膜とをシールして電解槽を組み立て、この電
解槽に対して従来と同様に、陽極室に供給する食
塩水の液レベルを陰極室の苛性ソーダ液レベルよ
り高く保ちながら電解を行ない、生成する水素ガ
スを陰極室の上部から抜き出す様にする電解操作
を行なつたところ、電槽電圧が非常に高く、しか
も得られる苛性ソーダ中には、アスベスト隔膜を
用いた従来の電解法で得られていた苛性ソーダの
場合よりも鉄分が多く含有され、また更に好まし
くないことには、苛性ソーダ中の食塩含有量が運
転を続けるにつれて次第に増加し、且つ陰極室苛
性ソーダの電流効率が低下してくることを幾度か
経験したのである。
That is, a large number of bag-shaped membranes made of cation exchange membranes are placed over the finger cathodes one by one, and the individual finger cathodes and bag-shaped cation exchange membranes are sealed to assemble the electrolytic cell. In this electrolytic cell, electrolysis is carried out in the same manner as before, while the level of the saline solution supplied to the anode chamber is kept higher than the level of the caustic soda solution in the cathode chamber, and the generated hydrogen gas is extracted from the upper part of the cathode chamber. When electrolysis was carried out, the cell voltage was very high, and the caustic soda obtained contained more iron than the caustic soda obtained by the conventional electrolytic method using an asbestos diaphragm. Even more unfavorably, we have experienced several times that the salt content in the caustic soda gradually increases as the operation continues, and the current efficiency of the caustic soda in the cathode chamber decreases.

又本発明者らは、陰極室内の水素ガスの圧力を
陽極室内塩素ガス圧力より高くして電解を行なう
という試みもなしたが、この場合にも電槽電圧が
高く、加えて、陰極室より得られる苛性ソーダの
電流効率が低いといういくつかの重大な問題点に
遭遇したのである。
The inventors also attempted to conduct electrolysis by making the hydrogen gas pressure in the cathode chamber higher than the chlorine gas pressure in the anode chamber, but in this case too, the cell voltage was high, and in addition, Several serious problems were encountered, including the low current efficiency of the resulting caustic soda.

本発明は、上記したように、アスベスト隔膜を
用いていた既存の電解槽設備を、イオン交換膜を
隔膜として用いる電解槽設備に転換する際に問題
となる不具合を克服するためになされたものであ
る。
As mentioned above, the present invention was made in order to overcome the problems that occur when converting existing electrolytic cell equipment that used asbestos diaphragms to electrolytic cell equipment that uses ion exchange membranes as diaphragms. be.

すなわち本発明の第1の目的は、既存のアスベ
ストを隔膜として用いて苛性アルカリを製造して
いた堅型複極式隔膜法電解槽に、陽イオン交換膜
を隔膜として装着した場合に、従来のアスベスト
隔膜を用いていた場合に比べて極めて低い電槽電
圧で高濃度の苛性ソーダを得ることができる方法
を提供することにある。
That is, the first object of the present invention is that when a cation exchange membrane is installed as a diaphragm in a rigid bipolar diaphragm electrolytic cell that produces caustic alkali using existing asbestos as a diaphragm, The object of the present invention is to provide a method capable of obtaining highly concentrated caustic soda with an extremely lower cell voltage than when an asbestos diaphragm is used.

本発明の第2の目的は、前記従来の電解槽設備
に、陽イオン交換膜を隔膜として用いて電解槽を
構成する場合に、製品中の鉄及び塩化アルカリの
含有量が極めて少ない高純度の苛性アルカリを製
造することができる方法を提供することにある。
A second object of the present invention is to provide a high-purity product with extremely low iron and alkali chloride contents when an electrolytic cell is constructed using a cation exchange membrane as a diaphragm in the conventional electrolytic cell equipment. The object of the present invention is to provide a method capable of producing caustic alkali.

また、本発明の第3の目的は、前記陽イオン交
換膜を隔膜として用いた電解槽において、陽イオ
ン交換膜の耐久性が優れ、長期間に亘つて安定し
た高い電流効率を維持しながら、高純度の苛性ア
ルカリを製造することができる方法を提供するこ
とにある。
A third object of the present invention is to provide an electrolytic cell using the cation exchange membrane as a diaphragm, in which the cation exchange membrane has excellent durability and maintains stable and high current efficiency over a long period of time. The object of the present invention is to provide a method capable of producing high purity caustic alkali.

(課題を解決する手段) 本発明者らは、前記目的を達成するために、先
に述べた問題点につき、その原因の究明、その解
決方法について鋭意種々研究、検討した結果、そ
れぞれの問題が陽イオン交換膜の装着の方法、陰
極室から電解生成物つまり苛性アルカリ及び水素
ガスの抜き出しの方法、そして陽極室に取り付け
られているフインガーアノードの構造自体にそれ
ぞれ関係していることを明らかとし、本発明を完
成するに至つたものである。
(Means for Solving the Problems) In order to achieve the above object, the inventors of the present invention have investigated the causes of the problems described above and conducted various studies and examinations on methods of solving them. As a result, each problem has been solved. It was clarified that these are related to the method of installing the cation exchange membrane, the method of extracting electrolytic products, that is, caustic alkali and hydrogen gas, from the cathode chamber, and the structure itself of the finger anode installed in the anode chamber. , which led to the completion of the present invention.

而して、前記目的を達成するための本発明方法
の特徴は、電解槽の対向する隔壁の一方から延出
された多数のフインガーアノードと、対向する他
方の隔壁から延出された多数のフインガーカソー
ドとを、これらの両フインガーが互いに食い違い
状に入り込みして微小な極間距離を保つように組
立て、更に、連続した袋状の陽イオン交換膜を前
記フインガーカソードに被せると共にその陽イオ
ン交換膜の周辺部を電解槽のフインガーカソード
の根元付近で陰極室側フランジ部に取着シールさ
せることで槽内を陽極室と陰極室に区画してなる
複極式電解槽を用い、陽極室に塩化アルカリを供
給しながら電解を行なつて陰極室に苛性アルカリ
を生成させる苛性アルカリの製造方法であつて、
該陰極室の下部から水又は低濃度苛性アルカリを
供給し、かつ陰極室内に気相を存在させない状態
で電解を行なわせながら、この陰極室内で生成し
た苛性アルカリおよび水素ガスを該陰極室上部に
設けた上部ノズルから気液混合状態で抜き出し、
更に電解中の陽極室の液のレベルを前記陰極室の
液のレベル以下に保つことにある。
The method of the present invention for achieving the above object is characterized by a large number of finger anodes extending from one of the opposing partition walls of the electrolytic cell and a large number of finger anodes extending from the other opposing partition wall. A finger cathode and a finger cathode are assembled in such a way that the fingers are inserted into each other in a staggered manner to maintain a small distance between the electrodes, and then a continuous bag-shaped cation exchange membrane is placed over the finger cathode and the finger cathode is A bipolar electrolytic cell is used, in which the inside of the tank is divided into an anode chamber and a cathode chamber by attaching and sealing the peripheral part of the ion exchange membrane to the flange on the cathode chamber side near the base of the finger cathode of the electrolytic cell. A method for producing caustic alkali, comprising performing electrolysis while supplying alkali chloride to an anode chamber to generate caustic alkali in a cathode chamber,
Water or low concentration caustic alkali is supplied from the lower part of the cathode chamber, and while electrolysis is performed in the absence of a gas phase in the cathode chamber, the caustic alkali and hydrogen gas generated in the cathode chamber are transferred to the upper part of the cathode chamber. Extract the gas-liquid mixture from the upper nozzle provided,
Furthermore, the level of the liquid in the anode chamber during electrolysis is kept below the level of the liquid in the cathode chamber.

