[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0565541A - Manufacture of high strength resistance welded steel tube for automotive use excellent in ductility and three-point bendability - Google Patents

Manufacture of high strength resistance welded steel tube for automotive use excellent in ductility and three-point bendability

Info

Publication number
JPH0565541A
JPH0565541A JP25836291A JP25836291A JPH0565541A JP H0565541 A JPH0565541 A JP H0565541A JP 25836291 A JP25836291 A JP 25836291A JP 25836291 A JP25836291 A JP 25836291A JP H0565541 A JPH0565541 A JP H0565541A
Authority
JP
Japan
Prior art keywords
steel pipe
less
strength
heat treatment
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25836291A
Other languages
Japanese (ja)
Inventor
Akishi Sasaki
晃史 佐々木
Masayuki Minami
正進 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25836291A priority Critical patent/JPH0565541A/en
Publication of JPH0565541A publication Critical patent/JPH0565541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To improve the strength and toughness of a steel tube by subjecting steel sheet stock contg. specified amounts of C, Si, Mn, P, S, Cr, Ti, B, Ca and N to resistance seam welding and executing high-frequency heat treatment of high-frequency heating and hardening. CONSTITUTION:Steel sheet stock contg., by weight, 0.15 to 0.27% C, 0.5% Si, 0.80 to 1.70% Mn, <=0.02% P, <=0.02% S, 0.1 to 0.7% Cr, 0.005 to 0.040% Ti, 0.0005 to O.0025% B, 0.0004 to 0.0100% Ca, <=0.0080% N and the balance Fe with inevitable impurities is subjected to resistance seam welding. The obtd. steel tube is subjected to high-frequency heat treatment of high-frequency heating and hardening under the conditions of 850 to 1050 deg.C heating temp. and >=100 deg.C/sec cooling rate. The above compsn. is incorporated with optimum amounts of one or more kinds among Nb, V and Mo according to necessary. By the addition of Ca, sound seam properties can be obtd., and by high-frequency heating treatment, the objective resistance welded steel tube having 150 to 190kgf/mm<2> class tensile strength and excellent in three-point bendability can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軽量化と安全性向上の
観点から自動車、二輪車等に必要とされる高強度な構造
材用鋼管に適用、使用するもので特に自動車の補強材と
してドア補強材(インパクトビームとも呼ばれる)やバ
ンパー用芯材料としてや二輪車のフロントフォーク用に
適用できる高強度で曲げ特性に優れた電縫鋼管の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to and used for a high-strength steel pipe for structural materials required for automobiles, two-wheeled vehicles, etc. from the viewpoints of weight reduction and safety improvement. The present invention relates to a method for producing an electric resistance welded steel pipe having high strength and excellent bending characteristics, which can be applied as a reinforcing material (also called an impact beam), a core material for a bumper, or a front fork of a motorcycle.

【0002】[0002]

【従来の技術】自動車の軽量化をさらに達成するために
安価な材料で高張力化が求められている。高張力化自体
については例えば、日本鉄鋼協会編“鋼の熱処理” 411
頁に説明されているように、 150〜200kgf/mm2 級の高
張力鋼としては1)低合金鋼、2) 中合金鋼、3)高合金鋼
(マルエイジング鋼系)が知られている。しかしこれら
の合金系はいずれもCrやNiを1%以上含有しており、特
にマルエイジング鋼は多量のNiを含有しており非常に高
価である。しかもこれらの鋼はいずれも焼入れ熱処理に
加えて焼もどし熱処理を行って強度と延性および靱性の
バランスを良くしており工程的に2回の熱処理が必要で
あり負荷が大きい。高価な元素を含有しないで焼入れ熱
処理により 150〜200kgf/mm2 級の高張力鋼を得るには
中、高炭素鋼を用いる必要がある。例えば門間改三著
“鉄鋼材料学” 175頁に 0.2%C鋼と 0.4%C鋼の焼入
れ及び焼きもどした場合の機械的性質が示されている
が、 0.4%C鋼では焼入れ状態で180kgf/mm2 程度の引
張強さが得られるが、伸びはほとんどなく数%以下であ
る。このように高炭素鋼とするだけでは焼入れ処理によ
り高強度でかつ十分な延性を確保することはできない。
2. Description of the Related Art In order to further reduce the weight of automobiles, inexpensive materials are required to have high tensile strength. Regarding the high tensile strength itself, see, for example, “Heat Treatment of Steel”, edited by The Iron and Steel Institute of Japan 411
As explained on the page, 150-200 kgf / mm 2 class high-strength steels are known to be 1) low alloy steel, 2) medium alloy steel, and 3) high alloy steel (maraging steel series). .. However, all of these alloy systems contain Cr or Ni in an amount of 1% or more. In particular, maraging steel contains a large amount of Ni and is very expensive. Moreover, all of these steels undergo tempering heat treatment as well as tempering heat treatment to obtain a good balance of strength, ductility and toughness, and two heat treatments are required for each process, resulting in a large load. In order to obtain high strength steel of 150 to 200 kgf / mm 2 grade by quenching heat treatment without containing expensive elements, it is necessary to use medium and high carbon steel. For example, Kazama Kaizo “Steel Material Studies” page 175 shows the mechanical properties of 0.2% C steel and 0.4% C steel when quenched and tempered. For 0.4% C steel, 180kgf / Although a tensile strength of about mm 2 can be obtained, there is almost no elongation and it is several percent or less. As described above, it is not possible to secure high strength and sufficient ductility by quenching only by using high carbon steel.