以下、本発明を図面に基づいて更に詳しく説明
する。
Hereinafter, the present invention will be explained in more detail based on the drawings.

第1図は、アスベスト隔膜法に用いられていた
既存の複極式隔膜法電解槽の一例を、その一つの
電解槽部分について水平に断面して上部より眺め
た一部断面図として示した図であり、第2図は陽
極室内に多数取り付けられているフインガーアノ
ードの一つを示す斜視図である。
Figure 1 is a partial sectional view of one example of an existing bipolar diaphragm method electrolytic cell used in the asbestos diaphragm method, viewed from above with a horizontal cross section of one of the electrolytic cell portions. FIG. 2 is a perspective view showing one of the many finger anodes installed in the anode chamber.

図において、1は隔壁を示し、この隔壁1には
これを貫通して接合された給電棒4が取り付けら
れている。そしてこの給電棒4の隔壁1から陽極
室側に突出した端部には給電体3が接合され、チ
タンを基材としたエキスパンドメタルに酸化ルテ
ニウムなどの陽極活性物質をコーテイングした陽
極板を中央部で屈曲加工して水平断面でU字型を
なすようにしたフインガーアノード2が、この給
電体3に多数接合されている。
In the figure, reference numeral 1 indicates a partition wall, and a power supply rod 4 is attached to the partition wall 1 by penetrating the partition wall 1 and joining it. A power supply body 3 is connected to the end of the power supply rod 4 that protrudes from the partition wall 1 toward the anode chamber, and an anode plate made of expanded metal based on titanium coated with an anode active material such as ruthenium oxide is attached to the center. A large number of finger anodes 2 which are bent to form a U-shape in horizontal cross section are joined to this power supply body 3.

一方の隔壁1の陰極室側には、隔壁1とは間隔
をおいてカソードバツクスクリーン5が設けら
れ、該カソードバツクスクリーン5を通して次段
の給電棒4に端部が接合されたフインガー状の中
空カソードを有し、該カソードバツクスクリーン
5の周囲は電解室の陰極室側フランジ部7と接合
することで、前記フインガーカソード6内、及び
隔壁1とカソードバツクスクリーン5との間が陰
極室を形成している。
On the cathode chamber side of one of the partition walls 1, a cathode back screen 5 is provided at a distance from the partition wall 1, and a finger-shaped hollow whose end is connected to the power supply rod 4 of the next stage through the cathode back screen 5 is provided. The cathode back screen 5 has a cathode, and the periphery of the cathode back screen 5 is joined to the cathode chamber side flange 7 of the electrolytic chamber, so that the inside of the finger cathode 6 and between the partition wall 1 and the cathode back screen 5 form a cathode chamber. is forming.

前記個々のフインガーアノード2の内側には、
フインガーアノードの内側へのたわみを抑えるた
めに、陽極サポートが該フインガーアノード2の
縦方向の全長にわたり取り付けられている。
Inside the individual finger anodes 2,
An anode support is attached over the entire length of the finger anode 2 in order to limit inward deflection of the finger anode.

第3図及び第4図は、第1図及び第2図に示し
たU字型のフインガーアノード2の内側に陽極サ
ポート8を取り付けたフインガーアノードの例を
示す斜視図である。
3 and 4 are perspective views showing an example of a finger anode in which an anode support 8 is attached inside the U-shaped finger anode 2 shown in FIGS. 1 and 2. FIG.

該陽極サポート8の取付ける個所は、フインガ
ーアノード2の先端部9、及びフインガーアノー
ド2と給電体4の接合部のそれぞれ200mm以内に
位置するところに少なくとも1つ取付けることが
好ましい。更にフインガーアノードの長さを等分
するように2ヶ所、3ヶ所に取付けてもよい。取
付ける方法は特に限定されないが、個々のフイン
ガーアノードを陽極室内により取り出し、上部、
下部のフイガー開口部10よりフインガーの巾及
び縦方向の長さに合つた陽極サポート8を挿入し
て、上部、下部端を接合固定してもよいし、又フ
インガーアノード先端部9を縦方向に切断しフイ
ンガーアノードを2枚の陽極板として切り離し、
それぞれの陽極板を押し広げ、いずれかの陽極板
へ陽極サポート8を接合固定し、そして、該陽極
サポートを取付けた後、再びフインガーの先端部
を接合固定する方法を用いてもよい。この切断加
工を行なう場合には、対極であるカソードとの距
離を、フインガーの拡幅や陽極サポートの巾によ
つて任意に調節することが可能となる利点があ
る。
It is preferable that at least one anode support 8 is attached within 200 mm of the tip 9 of the finger anode 2 and the joint between the finger anode 2 and the power supply body 4, respectively. Furthermore, the finger anode may be attached at two or three locations so as to divide its length equally. The installation method is not particularly limited, but each finger anode is taken out from the anode chamber, and the upper
An anode support 8 that matches the width and length of the finger in the vertical direction may be inserted through the lower finger opening 10 and the upper and lower ends may be joined and fixed, or the finger anode tip 9 may be inserted in the vertical direction. Cut the finger anode into two anode plates,
A method may be used in which each anode plate is pushed apart, the anode support 8 is bonded and fixed to one of the anode plates, and after the anode support is attached, the tip of the finger is bonded and fixed again. When performing this cutting process, there is an advantage that the distance from the cathode, which is the opposite electrode, can be arbitrarily adjusted by widening the fingers and width of the anode support.

また、カソードとの距離を狭くする目的でフイ
ンガーアノードの先端を切断し、2枚のアノード
板をフインガーアノード側へ拡幅した状態でフイ
ンガーアノードが取付けられている電解槽を用い
る場合においては、個々のフインガーアノードの
脱着という煩雑な操作をせずに前述の如く陽極サ
ポート8を取付け加工し、そして切断されたフイ
ンガー先端部同士を架橋板11を介して接合固定
することが極めて容易である。
In addition, when using an electrolytic cell in which the finger anode is attached with the tip of the finger anode cut off and the two anode plates expanded toward the finger anode side in order to narrow the distance from the cathode, It is extremely easy to attach and process the anode support 8 as described above without the complicated operation of attaching and detaching individual finger anodes, and to join and fix the cut finger tips to each other via the bridging plate 11. be.

陽極サポートの材質としては、耐塩素性を有し
ているものであればいずれのものも使用できる
が、陽極基材と同じチタンが接合取付けし易く、
中でも好ましい。また、陽極活性物質を被覆した
ものを陽極サポートに用いてもよい。陽極サポー
トの形状は、角柱、中空のパイプ及び多孔板など
いずれの形状にも使用できる。中でも、中空のパ
イプを用いる場合、陽極液の循環を促すダウンカ
マーの働きをするので好ましい。又、パイプを用
いる場合、フインガーアノードへの接合にあたつ
ては面接合よりも点接合になるように取付けるこ
とが好ましい。そして次に、前述の陽極サポート
を有したアノードフインガーを収納した複極式隔
膜法電解槽へ陽イオン交換膜を装着する。
Any material can be used for the anode support as long as it has chlorine resistance, but titanium, which is the same as the anode base material, is easy to bond and install.
Among them, preferred. Further, a material coated with an anode active material may be used as the anode support. The shape of the anode support can be any shape, such as a prismatic column, a hollow pipe, or a perforated plate. Among these, it is preferable to use a hollow pipe because it functions as a downcomer that promotes circulation of the anolyte. Further, when a pipe is used, it is preferable to attach the pipe to the finger anode so that it is a point joint rather than a surface joint. Next, the cation exchange membrane is attached to a bipolar diaphragm electrolytic cell containing the anode finger having the anode support described above.

本発明において、陽イオン交換膜は、各々のフ
インガーアノード上に一つ一つの袋状陽イオン交
換膜を被せ、個々にシールする方式でなく、隣り
合う袋状陽イオン交換膜の開口端部同士を加熱加
圧法により接合したり、熱融着し易いシートを介
在させて継ぎ合わせるなどして、外周フランジ用
のシートと接合した一枚の連続袋状陽イオン交換
膜を製作し、この連続袋状膜をフインガーカソー
ドに被せその周囲を電解槽フランジ部においてシ
ールする様にして装着される。
In the present invention, the cation exchange membrane is constructed by covering each finger anode with a bag-like cation exchange membrane, and instead of sealing them individually, the open ends of adjacent bag-like cation exchange membranes are A continuous bag-shaped cation exchange membrane is manufactured by joining the membranes with a sheet for the outer flange by joining them together using heat and pressure, or by splicing them together with a sheet that is easily heat-sealed. The bag-like membrane is placed over the finger cathode and sealed around the finger cathode at the flange of the electrolytic cell.

複極式電解槽を用いた電解を行なう場合、通常
電解槽間にかかる電圧は200〜800ボルトと非常に
高く、共通ヘツダーを通して出入するいわゆるリ
ーク電流が単極式電解槽の場合に比べ大きい。従
つて、個々のフインガーカソードと陽イオン交換
膜について、電解液に耐性を有する金属などを用
いてシールするいわゆる内部メカニカルシールの
方式を採用してシールすると、長期間に亘るシー
ル材自体の耐久性はともかく、リーク電流による
シール材の局部腐食によるシール不良のトラブ
ル、ひいては電解生成物中への不純物の混入や電
流効率の低下を招く危険が大である。
When performing electrolysis using a bipolar electrolytic cell, the voltage applied between the electrolytic cells is usually very high, 200 to 800 volts, and the so-called leakage current that flows in and out through the common header is larger than in the case of a monopolar electrolytic cell. Therefore, if the individual finger cathodes and cation exchange membranes are sealed using a so-called internal mechanical seal method using a metal that is resistant to electrolyte, the durability of the sealing material itself will be reduced over a long period of time. Regardless of the nature of the problem, there is a great risk of problems such as seal failure due to local corrosion of the sealing material due to leakage current, as well as contamination of impurities into the electrolytic product and reduction in current efficiency.

これに対して本発明の如く、陽イオン交換膜の
シールを該電解槽のフランジ部において行なう方
式を採用した場合には、前述の不純物の混入や電
流効率の低下の心配が一掃できる。
On the other hand, when the present invention employs a method in which the cation exchange membrane is sealed at the flange portion of the electrolytic cell, the above-mentioned concerns about contamination with impurities and reduction in current efficiency can be eliminated.

又、陽イオン交換膜をフインガーカソードに被
せたという本発明の構成によれば、陽極室が、内
部で発生するガスが自由に逃げることができる開
放系となるため、陽極室において生成する塩素ガ
スが陽極室内に滞留することがなく、陽イオン交
換膜がダメージを受けないという利点がある。
Furthermore, according to the configuration of the present invention in which the finger cathode is covered with a cation exchange membrane, the anode chamber becomes an open system in which the gas generated inside can freely escape, so that the chlorine generated in the anode chamber becomes This has the advantage that gas does not remain in the anode chamber and the cation exchange membrane is not damaged.

本発明において用いられるイオン交換膜として
は、例えばカルボン酸基、スルホン酸基、ホスホ
ン酸基等の陽イオン交換基を含有する重合体から
成る膜の全てが適用可能で、このような重合体と
しては耐久性、耐熱性等から含フツ素重合体を用
いるのが好ましい。
As the ion exchange membrane used in the present invention, any membrane made of a polymer containing a cation exchange group such as a carboxylic acid group, a sulfonic acid group, or a phosphonic acid group can be used. It is preferable to use a fluorine-containing polymer from the viewpoint of durability, heat resistance, etc.

又、イオン交換膜は、必ずしも一種類の交換基
だけを有する必要はない。膜の片面と他面のイオ
ン交換基が異なるもの、又二種類以上の交換基が
混在するものも勿論使用可能である。
Further, the ion exchange membrane does not necessarily need to have only one type of exchange group. Of course, it is also possible to use membranes with different ion exchange groups on one side and the other side, or membranes with a mixture of two or more types of exchange groups.

本発明の電解槽を構成する要素の一つである連
続袋状の形状を有する陽イオン交換膜は、例えば
本出願人による特願昭57−125849号で提案されて
いる方法を用いて作製することができ、第5図a
からeはその製作工程の例を示してい図示してい
る。
The cation exchange membrane having a continuous bag shape, which is one of the elements constituting the electrolytic cell of the present invention, can be manufactured using, for example, the method proposed in Japanese Patent Application No. 125849/1984 by the present applicant. Figure 5a
to e show examples of the manufacturing process.

この工程を説明すると、まず陽イオン交換膜シ
ート12(第5図a参照)の外周部に、4フツ化
エチレン−6フツ化アロピシン共重合体(以下
FEPと称す)や、4フツ化エチレン−パ−フル
オロビニルエーテル共重合体(以下PFAと称す)
などのフレーム用シート13を、温度300〜400
℃、圧力0〜40Kg/cm2、時間10〜20秒という接着
条件にて接合し(第5図b参照、なお接合個所は
点々の網掛けで示した)、これを大略二つ折にし
た後、側面のFEPなどのフレーム用シート13
同士を接合して、一面が開口した直方体形状の袋
状陽イオン交換膜の単位を作る(第5図c参照)。
To explain this process, first, a tetrafluoroethylene-hexafluoroallopicin copolymer (hereinafter referred to as "allopicin hexafluoride") is coated on the outer periphery of the cation exchange membrane sheet 12 (see Figure 5a).
(hereinafter referred to as FEP) and tetrafluoroethylene-perfluorovinyl ether copolymer (hereinafter referred to as PFA)
Frame sheet 13 such as
℃, a pressure of 0 to 40 kg/cm 2 , and a time of 10 to 20 seconds (see Fig. 5b, the joined areas are indicated by dotted shading), and after roughly folding it in half. , side frame sheet 13 such as FEP
By joining them together, a bag-like cation exchange membrane unit having a rectangular parallelepiped shape with one side open is made (see FIG. 5c).