【0003】自動車用高強度電縫鋼管の高張力化の達成
例としては特開平1-205032号公報に開示されているよう
に 140〜160kgf/mm2 級が得られている。しかし高張力
化を行うと延性すなわち破断伸びが低下し、実施例にも
示されているように8%程度に低下している。多くの場
合、引張り強さ 80kgf/mm2 以上の自動車用高強度電縫
鋼管を得るためには電縫鋼管に成形した後、焼入れ熱処
理により高強度化される。例えば特開昭60-215719 号公
報には二輪車フロントフォーク用電縫鋼管の製造方法が
開示されているが、それは従来高CにしたりNiやCr等の
合金元素が多く添加して焼入れ性を高めていたのを、Ti
とBを添加することにより焼入れ性を高め合金元素量を
抑えることによって延性を改善した方法である。しかし
その第1図に示されているように、引張強さが150kgf/
mm2 を超えると伸びが平均的には10%以下となり160kgf
/mm2 を超えるとさらに伸びが低下することが開示され
ている。
As an example of achieving high tensile strength of a high strength electric resistance welded steel pipe for automobiles, as disclosed in Japanese Patent Laid-Open No. 1-205032, 140 to 160 kgf / mm 2 grade is obtained. However, when the tensile strength is increased, the ductility, that is, the elongation at break is lowered, and as shown in the examples, it is lowered to about 8%. In many cases, in order to obtain a high-strength electric resistance welded steel pipe for automobiles having a tensile strength of 80 kgf / mm 2 or more, after being formed into an electric resistance welded steel pipe, it is strengthened by quenching heat treatment. For example, Japanese Laid-Open Patent Publication No. 60-215719 discloses a method for manufacturing an electric resistance welded steel pipe for a front fork of a motorcycle, which has been conventionally made to have a high C content or a large amount of alloy elements such as Ni and Cr to improve hardenability. Was changed to Ti
And B are added to improve the hardenability and suppress the amount of alloying elements, thereby improving the ductility. However, as shown in Fig. 1, the tensile strength is 150 kgf /
When it exceeds mm 2 , the average elongation is 10% or less and 160 kgf.
It is disclosed that the elongation is further reduced when it exceeds / mm 2 .

【0004】[0004]

【発明が解決しようとする課題】自動車の軽量化をさら
に達成するためにインパクトビームについても高張力化
が求められているが、次のような問題がある。本発明で
は引張強さ150kgf/mm2 以上の高張力化を意図している
が高強度化されると延性が低下すること、例えば単にC
量を単に増量して高張力化したのでは延性が数%以下に
低下するなど、従来技術の延長では高張力化によりさら
に延性が低下するという問題があった。その理由はイン
パクトビームへ高張力化鋼管を適用する場合、インパク
トビームの役目は衝突時に曲げ変形をうけエネルギーを
吸収することを目的にしているので、鋼管特性として3
点曲げ試験での最高荷重、吸収エネルギーなどの曲げ特
性が優れていることが重要になるからである。
The impact beam is required to have a high tension in order to further reduce the weight of the automobile, but there are the following problems. In the present invention, it is intended to increase the tensile strength to 150 kgf / mm 2 or more, but if the strength is increased, the ductility decreases, for example, simply C
There is a problem in that the ductility is lowered to several percent or less by simply increasing the amount to increase the tensile strength, and in the extension of the conventional technique, the ductility is further decreased due to the high tensile strength. The reason is that when a high-strength steel pipe is applied to the impact beam, the role of the impact beam is to receive bending deformation at the time of collision and to absorb the energy.
This is because it is important that the bending characteristics such as maximum load and absorbed energy in the point bending test are excellent.