次いで、袋状開口部縁のFEPなどのフレーム
用シート13を温度150〜300℃、圧力1〜20Kg/
cm2なる条件でフレア加工し(第5図d参照)、続
いて、隣り合う袋状膜のフレア部同士を前述の接
着条件で接合することにより連続袋状膜を作る
(第5図e参照)。
Next, the frame sheet 13 such as FEP on the edge of the bag-shaped opening is heated at a temperature of 150 to 300°C and a pressure of 1 to 20 kg/kg.
cm 2 (see Figure 5 d), and then a continuous bag-like membrane is made by joining the flared parts of adjacent bag-like membranes under the above-mentioned bonding conditions (see Figure 5 e). ).

また別には、第6図a〜cで製作工程図の例を
示すように、別途に用意したFEPなどのフレア
用シート13に、第6図aで示したような各単位
の袋状陽イオン交換膜14(第5図dで示したも
のに相当する)を嵌合するに適当な開口を順次に
穿設し(第6図b参照)、これらの開口に袋状膜
14を差し込み、開口部周囲を接合する(第6図
cにおいて接合部を点々の網掛けで示した)こと
により、連続袋状の陽イオン交換膜を製作しても
よい。
Separately, as shown in examples of manufacturing process diagrams in FIGS. 6a to 6c, each unit of bag-shaped cations as shown in FIG. 6a is placed on a separately prepared flare sheet 13 such as FEP. Openings suitable for fitting the exchange membrane 14 (corresponding to the one shown in FIG. 5d) are sequentially made (see FIG. 6b), and the bag-shaped membrane 14 is inserted into these openings. A continuous bag-shaped cation exchange membrane may be manufactured by joining the periphery of the membrane (the joints are indicated by dotted shading in FIG. 6c).

このようにして出来上がつた袋状膜は、フレア
加工、及び折り曲げ加工部においては密着性及び
強度が極めて優れたFEPやPFAシートを使用し
ているため、長期間電解に十分耐えることができ
る。
The bag-shaped membrane created in this way can withstand electrolysis for a long time because FEP and PFA sheets with extremely excellent adhesion and strength are used in the flared and bent parts. .

又、ポリテトラフルオロエチレンCF2=CFO
(CF23COOCH3の共重合体を代表とするカルボ
ン酸基を交換基とする陽イオン交換膜を用いる場
合、交換基がCOOCH3などのエステル型の状態
にて連続袋状膜を作る場合には、該陽イオン交換
膜の取り扱い、加熱加工及び該膜同士の接合し易
さから、シート状の該陽イオン交換膜を二つ折に
し、重なり合つた3辺のうち2辺の端部を温度
130〜300℃、圧力1〜30Kg/cm2、時間10〜20秒と
いう接着条件にて接合して、袋状膜を製作し、そ
して該袋状膜の開口端を200〜300℃、1〜5Kg/
cm2の条件下でフレアを設けてフレア加工したフラ
ンジ部を有する袋状陽イオン交換膜とし、更に
個々に隣り合う袋状陽イオン交換膜の開口する周
囲フランジ同士を上記接合条件下で接合する方法
により、袋状膜が連なり合つた連続袋状陽イオン
交換膜を作り出すこともできる。
Also, polytetrafluoroethylene CF 2 = CFO
(CF 2 ) 3 When using a cation exchange membrane in which the exchange group is a carboxylic acid group, typically a copolymer of COOCH 3 , a continuous bag-like membrane is created with the exchange group in the form of an ester such as COOCH 3 . In some cases, the sheet-shaped cation exchange membrane is folded in half and the ends of two of the three overlapping sides are the temperature
A bag-like membrane is produced by bonding at 130-300℃, a pressure of 1-30Kg/ cm2 , and a time of 10-20 seconds, and the open end of the bag-like membrane is bonded at 200-300℃, 1- 5Kg/
A bag-shaped cation exchange membrane having a flared flange portion is provided under conditions of cm 2 , and the open peripheral flanges of adjacent bag-shaped cation exchange membranes are further bonded together under the above bonding conditions. The method can also create a continuous bag-like cation exchange membrane, which is a series of bag-like membranes.

前記のように連続袋状に加工成形した陽イオン
交換膜は、フインガーカソードやフインガーアノ
ードとこの袋状イオン交換膜がこすれることによ
つて膜の損傷が生じないように十分注意を払つて
電解槽に装着される。
The cation exchange membrane formed into a continuous bag shape as described above must be treated with sufficient care to avoid damage to the membrane due to rubbing between the finger cathode and finger anode and the bag-like ion exchange membrane. Attached to the electrolytic cell.

装着する方法については特に限定されないが、
例えば連続袋状イオン交換膜をフインガーカソー
ド上に被せ、陰極室内を減圧下に保つて該イオン
交換膜をフインガーカソード上に密着、一体化さ
せた状態で、陽極室内のフインガーアノード間の
間〓に挿入して組み込む方法は、連続袋状イオン
交換膜の損傷の心配がなく好ましい方法の一つで
ある。
There are no particular restrictions on how to wear it, but
For example, a continuous bag-shaped ion exchange membrane is placed over the finger cathode, the cathode chamber is kept under reduced pressure, and the ion exchange membrane is tightly attached and integrated with the finger cathode, and then the finger anode in the anode chamber is The method of inserting and assembling the continuous bag-shaped ion-exchange membrane between the membranes is one of the preferred methods since there is no fear of damage to the continuous bag-shaped ion exchange membrane.

こうして装着された陽イオン交換膜は、最後に
電解槽が締め付けられるときに陰極室フランジ、
陽極室フランジ間に挟まれた状態で完全にシール
される。
The cation exchange membrane installed in this way is attached to the cathode chamber flange when the electrolytic cell is finally tightened.
Completely sealed between the anode chamber flanges.

以上のように組み立てられた連続袋状陽イオン
交換膜が装着された複極式電解槽は、陽極室へ塩
化アルカリを供給しながら電解することで、陰極
室内に苛性アルカリを生成できる。
The bipolar electrolytic cell equipped with the continuous bag-like cation exchange membrane assembled as described above can generate caustic alkali in the cathode chamber by electrolyzing while supplying alkali chloride to the anode chamber.

次に本発明の電解条件について、第7図〜第9
図に示す概要図を用いて、食塩水の電解による苛
性ソーダの製造を例にして説明する。
Next, regarding the electrolytic conditions of the present invention, Figs.
The production of caustic soda by electrolysis of salt water will be explained as an example using the schematic diagram shown in the figure.

供給する食塩水は、第7図に示すように陽極室
下部へ供給される。この場合、電解槽陽極側サイ
ド下方フランジ部にフイードノズル15を設け、
このノズルより供給してもよいし、又上方隅に設
けたノズル16より耐塩素性を有した内挿管17
を用いて陽極室下部に食塩水を供給してもよい。
発生する塩素ガス18及び淡塩水19は、反対側
の上部隅より抜き出される。
The saline solution to be supplied is supplied to the lower part of the anode chamber as shown in FIG. In this case, a feed nozzle 15 is provided on the lower flange of the electrolytic cell anode side,
It may be supplied from this nozzle, or an internal tube 17 with chlorine resistance may be supplied from the nozzle 16 provided at the upper corner.
The saline solution may be supplied to the lower part of the anode chamber using a
The generated chlorine gas 18 and fresh salt water 19 are extracted from the opposite upper corner.

こうした陽極室における食塩水の供給、抜き出
し方法をとることにより、陽極室内の食塩水の濃
度の均一化が図れる。
By adopting such a method for supplying and extracting saline water in the anode chamber, the concentration of saline water in the anode chamber can be made uniform.

一方、第8図及び第9図に示すように、陰極室
下部には水又は薄い苛性ソーダ水溶液が供給され
る。この陰極室下部より苛性ソーダ水溶液を供給
することによつて、上部からこれを供給する場合
に比べて、得られる苛性ソーダの電流効率が高く
なることが確認される。これは、陰極室内の苛性
ソーダ濃度が均一となつて電流効率が高くなるた
めと考えられる。
On the other hand, as shown in FIGS. 8 and 9, water or a dilute aqueous solution of caustic soda is supplied to the lower part of the cathode chamber. It is confirmed that by supplying the caustic soda aqueous solution from the lower part of the cathode chamber, the current efficiency of the resulting caustic soda becomes higher than when supplying it from the upper part. This is thought to be because the concentration of caustic soda in the cathode chamber becomes uniform and the current efficiency increases.

供給する方法は、既存のアスベスト電解法の場
合に苛性ソーダ抜き出し用のノズルとして取付け
られているサイド下部のノズル20を用いて陰極
室下部に水又は薄い苛性ソーダ水溶液を供給する
方法が、電解槽の改造を必要としない点で好まし
い。この場合、ノズル部に分散穴を設けた内挿式
の供給パイプを取付けて供給する方法は、陰極室
内の苛性ソーダ濃度の均一化において更に効果的
である。
The method of supplying water or a dilute aqueous solution of caustic soda to the lower part of the cathode chamber using the nozzle 20 at the bottom of the side, which is installed as a nozzle for drawing out caustic soda in the case of the existing asbestos electrolysis method, is a modification of the electrolytic cell. This is preferable because it does not require . In this case, a method of supplying by attaching an internal supply pipe provided with a dispersion hole to the nozzle portion is more effective in making the concentration of caustic soda uniform in the cathode chamber.

そして生成する水素ガス、苛性ソーダは、陰極
室内に気相を存在させない状態で上部ノズル21
から、気液混合状態で抜き出すことが本発明の大
きな特徴の一つである。
Then, the generated hydrogen gas and caustic soda are sent to the upper nozzle 21 in a state where no gas phase exists in the cathode chamber.
One of the major features of the present invention is that the gas is extracted from the gas in a mixed state of gas and liquid.

このように水素ガスと苛性ソーダを気液混合状
態で抜き出すようにしている理由は、次のことに
よる。すなわち、本発明者らの検討によれば、陰
極室から水素ガス、苛性ソーダを抜き出す場合
に、上記とは異なつてこれらを気液分離で抜き出
す(具体的には水素ガスは上部ノズルから抜き出
し、苛性ソーダは陰極室サイド上方から別々に抜
き出す)方法を取つた場合、製品苛性中の鉄の濃
度が極めて高い。この事実は、これまで、気液分
離抜き出しという方式が、陰極室内の圧力変動を
少なくするために有効な手段として考えられてお
り、しかもまた、陰極及び陰極室内が軟鋼により
構成されている場合、高濃度苛性ソーダによる軟
鋼の腐食を防ぐために苛性ソーダ水溶液と接液す
る陰極室内面積を小さくすること、言換えれば陰
極室内の気相部分を大きくとることが好ましい方
法と考えられていたことと対比すると驚くべきこ
とである。本発明者らの知見によれば、このよう
な従来の認識とは全く異なり、むしろ、陰極室で
発生する水素ガス及び苛性ソーダを陰極室上部ノ
ズルから気液混合状態で抜き出すことが、苛性ソ
ーダ中の鉄の濃度を低くする上で有効であること
が明かとなり、かかる知見に基づいて、従来技術
からは常識的には採用し得ない上記構成、すなわ
ち水素ガス及び苛性ソーダを陰極室上部ノズル2
1から気液混合状態で抜き出すという本発明の特
徴的な構成を採用するに至つたのである。
The reason why hydrogen gas and caustic soda are extracted in a gas-liquid mixed state is as follows. That is, according to the studies of the present inventors, when hydrogen gas and caustic soda are extracted from the cathode chamber, they are extracted by gas-liquid separation, unlike the above method (specifically, hydrogen gas is extracted from the upper nozzle, and caustic soda is extracted from the cathode chamber). If a method is used in which iron is extracted separately from above the side of the cathode chamber, the concentration of iron in the caustic product is extremely high. This fact indicates that the gas-liquid separation method has been considered as an effective means for reducing pressure fluctuations within the cathode chamber, and furthermore, when the cathode and cathode chamber are made of mild steel, This is surprising considering that in order to prevent corrosion of mild steel by highly concentrated caustic soda, the preferred method was to reduce the area of the cathode chamber that comes in contact with the caustic soda aqueous solution, or in other words, to increase the gas phase area within the cathode chamber. It is the right thing to do. According to the findings of the present inventors, this is completely different from such conventional understanding, and rather, extracting the hydrogen gas and caustic soda generated in the cathode chamber from the upper nozzle of the cathode chamber in a gas-liquid mixture state is the best way to remove the hydrogen gas and caustic soda from the caustic soda. It has become clear that it is effective in lowering the concentration of iron, and based on this knowledge, the above configuration, which cannot be adopted in common sense from the conventional technology, is adopted.
This led to the adoption of the characteristic configuration of the present invention, in which the mixture of gas and liquid is extracted from 1.

本発明はまた、電解時における陰極室内の液レ
ベルを、第9図に示した該ノズルに連結した気液
分離器22のレベルに保ち、一方陽極室内の液レ
ベルを陰極室内の液レベルよりも低く保つように
したことにもう一つの大きな特徴がある。
The present invention also maintains the liquid level in the cathode chamber during electrolysis at the level of the gas-liquid separator 22 connected to the nozzle shown in FIG. 9, while keeping the liquid level in the anode chamber lower than the liquid level in the cathode chamber. There is another major feature in keeping the temperature low.

これによつて、陽イオン交換膜が陰極室内の液
と陽極室内の液の液比重差で陽イオン交換膜が陽
極室側に押され、このことが電槽電圧を低くする
条件を満足させるからである。
As a result, the cation exchange membrane is pushed toward the anode chamber due to the difference in specific gravity between the liquid in the cathode chamber and the liquid in the anode chamber, and this satisfies the conditions for lowering the cell voltage. It is.