【0005】鋼管の3点曲げ試験方法を図2に、試験後
の荷重変位曲線の概要を図3に示す。鋼管の曲げ変形時
に吸収するエネルギーは図3に示した斜線部の面積とし
て求められる。最高荷重が大きくなるためには引張強さ
(TS)が大きい必要があり、吸収エネルギーが大きくなる
ためにはTSが大きいだけでなく、曲げに対して荷重低下
しないで曲げ変位が大きくなることが必要である。荷重
低下しないで曲げ変位が大きくなるためには種々の改善
因子が考えられるが、延性を良くすること、曲げ変形時
にくびれ、割れ等の発生をおさえることが重要である。
図3に示した例では曲線2の方が曲線1より吸収エネル
ギーが小さい。しかし原因は必ずしも明らかでなく、高
張力化すると、3点曲げ試験で十分な変形を生じないう
ちに荷重低下が生じたり、割れや破断することがあり吸
収エネルギーが低下するという問題があった。割れや破
断については、高強度になるとシーム位置での割れ感受
性が高くなって割れやすくなることも関係しており、従
ってより健全なシーム特性が求められる。さらに高強度
化と直接関係ないが焼入れ処理によりパイプに曲がりを
生じ易いという問題もあり、曲がり防止対策も求められ
ていた。このような観点から自動車用電縫鋼管について
安価な成分系で高張力化を達成すると同時に、延性の低
下を防止でき、さらに鋼管の3点曲げ特性が向上できれ
ばその意義は大きく、加えて鋼管の曲がり防止ができれ
ば一層効果が大きい。
FIG. 2 shows a three-point bending test method for a steel pipe, and FIG. 3 shows an outline of a load displacement curve after the test. The energy absorbed during bending deformation of the steel pipe is obtained as the area of the hatched portion shown in FIG. Tensile strength is required to increase maximum load
(TS) needs to be large, and in order for absorbed energy to become large, not only TS must be large, but also bending displacement needs to be large without decreasing the load with respect to bending. Various improvement factors can be considered in order to increase the bending displacement without lowering the load, but it is important to improve the ductility and suppress the occurrence of constrictions and cracks during bending deformation.
In the example shown in FIG. 3, the curve 2 has smaller absorbed energy than the curve 1. However, the cause is not always clear, and there is a problem that when the tensile strength is increased, the load may be decreased before the sufficient deformation in the three-point bending test, or cracking or fracture may occur and the absorbed energy may decrease. Regarding cracking and rupture, it is also related that the higher the strength, the higher the susceptibility to cracking at the seam position and the easier it becomes to break, and therefore more sound seam characteristics are required. Further, although it is not directly related to the increase in strength, there is a problem that the pipe is likely to bend due to the quenching treatment, and a measure for preventing the bend has also been required. From this point of view, it is of great significance if the electric resistance welded steel pipe for automobiles can be made to have a high tensile strength with an inexpensive component system, at the same time it can be prevented from lowering the ductility, and the three-point bending property of the steel pipe can be improved. The effect will be even greater if bending can be prevented.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上述の要
請に応えるべく成分と熱処理条件について種々検討した
結果、通常の炉加熱、焼入れと高周波加熱、焼入れとを
比較すると、高周波加熱、焼入れの方が高強度が得られ
るとの知見をえた。この知見に基づくと炉加熱、焼入れ
の場合より高周波加熱、焼入れの方が、高強度化される
のでC量を低減しても高炭素鋼の炉加熱、焼入れの場合
と同じ強度が得られる。焼入れ性向上のためにB及びTi
を添加することは良く知られているが、B及びTiに加え
て適量のCr, Mnを添加し、その際高周波での焼入れ条件
を適正化することによりさらに焼入れ特性が向上し、通
常の炉加熱、焼入れで高張力化する場合よりC量及び合
金元素量を抑えられることに加えて同時に延性の向上も
はかれることがわかったのである。さらにCaを添加する
ことにより造管時のシーム部の健全性を高めることがで
き、その結果高張力化後の3点曲げ試験時において曲げ
変形途中での割れはなくなり、高荷重を維持して十分変
形するため吸収エネルギーが高まることがわかった。
Means for Solving the Problems As a result of various examinations of components and heat treatment conditions in order to meet the above-mentioned demands, the inventors of the present invention compare normal furnace heating, quenching with induction heating, and quenching. We have found that quenching gives higher strength. Based on this finding, the high-frequency heating and quenching have higher strength than the furnace heating and quenching, so that even if the C content is reduced, the same strength as in the case of high-carbon steel furnace heating and quenching can be obtained. B and Ti to improve hardenability
It is well known that the addition of Cr, Mn in addition to B and Ti, and by optimizing the quenching conditions at high frequency, the quenching characteristics are further improved, It was found that the amount of C and the amount of alloying elements can be suppressed more than in the case of increasing the tension by heating and quenching, and at the same time, the ductility can be improved. Furthermore, by adding Ca, the soundness of the seam portion during pipe making can be enhanced, and as a result, cracks during bending deformation disappear during the three-point bending test after increasing the tensile strength, and high load is maintained. It was found that the absorbed energy was increased because of sufficient deformation.

【0007】すなわちC量を適正レベルにし、Cr, Mnを
適量添加し、また焼入れ性を高めるためTiとBを適量添
加し、さらにCaを適量添加することにより電縫管溶接後
も健全なシーム特性が得られ、さらにこの電縫鋼管を適
切な条件の高周波熱処理にて焼き入れることにより従来
得られてなかった、高強度でかつ延性に優れた鋼管が得
られた。3点曲げ特性についても曲げ時に割れ等の発生
はなく十分変形し高荷重や大きい吸収エネルギーが得ら
れた。このように素材と製造方法の検討により従来達成
されなかった特性を得ることができた。
That is, the C content is adjusted to a proper level, Cr and Mn are added in appropriate amounts, Ti and B are added in appropriate amounts to improve hardenability, and further Ca is added in an appropriate amount to ensure a healthy seam even after welding by electric resistance welding. The characteristics were obtained, and further, by quenching this electric resistance welded steel pipe by induction heat treatment under appropriate conditions, a steel pipe having high strength and excellent ductility, which was not obtained conventionally, was obtained. Regarding the three-point bending property, cracking did not occur during bending, and the material was sufficiently deformed and a high load and large absorbed energy were obtained. In this way, by studying the materials and manufacturing method, we were able to obtain properties that were not achieved previously.

【0008】本発明は、C:0.15〜0.27%,Si: 0.5
%以下,Mn:0.80〜1.70%,P:0.02%以下, S:0.02
%以下,Cr: 0.1〜 0.7%,Ti:0.005 〜 0.040%,
B:0.0005〜0.0025%,Ca:0.0004〜0.0100%, N:0.
0080%以下を含有し、残部はFeおよび不可避的不純物よ
りなる素材鋼板を、電縫溶接により鋼管とした後、該鋼
管に加熱温度850 〜1050℃でかつ冷却速度が 100℃/s
以上の条件で、高周波加熱、焼入れの高周波熱処理を行
うことを特徴とする引張り強さ150〜190kgf/mm2
で、延性および3点曲げ特性に優れている自動車用高強
度電縫鋼管の製造方法であり、またC:0.15〜0.27
%,Si: 0.5%以下,Mn:0.80〜1.70%,P:0.02%以
下, S:0.02%以下,Cr: 0.1〜 0.7%,Ti:0,005 〜
0.040%,B:0.0005〜0.0025%,Ca:0.0004〜0.0100
%, N:0.0080%以下,さらにNb: 0.1%以下, V:
0.1%以下, Mo:0.5%以下の1種または2種以上を含有
し、残部はFeおよび不可避的不純物よりなる素材鋼板
を、電縫溶接により鋼管とした後、該鋼管に加熱温度 8
50〜1050℃でかつ冷却速度が 100℃/s以上の条件で、
高周波加熱、焼入れの高周波熱処理を行うことを特徴と
する引張り強さ 150〜190kgf/mm 級で、延性および3
点曲げ特性に優れている自動車用高強度電縫鋼管の製造
方法であり、さらに前項またはにおける高周波熱
処理に際し、鋼管の管軸回りに回転速度 300回/分以上
の回転を鋼管に与えつつ高周波熱処理を行うことを特徴
とする延性および3点曲げ特性に優れている自動車用高
強度電縫鋼管の製造方法である。
In the present invention, C: 0.15 to 0.27%, Si: 0.5
% Or less, Mn: 0.80 to 1.70%, P: 0.02% or less, S: 0.02
%, Cr: 0.1 to 0.7%, Ti: 0.005 to 0.040%,
B: 0.0005 to 0.0025%, Ca: 0.0004 to 0.0100%, N: 0.
After a raw steel sheet containing less than 0080% and the balance Fe and unavoidable impurities was formed into a steel pipe by electric resistance welding, the steel pipe was heated at a temperature of 850 to 1050 ° C and a cooling rate of 100 ° C / s.
Manufacture of high-strength electric resistance welded steel pipes for automobiles with a tensile strength of 150 to 190 kgf / mm 2 class and excellent ductility and three-point bending characteristics, characterized by performing induction heating and quenching under the above conditions Method, and C: 0.15 to 0.27
%, Si: 0.5% or less, Mn: 0.80 to 1.70%, P: 0.02% or less, S: 0.02% or less, Cr: 0.1 to 0.7%, Ti: 0.005 to
0.040%, B: 0.0005 to 0.0025%, Ca: 0.0004 to 0.0100
%, N: 0.0080% or less, Nb: 0.1% or less, V:
A material steel sheet containing 0.1% or less, Mo: 0.5% or less, one or more of which is Fe and unavoidable impurities in the balance is made into a steel pipe by electric resistance welding, and then the heating temperature of the steel pipe is 8
Under conditions of 50 to 1050 ℃ and cooling rate of 100 ℃ / s or more,
Intensity of 150 to 190 kgf / mm, characterized by high-frequency heat treatment such as induction heating and quenching.
A high-strength electric resistance welded steel pipe for automobiles having excellent point bending characteristics. In addition, in the high-frequency heat treatment in the preceding paragraph or in addition, the high-frequency heat treatment is applied to the steel pipe while rotating the steel pipe around the pipe axis at a rotation speed of 300 times / min or more. Is a method for producing a high-strength electric resistance welded steel pipe for automobiles, which is excellent in ductility and three-point bending property.

【0009】[0009]

【作用】以下に本発明における成分と製造条件の限定理
由を説明する。 C:0.15〜0.27% Cは安価な元素で焼入れ後の強度を高めるのに有効な元
素であるが、引張強さ(TS)150kgf/mm2 以上を得るため
には0.15%以上の添加が必要である。一方添加量を増せ
ばTSは増加するものの焼入れ後の引張試験時の伸びは低
下する。後述のようにBとTiを適正量添加した成分系
で、MnおよびCrや場合によってはMo等を適正量添加する
ことによりCが0.27%までは伸びが10%以上得られると
の知見により上限を0.27%とした。 Mn:0.80〜1.70% Mnは焼入れ性を高め高張力化に有効な元素であるが、こ
の効果を有効に得るためには 0.8%以上の添加が必要で
ある。一方、多量に添加すると溶接部に酸化物を発生さ
せ溶接欠陥が発生しやすくなるので上限を1.70%とし
た。 P,S:0.02%以下 PとSはよく知られているように延性、靱性を害し、0.
02%を超えると悪影響を及ぼすのでいずれも上限を0.02
%とした。 Cr: 0.1〜 0.7% Crは焼入れ性を大幅に高め高張力化に有効な元素であ
り、その効果を有効に得るには0.10%以上の添加が必要
である。成分と熱処理条件について種々検討した結果、
CとMnを適正量添加し、さらに焼入れ性を高めるためB
とTiを適正量添加して高周波で焼入れ処理を行うと、強
度が上昇するだけでなく延性が改善されるとの知見がえ
られた。一方、0.7 %以上の添加はコスト上昇となるば
かりでなく、造管時の溶接部に欠陥を生じやすくなるの
で上限を0.70%とした。
The reasons for limiting the components and production conditions in the present invention will be described below. C: 0.15 to 0.27% C is an inexpensive element that is effective in increasing the strength after quenching, but 0.15% or more is required to obtain a tensile strength (TS) of 150 kgf / mm 2 or more. Is. On the other hand, if the addition amount is increased, TS increases but the elongation in the tensile test after quenching decreases. As will be described later, it is a component system in which B and Ti are added in appropriate amounts, and by adding appropriate amounts of Mn and Cr, and in some cases Mo, etc., it is possible to obtain an elongation of 10% or more up to 0.27% of C. Was 0.27%. Mn: 0.80 to 1.70% Mn is an element effective in enhancing the hardenability and increasing the tensile strength, but it is necessary to add 0.8% or more to obtain this effect effectively. On the other hand, if a large amount is added, oxides are easily generated in the weld zone and weld defects easily occur, so the upper limit was made 1.70%. P and S: 0.02% or less P and S impair ductility and toughness, as is well known.
If it exceeds 02%, it will have an adverse effect, so the upper limit is 0.02 for both cases.
%. Cr: 0.1 to 0.7% Cr is an element effective for significantly increasing the hardenability and increasing the tensile strength, and it is necessary to add 0.10% or more in order to obtain the effect effectively. As a result of various studies on components and heat treatment conditions,
Add appropriate amounts of C and Mn, and further enhance B to improve hardenability.
It was found that the addition of Ti and Ti in an appropriate amount and quenching at high frequency not only increases the strength but also improves the ductility. On the other hand, the addition of 0.7% or more not only increases the cost but also tends to cause defects in the welded portion during pipe making, so the upper limit was made 0.70%.