またこのことに対応して、例えば第3図及び第
4図で説明したように、フインガーアノードには
陽極サポートを取付け、陰極室側からの圧力によ
りフインガーアノードがへこむ心配をなくすこと
がよい。これにより、個々のフインガーアノード
の内側の陽極室には安定して食塩水が供給され、
また狭い極間距離も維持されるので高い電流効率
で且つ低い電槽電圧での食塩水の電解が可能とな
る。
In addition, in response to this, for example, as explained in FIGS. 3 and 4, it is recommended to attach an anode support to the finger anode to eliminate the risk of the finger anode being dented by pressure from the cathode chamber side. . As a result, saline solution is stably supplied to the anode chamber inside each finger anode,
Furthermore, since a narrow distance between electrodes is maintained, it is possible to electrolyze saline water with high current efficiency and low cell voltage.

なお、以上述べた条件以外の電解条件について
は、これまで知られている陽イオン交換膜を用い
る際の条件が適用できる。例えば、電解温度は50
〜95℃、電流密度は10〜30A/dm2、苛性ソーダ
濃度は20〜40wt%であるが、中でも好ましい条
件は、それぞれ85〜95℃、15〜25A/dm2、30〜
38wt%である。
In addition, regarding the electrolytic conditions other than the conditions described above, the conditions when using a cation exchange membrane known so far can be applied. For example, the electrolysis temperature is 50
~95°C, current density is 10~30A/ dm2 , and caustic soda concentration is 20~40wt%, but the preferred conditions are 85~95°C, 15~25A/ dm2 , and 30~95°C, respectively.
It is 38wt%.

(発明の効果) 以上説明したように、既存のアスベスト隔膜を
使用していた複極式隔膜法電解槽を利用し、その
隔膜としてのアスベストに代えて、連続袋状の形
状に成形した陽イオン交換膜をフインガーカソー
ドに被せ、しかもこの陽イオン交換膜の周辺を、
電解槽の周囲フランジに締め付けシールするよう
にして組み立てた電解槽において、陽極室下部に
塩化アルカリを陰極室下部に水又は苛性アルカリ
を供給し、陰極室上部から、生成した苛性アルカ
リ及び水素ガスを気液混合状態で抜き出し、且
つ、電極操作において、陽極室内の液レベルを陰
極室内の液レベルよりも低く保つて電解を行なう
ようにすることで、極めて低い電槽電圧で電解を
実現でき、しかも陰極室から得られる苛性アルカ
リが、鉄及び塩化アルカリの含有量が極めて少な
い高純度なものとなり、これを長期間に渡つて安
定した電流効率を維持しつつ実現できるという優
れた効果をもたらす。また陽イオン交換膜をフイ
ンガーカソードに被せているので、陽極室は発生
塩素ガスに対しては開放系になつており、したが
つて塩素ガスが陽極室内や袋状膜内で滞留するこ
とがなく、該膜の耐久性も優れたものとなる。
(Effects of the invention) As explained above, by using a bipolar diaphragm electrolytic cell that used an existing asbestos diaphragm, instead of asbestos as the diaphragm, cations formed into a continuous bag shape were used. An exchange membrane is placed over the finger cathode, and the area around this cation exchange membrane is
In an electrolytic cell assembled by tightening and sealing the surrounding flange of the electrolytic cell, alkali chloride is supplied to the lower part of the anode chamber, water or caustic alkali is supplied to the lower part of the cathode chamber, and the generated caustic alkali and hydrogen gas are supplied from the upper part of the cathode chamber. By extracting gas and liquid in a mixed state and performing electrolysis by keeping the liquid level in the anode chamber lower than the liquid level in the cathode chamber during electrode operation, electrolysis can be achieved with extremely low cell voltage. The caustic alkali obtained from the cathode chamber becomes highly pure with extremely low iron and alkali chloride contents, and this has the excellent effect of being able to achieve this while maintaining stable current efficiency over a long period of time. In addition, since a cation exchange membrane is placed over the finger cathode, the anode chamber is an open system for generated chlorine gas, so chlorine gas does not accumulate in the anode chamber or bag-like membrane. Therefore, the durability of the film is also excellent.

本発明の製造方法は、塩化カリウムからの水酸
化カリウムの製造、食塩水からの苛性ソーダの製
造に特に有効であり、とりわけ食塩水からの苛性
ソーダの製造に優れた効果をもたらす発明として
有益である。
The production method of the present invention is particularly effective for the production of potassium hydroxide from potassium chloride and the production of caustic soda from saline solution, and is especially useful as an invention that provides excellent effects on the production of caustic soda from saline solution.

(実施例) 以下、実施例をもつて本発明のより具体的な構
成と効果を説明する。
(Example) Hereinafter, more specific configurations and effects of the present invention will be explained using examples.

実施例 既存の複極式隔膜法電解槽のフインガーアノー
ドであり、側面が、高さ1220mm、長さ335mm、断
面がU字型、の酸化ルテニウムを被覆した1/2メ
ツシユのチタンエキスパンドメタルからなるフイ
ンガーアノードの先端部を、ガス溶断機で切断
し、給電体に溶接している陽極板の接合部から25
mmの位置を外側方向に屈曲加工した。そして、断
面の大きさが長さ335mm、先端部の巾が16mm、付
け根部が25mm、のU字型の袋状フインガーカソー
ドとの距離を2.5mmとなるように、前記陽極板間
隔を拡幅した。そしてこの陽極板の中央部内側の
所に1220mm、内径28mm、外形31mmのチタン製のパ
イプをTIG溶接により点付けし、次に切断した2
枚の陽極板の先端部同士を、表面を予め平滑仕上
げした酸化ルテニウムコーテイングした厚み1.5
mmのチタンを基材としたエキスパンドロールドメ
ツシユを曲げ加工して製作した長さ1220mmの架橋
板を介してTIG溶接にて固定した。
Example: This is a finger anode for an existing bipolar diaphragm electrolyzer, and the sides are made of 1/2 mesh titanium expanded metal coated with ruthenium oxide, with a height of 1220 mm, a length of 335 mm, and a U-shaped cross section. The tip of the finger anode is cut with a gas cutter, and the anode plate is welded to the power supply body.
The position of mm was bent outward. Then, the distance between the anode plates is widened so that the distance from the U-shaped bag-like finger cathode, which has a cross-sectional size of 335 mm in length, a width at the tip of 16 mm, and a width at the base of 25 mm, is 2.5 mm. did. Then, a titanium pipe of 1220 mm, inner diameter 28 mm, and outer diameter 31 mm was attached to the inside of the center of this anode plate by TIG welding, and then cut into two pieces.
The tips of the two anode plates are coated with ruthenium oxide, which has a smooth surface and has a thickness of 1.5 mm.
It was fixed by TIG welding via a bridge plate with a length of 1220 mm, which was manufactured by bending an expanded rolled mesh made of titanium with a diameter of 1 mm.

このように改造されたフインガーアノードの44
個とフインガーカソードを備えた複極式電解槽
に、次の方式により作製したカルボン酸基を有す
る連続袋状陽イオン交換膜を装着した。
44 of the finger anode modified in this way
A continuous bag-shaped cation exchange membrane having carboxylic acid groups prepared by the following method was attached to a bipolar electrolytic cell equipped with a single finger cathode and a finger cathode.