【0010】B:0.0005〜0.0025% Bは焼入れ性の向上に極めて大きい効果を有するが、そ
の効果を得るためには0.0005%以上の添加が必要であ
り、一方0.0025%を超えるとその効果が飽和傾向を示し
さらに表面疵や靱性劣化の原因となりやすいので上限を
0.0025%とした。 Ti: 0.005〜 0.040% TiはNを固定してBの焼入れ性効果を発揮させるために
添加する元素である。この目的のためには 0.005%以上
の添加が必要であり、一方 0.040%を超えての添加は疵
を発生しやすくするので上限を 0.040%とした。 Ca:0.0004〜0.0100% Caは脱酸作用および介在物の形態制御により素材の延性
および靱性の改善作用を有するとともに電縫溶接部の欠
陥抑制効果を有する。この効果を得るためには0.0004%
以上の添加が必要であり、一方0.0100%を超えての添加
はかえって延性、靱性が低下するので上限を0.0100%と
した。 N:0.0080%以下 Nは鋼中にガス成分として存在しBと作用してBNを形成
し、Bの焼入れ性効果を減じるので少ないほうが望まし
く、0.0080%以下とした。Nb,V,Moはいずれも鋼の焼
入れ性を高める作用があるが多量に添加すると靱性を低
下させる恐れがあるのでそれぞれ 0.1%、0.1 %、0.5
%以下とした。
B: 0.0005 to 0.0025% B has an extremely large effect on the improvement of hardenability, but in order to obtain the effect, 0.0005% or more must be added, while if it exceeds 0.0025%, the effect is saturated. The upper limit is set because it tends to cause surface defects and deterioration of toughness.
It was set to 0.0025%. Ti: 0.005 to 0.040% Ti is an element added to fix N and exert the hardenability effect of B. For this purpose, addition of 0.005% or more is necessary, while addition of more than 0.040% tends to cause defects, so the upper limit was made 0.040%. Ca: 0.0004 to 0.0100% Ca has the effect of improving the ductility and toughness of the material by the deoxidizing action and the morphology control of inclusions, and also has the effect of suppressing defects in the electric resistance welded portion. 0.0004% to obtain this effect
The above-mentioned additions are necessary, while additions exceeding 0.0100% lower the ductility and toughness, so the upper limit was made 0.0100%. N: 0.0080% or less N is present in the steel as a gas component and acts with B to form BN, which reduces the hardenability effect of B, so it is preferable that the N content be 0.0080% or less. Nb, V, and Mo all have the effect of enhancing the hardenability of steel, but if added in large amounts, they may reduce toughness, so 0.1%, 0.1%, and 0.5%, respectively.
% Or less.

【0011】高周波での加熱温度を 850〜1050℃とした
のは加熱温度と焼入れ後の強度、延性を調査した結果に
よるものである。 850℃未満では焼入れが不十分で高強
度が得られず、一方1050℃を超えると焼入れ後の延性、
靱性の低下を生じるので、加熱温度は 850〜1050℃とし
た。冷却速度を 100℃/s以上としたのは高周波での焼
入れ実験結果によるもので、 100℃/s未満の冷却速度
では焼入れが不十分となり十分な高張力化が得られない
ためである。冷却速度は速い方が焼入れが十分となり好
ましいが、あまり速くしようとすると冷却設備にコスト
がかさむことになるので上限は500 ℃/S以下が好適であ
る。鋼管を300回/分以上の回転速度で該鋼管の管軸回
りに回転させるのは、焼入れ時の鋼管の曲がりを防止す
るためであり、 300回/分未満の回転速度では十分な効
果が得られないためである。回転速度は速い方が均一加
熱、冷却に好ましいが、あまり速くしようとすると回転
設備系にコストがかさむことになるので上限は1200回/
分以下が好適である。
The reason why the heating temperature at high frequency is set to 850 to 1050 ° C. is the result of examination of the heating temperature and the strength and ductility after quenching. If it is less than 850 ° C, quenching is insufficient and high strength cannot be obtained, while if it exceeds 1050 ° C, ductility after quenching,
Since the toughness is deteriorated, the heating temperature is set to 850 to 1050 ° C. The cooling rate of 100 ° C./s or more is based on the result of the quenching experiment at high frequency, and at a cooling rate of less than 100 ° C./s, quenching is insufficient and sufficient tensile strength cannot be obtained. A higher cooling rate is preferable because quenching will be sufficient, but if it is too fast, the cooling equipment will be costly. Therefore, the upper limit is preferably 500 ° C / S or less. The reason why the steel pipe is rotated around the tube axis of the steel pipe at a rotation speed of 300 rpm or more is to prevent bending of the steel pipe during quenching, and a rotation speed of less than 300 rpm gives a sufficient effect. Because it is not possible. A higher rotation speed is preferable for uniform heating and cooling, but if it is set too high, the rotating equipment system will be expensive, so the upper limit is 1200 times /
Minutes or less are preferred.

【0012】[0012]

【実施例】【Example】

(実施例1)表1に示した化学組成を有する電縫鋼管3
1.8mmφ×2.3mmtについて、炉加熱、焼入れと高周波加
熱、焼入れとの2種類で熱処理を行いその後、JIS11
号試験片による引張試験と鋼管の3点曲げ試験を行っ
た。こゝで炉加熱、焼入れは1000℃に加熱し水槽に焼入
れし、高周波加熱、焼入れは 930℃に加熱し、冷却速度
250℃/sで焼入れを行った。鋼管の3点曲げ試験は図
2に示す試験方法で行ったが、曲げダイス3の半径R:
6インチ(152.4mm)、スパンL:700mm であり、曲げス
ピード:5mm/s、曲げ変位:155mm の試験条件で行っ
た。その結果を表2に示したが、高周波加熱、焼入れの
方が高張力化され、しかも延性も大であり、3点曲げ試
験においても最高荷重、吸収エネルギーとも高周波加
熱、焼入れの方が優れている。
(Example 1) ERW steel pipe 3 having the chemical composition shown in Table 1
1.8mmφ × 2.3mmt is heat-treated by two types of furnace heating, quenching, high frequency heating, and quenching, and then JIS11
A tensile test using a No. test piece and a three-point bending test of a steel pipe were performed. Furnace heating, quenching to 1000 ℃ and quenching in a water tank, induction heating, quenching to 930 ℃, cooling rate
Quenching was performed at 250 ° C / s. The three-point bending test of the steel pipe was performed by the test method shown in FIG. 2, but the radius R of the bending die 3 was:
The test conditions were 6 inches (152.4 mm), span L: 700 mm, bending speed: 5 mm / s, and bending displacement: 155 mm. The results are shown in Table 2. High-frequency heating and quenching have higher tensile strength and greater ductility, and even in the three-point bending test, high-frequency heating and quenching are superior to both maximum load and absorbed energy. There is.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【表4】 [Table 4]

【0017】(実施例2)表3に示した化学組成を有す
る電縫鋼管25.4mmφ×2.8mmtについて、実施例1と同じ
条件で、炉加熱、焼入れと高周波加熱、焼入れの2種類
で熱処理を行い、その後JIS11号試験片による引張試
験と鋼管の3点曲げ試験を行った。その結果を表4に示
したが、高周波加熱、焼入れの方が高張力化されしかも
延性も大であり、3点曲げ試験においても最高荷重、吸
収エネルギーとも高周波加熱、焼入れの方が優れてい
る。さらにCrを添加しなかった比較例は焼入れ後の強度
が低下するだけでなく高周波焼入れ後の伸びがCrを添加
した場合より低下している。
(Embodiment 2) With respect to the electric resistance welded steel pipe 25.4 mmφ × 2.8 mmt having the chemical composition shown in Table 3, under the same conditions as in Embodiment 1, heat treatment was conducted in two types of furnace heating, quenching and induction heating, and quenching. After that, a tensile test using JIS No. 11 test pieces and a three-point bending test of a steel pipe were performed. The results are shown in Table 4. High-frequency heating and quenching have higher tensile strength and greater ductility, and even in the three-point bending test, high-frequency heating and quenching are superior in both maximum load and absorbed energy. .. Further, in the comparative example in which Cr is not added, not only the strength after quenching decreases but also the elongation after induction hardening is lower than that in the case where Cr is added.

【0018】(実施例3)表5に示した化学組成を有す
る電縫鋼管31.8mmφ×2.3mmtについて、実施例1と同じ
条件で高周波加熱、焼入れにて熱処理を行い、その後曲
げダイスの半径R、スパンL、曲げスピードは実施例1
と同じで、曲げ変位:305mm 、シーム位置:0度、90
度、 180度の条件で鋼管の3点曲げ試験を行った。3点
曲げ試験後の電縫(シーム)部の管軸方向ごとの割れ発
生状況を表6に示したが、Caを添加した実施例について
はシーム部の管軸方向の割れは発生せず、Caを添加しな
かった比較例についてはシームによらず一部割れが発生
した。このようにCaを添加することによりシーム部の健
全性が高められる。
(Embodiment 3) With respect to the electric resistance welded steel pipe 31.8 mmφ × 2.3 mmt having the chemical composition shown in Table 5, heat treatment was performed by high frequency heating and quenching under the same conditions as in Embodiment 1, and then the bending die radius R. , Span L, and bending speed in Example 1
Same as above, bending displacement: 305mm, seam position: 0 degree, 90
The steel pipe was subjected to a three-point bending test under the conditions of 180 degrees and 180 degrees. Table 6 shows the occurrence of cracks in the direction of the pipe axis of the electric resistance seam after the three-point bending test. In Examples containing Ca, no cracks occurred in the direction of the seam of the seam. In the comparative example in which Ca was not added, partial cracking occurred regardless of the seam. By adding Ca in this way, the soundness of the seam portion is enhanced.

【0019】[0019]

【表5】 [Table 5]

【0020】[0020]

【表6】 [Table 6]

【0021】(実施例4)表7に示した化学組成を有す
る電縫鋼管25.4mmφ×2.8mmtについて、実施例1と同じ
条件で高周波加熱、焼入れにて熱処理を行いその後引張
試験を行い、その結果を表8に示した。本発明範囲に属
する成分系についてはいずれも150kgf/mm2 以上の引張
強さと15%以上の伸びが得られるのに対して、本発明範
囲外の成分系ではいずれも150kgf/mm2 以下の引張強さ
または/および10%以下の伸びとなり高強度と高延性を
同時に満足することはできない。
(Embodiment 4) With respect to the electric resistance welded steel pipe 25.4 mmφ × 2.8 mmt having the chemical composition shown in Table 7, heat treatment was carried out by induction heating and quenching under the same conditions as in Embodiment 1, and then a tensile test was conducted. The results are shown in Table 8. Whereas the component which belongs to the scope of the invention also 150 kgf / mm 2 or more tensile strength and 15% or more of elongation either can be obtained, both in the present invention outside the scope of component 150 kgf / mm 2 or less of the tensile The strength and / or the elongation is 10% or less, and high strength and high ductility cannot be satisfied at the same time.