ポリテトラフルオロエチレンCF2=CFO
(CF23COOCH3の共重合体からなる陽イオン交
換膜を熱融着法により袋状に成形加工し、続いて
開口部周辺を加熱加圧下でフレアを取付け、袋部
の深さ340mm、長さ1230mm、袋の先端部の巾が25
mm、袋の開口部の巾が45mmの袋状膜を作製した。
Polytetrafluoroethylene CF 2 = CFO
A cation exchange membrane made of a copolymer of (CF 2 ) 3 COOCH 3 is formed into a bag shape using a heat fusion method, and then a flare is attached around the opening under heat and pressure, making the bag depth 340 mm. , length 1230mm, width at the tip of the bag 25mm
A bag-like membrane with a bag opening width of 45 mm was prepared.

次にこの袋状膜44枚の隣り合うフレア部同士を
熱融着法により接合し、袋状膜の先端部のピツチ
を65mmとした44連続袋状膜を製作し、最後に外周
部に袋状膜と同一の共重合体シートを熱融着しフ
ランジ部を取付けた。
Next, the adjacent flare parts of these 44 bag-like membranes were joined together using a heat fusion method to produce 44 continuous bag-like membranes with a pitch of 65 mm at the tips of the bag-like membranes. The flange portion was attached by heat-sealing the same copolymer sheet as the membrane.

こうして製作した44連続袋状イオン交換膜の袋
部を、予めフインガーカソードの先端部周辺の突
起物やエツジなどをやすりで平滑化仕上げを行な
つておいた前記の高さ1220mm、長さ330mmフイン
ガー付け根部巾45mm、先端部の巾16mmのフイガー
カソード44個を具備した複極式電解槽の該フイン
ガーカソード上に被せた。
The bag portion of the 44 continuous bag-shaped ion exchange membrane thus manufactured was previously smoothed with a file to remove protrusions and edges around the tip of the finger cathode. It was placed over the finger cathodes of a bipolar electrolytic cell equipped with 44 finger cathodes each having a finger root width of 45 mm and a tip width of 16 mm.

フインガーカソード上にイオン交換膜を被せた
後、イオン交換膜フランジ部を陰極室フランジと
の間でシールし陰極室内の減圧度を−50mmH2O
になるように吸引した。そして陰極室内の減圧度
を−50mmH2Oに保ち、フインガーカソード上に
イオン交換膜が密着した状態のままで、高さ1200
mm、長さ330mm、フインガー部最大巾35mmで、内
部に陽極サポートを有したフインガーアノードを
収納した陽極室内に組み入れ、複極式電解槽組み
立てた。この後、陰極室内を減圧から+100mm
H2Oの加圧状態におき陽極室内の圧力変化を調
べたが、20分放置しても陽極室内の圧力上昇は観
察されずイオン交換膜の損傷が全くないことが確
認された。
After covering the finger cathode with the ion exchange membrane, the ion exchange membrane flange was sealed between the cathode chamber flange and the degree of vacuum in the cathode chamber was reduced to −50 mmH 2 O.
I aspirated it so that it was. The degree of vacuum in the cathode chamber was maintained at -50 mmH 2 O, and the ion exchange membrane was kept in close contact with the finger cathode at a height of 1200 mm.
mm, length 330 mm, finger part maximum width 35 mm, and a bipolar electrolytic cell was assembled by incorporating a finger anode with an internal anode support into the anode chamber. After this, reduce the pressure inside the cathode chamber by +100mm.
The change in pressure inside the anode chamber was examined under a pressurized state of H 2 O, but no increase in pressure inside the anode chamber was observed even after being left for 20 minutes, confirming that there was no damage to the ion exchange membrane.

こうして組み立てた電解槽の陰極室に27wt%
の苛性ソーダを供給し、陽極室には305g/の
食塩水を供給して、70℃で40時間の条件で陽イオ
ン交換膜の加水分解処理を次の条件で行なつた。
27wt% in the cathode chamber of the electrolytic cell assembled in this way.
of caustic soda was supplied, 305 g of saline solution was supplied to the anode chamber, and the cation exchange membrane was hydrolyzed at 70° C. for 40 hours under the following conditions.

305g/の食塩水を陽極室上方隅に設けたノ
ズルより内挿管を用いて陽極下部へ供給し、そし
て塩素ガス及び淡塩水は反対側の上部隅ノズルよ
り抜き出した。一方、陰極室サイド下部に設けた
ノズルより31wt%苛性ソーダを供給し、水素ガ
ス、苛性ソーダは上部隅のノズルより気液混合状
態で抜き出した。このとき陽極室及び陰極室上部
出口ノズル上方に、陽極室液レベルより陰極室液
レベルが100mm高くなるようにそれぞれ気液分離
器を設置した。
305 g of saline solution was supplied to the lower part of the anode through a nozzle provided in the upper corner of the anode chamber using an internal tube, and chlorine gas and fresh salt water were extracted from the nozzle in the upper corner on the opposite side. On the other hand, 31wt% caustic soda was supplied from a nozzle installed at the bottom of the side of the cathode chamber, and hydrogen gas and caustic soda were extracted in a gas-liquid mixture from a nozzle at the upper corner. At this time, a gas-liquid separator was installed above the upper outlet nozzles of the anode chamber and the cathode chamber, respectively, so that the cathode chamber liquid level was 100 mm higher than the anode chamber liquid level.

72kAの電流を流し90℃で電解を行なつたとこ
ろ、10日目に電槽電圧は3.37ボルトで陰極室より
32.3wt%の苛性ソーダが95.7%の電流効率で得ら
れ、この時の苛性ソーダ中の食塩濃度は12ppm、
又鉄濃度は0.65ppmと非常に少なかつた。
When electrolysis was carried out at 90℃ by applying a current of 72kA, on the 10th day, the cell voltage was 3.37V and the voltage from the cathode chamber was
32.3wt% caustic soda was obtained with a current efficiency of 95.7%, and the salt concentration in the caustic soda was 12ppm.
Also, the iron concentration was very low at 0.65ppm.