【0022】[0022]

【表7】 [Table 7]

【0023】[0023]

【表8】 [Table 8]

【0024】(実施例5)表7に示した素材記号F,O
の化学組成を有する電縫鋼管25.4mmφ×2.8mmtについ
て、高周波加熱、焼入れの条件を変えて熱処理を行いそ
の後引張及び3点曲げ試験を行い、その結果を表9に示
した。表から明らかなように本発明条件内で高周波加
熱、焼入れを行うことにより高強度で伸びも良好であり
かつ3点曲げ時の吸収エネルギー特性にも優れている電
縫鋼管を製造できる。
(Example 5) Material symbols F and O shown in Table 7
The electric resistance welded steel pipe having a chemical composition of 25.4 mmφ × 2.8 mmt was subjected to heat treatment under different conditions of high frequency heating and quenching, and then subjected to a tensile and three-point bending test. The results are shown in Table 9. As is clear from the table, by performing high-frequency heating and quenching within the conditions of the present invention, it is possible to manufacture an electric resistance welded steel pipe having high strength, good elongation, and excellent absorbed energy characteristics during three-point bending.

【0025】(実施例6)電縫鋼管31.8mmφ×2.3mmtに
ついて高周波加熱、焼入れ熱処理を行った。その際該鋼
管の回転数を変えて熱処理を行い、熱処理後の曲がり調
査を行い、その結果を図1に示した。本発明条件の 300
回/分以上のときは曲がりが約 1mm/mと曲がりが少な
いが、回転速度が本発明条件外の 300回/分以下のとき
は曲がりが大きい。
Example 6 High-frequency heating and quenching heat treatment were performed on a 31.8 mmφ × 2.3 mmt ERW steel pipe. At that time, heat treatment was performed while changing the rotation speed of the steel pipe, and the bending examination after the heat treatment was performed. The results are shown in FIG. 300 of the present invention conditions
When the number of revolutions per minute or more is small, the curve is about 1 mm / m, which is small, but when the rotational speed is 300 times per minute or less, which is outside the conditions of the present invention, the curve is large.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、引
張り強さ150kgf/mm2 以上でかつ延性にも優れた高強度
鋼管を高周波加熱、焼入れによって製造でき、その製品
は自動車ドアインパクトビームをはじめ構造材用部材と
して適用できる。
As described above, according to the present invention, a high-strength steel pipe having a tensile strength of 150 kgf / mm 2 or more and excellent ductility can be manufactured by induction heating and quenching, and the product is an automobile door impact beam. Can be applied as a structural member.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼管を回転しながら高周波加熱、焼入れをした
ときの回転数と鋼管の曲がり量との関係を示した特性図
である。
FIG. 1 is a characteristic diagram showing the relationship between the number of revolutions and the bending amount of a steel pipe when high-frequency heating and quenching are performed while rotating the steel pipe.

【図2】3点曲げ試験方法の説明図である。FIG. 2 is an explanatory diagram of a three-point bending test method.

【図3】3点曲げ試験後の荷重と変位との関係を示すグ
ラフである。
FIG. 3 is a graph showing the relationship between load and displacement after a 3-point bending test.

【符号の説明】[Explanation of symbols]

1 試験片 2 支持具 3 曲げダイス L スパン 1 Test piece 2 Support tool 3 Bending die L span

【表9】 [Table 9]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C:0.15〜0.27%(重量%、以下同
じ),Si: 0.5%以下,Mn:0.80〜1.70%,P:0.02%
以下, S:0.02%以下,Cr: 0.1〜 0.7%,Ti:0.005
〜 0.040%,B:0.0005〜0.0025%,Ca:0.0004〜0.01
00%, N:0.0080%以下を含有し、残部はFeおよび不可
避的不純物よりなる素材鋼板を、電縫溶接により鋼管と
した後、該鋼管に加熱温度850 〜1050℃でかつ冷却速度
が 100℃/s以上の条件で、高周波加熱、焼入れの高周
波熱処理を行うことを特徴とする引張り強さ150 〜190k
gf/mm2 級で、延性および3点曲げ特性に優れている自
動車用高強度電縫鋼管の製造方法。
1. C: 0.15 to 0.27% (weight%, the same hereinafter), Si: 0.5% or less, Mn: 0.80 to 1.70%, P: 0.02%
Below, S: 0.02% or below, Cr: 0.1 to 0.7%, Ti: 0.005
~ 0.040%, B: 0.0005 ~ 0.0025%, Ca: 0.0004 ~ 0.01
00%, N: 0.0080% or less, the balance consisting of Fe and unavoidable impurities, the raw material steel plate is made into a steel pipe by electric resistance welding, and the steel pipe is heated at a temperature of 850 to 1050 ° C and a cooling rate of 100 ° C. Tensile strength of 150-190k, characterized by high-frequency heat treatment and high-frequency heat treatment such as hardening under conditions of / s or more
A method for manufacturing high strength ERW steel pipes for automobiles with gf / mm 2 grade and excellent in ductility and 3-point bending properties.
【請求項2】 C:0.15〜0.27%(重量%、以下同
じ),Si: 0.5%以下,Mn:0.80〜1.70%,P:0.02%
以下, S:0.02%以下,Cr: 0.1〜 0.7%,Ti:0.005
〜 0.040%,B:0.0005〜0.0025%,Ca:0.0004〜0.01
00%, N:0.0080%以下,さらにNb: 0.1%以下, V:
0.1%以下, Mo: 0.5%以下の1種または2種以上を含
有し、残部はFeおよび不可避的不純物よりなる素材鋼板
を、電縫溶接により鋼管とした後、該鋼管に加熱温度 8
50〜1050℃でかつ冷却速度が 100℃/s以上の条件で、
高周波加熱、焼入れの高周波熱処理を行うことを特徴と
する引張り強さ 150〜190kgf/mm2 級で、延性および3
点曲げ特性に優れている自動車用高強度電縫鋼管の製造
方法。
2. C: 0.15 to 0.27% (weight%, the same below), Si: 0.5% or less, Mn: 0.80 to 1.70%, P: 0.02%
Below, S: 0.02% or below, Cr: 0.1 to 0.7%, Ti: 0.005
~ 0.040%, B: 0.0005 ~ 0.0025%, Ca: 0.0004 ~ 0.01
00%, N: 0.0080% or less, Nb: 0.1% or less, V:
0.1% or less, Mo: 0.5% or less, 1 or 2 or more, and the balance of Fe and unavoidable impurities, the raw material steel plate is made into a steel pipe by electric resistance welding, and then the heating temperature is 8
Under conditions of 50 to 1050 ℃ and cooling rate of 100 ℃ / s or more,
Intensity of 150 to 190 kgf / mm 2 grade, characterized by performing induction heating and induction heating.
A method for producing a high-strength electric resistance welded steel pipe for automobiles having excellent point bending properties.
【請求項3】 請求項1または2における高周波熱処理
に際し、鋼管の管軸回りに回転速度 300回/分以上の回
転を鋼管に与えつつ高周波熱処理を行うことを特徴とす
る延性および3点曲げ特性に優れている自動車用高強度
電縫鋼管の製造方法。
3. Ductility and three-point bending property, characterized in that in the induction heat treatment according to claim 1 or 2, the induction heat treatment is performed while applying a rotation speed of 300 times / min or more to the steel pipe around the pipe axis of the steel pipe. A method for producing a high-strength electric resistance welded steel pipe for automobiles, which has excellent properties.
JP25836291A 1991-09-10 1991-09-10 Manufacture of high strength resistance welded steel tube for automotive use excellent in ductility and three-point bendability Pending JPH0565541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25836291A JPH0565541A (en) 1991-09-10 1991-09-10 Manufacture of high strength resistance welded steel tube for automotive use excellent in ductility and three-point bendability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25836291A JPH0565541A (en) 1991-09-10 1991-09-10 Manufacture of high strength resistance welded steel tube for automotive use excellent in ductility and three-point bendability