そしてこれらの電解性能値は6ヶ月間の長期間
の運転でも安定しており、電槽電圧は3.38ボルト
で、32.1%苛性ソーダが95.4%の電流効率であつ
た。又苛性ソーダ中の食塩濃度は10ppm、鉄濃度
は0.60ppmであつた。
These electrolytic performance values were stable even after 6 months of long-term operation, with a cell voltage of 3.38 volts and a current efficiency of 95.4% for 32.1% caustic soda. The salt concentration in the caustic soda was 10 ppm, and the iron concentration was 0.60 ppm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は既存の複極式隔膜法電解槽の断面図、
第2図は既存の複極式隔膜法電解槽のフインガー
アノードの斜視図、第3図、第4図はそれぞれ本
発明に用いるフインガーアノードの例を示す斜視
図、第5図a〜e及び第6図a〜cはそれぞれ本
発明における連続袋状イオン交換膜の製作工程の
例を示す説明図、第7図は本発明の陽極側の液レ
ベルを示した図、第8図及び第9図はそれぞれ本
発明の陰極側の液レベルを示した図である。 1……隔壁、2……フインガーアノード、3…
…給電体、4……給電棒、5……カソードバツク
スクリーン、6……フインガーカソード、7……
陰極室側フランジ部、8……陽極サポート、9…
…フインガーアノードの先端部、10……フイン
ガーアノードの開口部、11……架橋板、12…
…陽イオン交換膜シート、13……フレーム用シ
ート、14……袋状イオン交換膜、15……陽極
室下部フイードノズル、16……陽極室上部ノズ
ル、17……内挿管、18……生成塩素ガス、1
9……淡塩水、20……陰極室下部ノズル、21
……陰極室上部ノズル、22……気液分離器。
Figure 1 is a cross-sectional view of an existing bipolar diaphragm electrolyzer;
Fig. 2 is a perspective view of a finger anode of an existing bipolar diaphragm electrolytic cell, Figs. 3 and 4 are perspective views showing examples of finger anodes used in the present invention, and Figs. 5 a to e. and FIGS. 6 a to 6 c are explanatory diagrams showing an example of the manufacturing process of the continuous bag-shaped ion exchange membrane in the present invention, FIG. 7 is a diagram showing the liquid level on the anode side of the present invention, and FIGS. FIG. 9 is a diagram showing the liquid level on the cathode side of the present invention. 1... Bulkhead, 2... Finger anode, 3...
...power supply body, 4 ... power supply rod, 5 ... cathode back screen, 6 ... finger cathode, 7 ...
Cathode chamber side flange part, 8... Anode support, 9...
...Finger anode tip, 10...Finger anode opening, 11...Bridging plate, 12...
... Cation exchange membrane sheet, 13 ... Frame sheet, 14 ... Bag-shaped ion exchange membrane, 15 ... Anode chamber lower feed nozzle, 16 ... Anode chamber upper nozzle, 17 ... Internal intubation tube, 18 ... Produced chlorine gas, 1
9... Fresh salt water, 20... Cathode chamber lower nozzle, 21
... Cathode chamber upper nozzle, 22 ... Gas-liquid separator.

Claims (1)

【特許請求の範囲】[Claims] 1 電解槽の対向する隔壁の一方から延出された
多数のフインガーアノードと、対向する他方の隔
壁から延出された多数のフインガーカソードと
を、これらの両フインガーが互いに食い違い状に
入り込みして微小な極間距離を保つように組立
て、更に、連続した袋状の陽イオン交換膜を前記
フインガーカソードに被せると共にその陽イオン
交換膜の周辺部を電解槽のフインガーカソードの
根元付近で陰極室側フランジ部に取着シールさせ
ることで槽内を陽極室と陰極室に区画してなる複
極式電解槽を用い、陽極室に塩化アルカリを供給
しながら電解を行なつて陰極室に苛性アルカリを
生成させる苛性アルカリの製造方法であつて、該
陰極室の下部から水又は低濃度苛性アルカリを供
給し、かつ陰極室内に気相を存在させない状態で
電解を行なわせながら、この陰極室内で生成した
苛性アルカリおよび水素ガスを該陰極室上部に設
けた上部ノズルから気液混合状態で抜き出し、更
に電解中の陽極室の液のレベルを前記陰極室の液
のレベル以下に保つことを特徴とする苛性アルカ
リの製造方法。
1. A large number of finger anodes extending from one of the opposing partition walls of an electrolytic cell and a large number of finger cathodes extending from the other opposing partition wall are inserted into each other in a staggered manner. Furthermore, a continuous bag-shaped cation exchange membrane is placed over the finger cathode, and the periphery of the cation exchange membrane is placed near the base of the finger cathode of the electrolytic cell. A multi-electrode electrolytic cell is used, in which the inside of the tank is divided into an anode chamber and a cathode chamber by attaching and sealing the flange on the cathode chamber side, and electrolysis is carried out while supplying alkali chloride to the anode chamber. A method for producing caustic alkali in which a caustic alkali is produced, wherein water or low concentration caustic alkali is supplied from the lower part of the cathode chamber, and electrolysis is performed in a state where no gas phase exists in the cathode chamber. The caustic alkali and hydrogen gas generated are extracted in a gas-liquid mixture from an upper nozzle provided in the upper part of the cathode chamber, and the level of the liquid in the anode chamber during electrolysis is maintained below the level of the liquid in the cathode chamber. A method for producing caustic alkali.
JP58220030A 1983-11-17 1983-11-22 Production of caustic alkali Granted JPS60114583A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58220030A JPS60114583A (en) 1983-11-22 1983-11-22 Production of caustic alkali
IT23625/84A IT1177236B (en) 1983-11-17 1984-11-16 PROCEDURE FOR PRODUCING CAUSTIC ALKALINE AGENTS
US06/673,122 US4622113A (en) 1983-11-17 1984-11-19 Process for producing caustic alkalis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58220030A JPS60114583A (en) 1983-11-22 1983-11-22 Production of caustic alkali

Publications (2)

Publication Number Publication Date
JPS60114583A JPS60114583A (en) 1985-06-21
JPH0565595B2 true JPH0565595B2 (en) 1993-09-20

Family

ID=16744826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58220030A Granted JPS60114583A (en) 1983-11-17 1983-11-22 Production of caustic alkali

Country Status (1)

Country Link
JP (1) JPS60114583A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241206A (en) * 2011-05-16 2012-12-10 Kobe Steel Ltd Ozone generating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385800A (en) * 1977-01-03 1978-07-28 Olin Corp Diaphragm electrolytic bath

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385800A (en) * 1977-01-03 1978-07-28 Olin Corp Diaphragm electrolytic bath

Also Published As

Publication number Publication date
JPS60114583A (en) 1985-06-21

Similar Documents

Publication Publication Date Title
US4417960A (en) Novel electrolyzer and process
US4059216A (en) Metal laminate strip construction of bipolar electrode backplates
JPS5815547B2 (en) electrolytic cell
US4110191A (en) Separator-electrode unit for electrolytic cells
WO2009070938A1 (en) Multielectrodes-type ion-membrane electrolytic cell with oxygen-cathodes
US4283264A (en) Electrolytic cell separator, tubular member component thereof and methods for manufacturing and using such separator and component
US4236989A (en) Electrolytic cell
US4622113A (en) Process for producing caustic alkalis
US4339323A (en) Bipolar electrolyzer element
US4165272A (en) Hollow cathode for an electrolytic cell
JPH0565595B2 (en)
US4568433A (en) Electrolytic process of an aqueous alkali metal halide solution
US4315811A (en) Reinforced metal channels for cell frame
US4596639A (en) Electrolysis process and electrolytic cell
EP3161185A1 (en) Narrow gap, undivided electrolysis cell
US4705614A (en) Cell with improved electrolyte flow distributor
JPS6326391A (en) Filter press type electrolytic cell
US4201652A (en) Electrolytic cell membrane sealing means
GB2043105A (en) Internal gas separation assembly for high current density electrolytic cells
US4271004A (en) Synthetic separator electrolytic cell
CA1139264A (en) Bipolar electrolyzer having synthetic separator
US3852179A (en) Bipolar diaphragm electrolytic cell having internal anolyte level equalizing means
GB2044802A (en) Method and apparatus of installation of a membrane to an electrolytic cell
EP0046235A1 (en) A novel vertical type separator electrolytic cell
JPH0335389B2 (en)