Publications (1)

Publication Number Publication Date
JPH0565541A true JPH0565541A (en) 1993-03-19

Family

ID=17319185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25836291A Pending JPH0565541A (en) 1991-09-10 1991-09-10 Manufacture of high strength resistance welded steel tube for automotive use excellent in ductility and three-point bendability

Country Status (1)

Country Link
JP (1) JPH0565541A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1288322A1 (en) * 2001-08-29 2003-03-05 Sidmar N.V. An ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
JP2006250333A (en) * 2005-03-14 2006-09-21 Ntn Corp Hollow power transmission shaft
JP5005543B2 (en) * 2005-08-22 2012-08-22 新日本製鐵株式会社 High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same
WO2014054287A1 (en) * 2012-10-04 2014-04-10 Jfeスチール株式会社 Method for manufacturing heavy wall steel pipe
US10240219B2 (en) 2012-05-25 2019-03-26 Hyundai Motor Company High frequency heat treatment method of ultra-high strength parts

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1288322A1 (en) * 2001-08-29 2003-03-05 Sidmar N.V. An ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
WO2003018858A1 (en) * 2001-08-29 2003-03-06 Sidmar N.V. An ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
CN100339500C (en) * 2001-08-29 2007-09-26 西德玛有限公司 Ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
US8715427B2 (en) 2001-08-29 2014-05-06 Arcelormittal France Sa Ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
JP2006250333A (en) * 2005-03-14 2006-09-21 Ntn Corp Hollow power transmission shaft
JP5005543B2 (en) * 2005-08-22 2012-08-22 新日本製鐵株式会社 High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same
US10240219B2 (en) 2012-05-25 2019-03-26 Hyundai Motor Company High frequency heat treatment method of ultra-high strength parts
WO2014054287A1 (en) * 2012-10-04 2014-04-10 Jfeスチール株式会社 Method for manufacturing heavy wall steel pipe
JP5896036B2 (en) * 2012-10-04 2016-03-30 Jfeスチール株式会社 Manufacturing method for thick-walled steel pipe
JPWO2014054287A1 (en) * 2012-10-04 2016-08-25 Jfeスチール株式会社 Manufacturing method for thick-walled steel pipe
US9506132B2 (en) 2012-10-04 2016-11-29 Jfe Steel Corporation Method for manufacturing heavy wall steel pipe

Similar Documents

Publication Publication Date Title
JP2814882B2 (en) Method for manufacturing high strength and high ductility ERW steel pipe
WO2008007737A1 (en) Bend pipe and process for producing the same
JPWO2008139639A1 (en) Bend pipe and manufacturing method thereof
JPH10251804A (en) High strength spring steel
JPH05302119A (en) Production of high strength automotive parts
JP2006506529A (en) Weldable steel building component and method for manufacturing the same
JPH0565541A (en) Manufacture of high strength resistance welded steel tube for automotive use excellent in ductility and three-point bendability
JP2001262267A (en) Non-heat treated steel
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP2546070B2 (en) High-strength electric resistance welded steel pipe for vehicle door impact bar and manufacturing method thereof
JP2684963B2 (en) High strength and high toughness steel pipe manufacturing method
JP4043004B2 (en) Manufacturing method of hollow forgings with high strength and toughness with excellent stress corrosion cracking resistance and hollow forgings
JPH0892649A (en) Production of high strength hot bend steel tube
JPH04180537A (en) High tensile strength steel plate for door guard bar excellent in collapse strength
JPS62107023A (en) Working method for welded steel pipe
JP2845020B2 (en) Manufacturing method of as-roll type ultra-high tensile electric resistance welded steel pipe
JPH04116123A (en) Production of high strength resistance welded tube suitable for friction welding
JP2778433B2 (en) Manufacturing method of high strength electric resistance welded steel pipe for machine structure
JP2618563B2 (en) High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same
JPS60258411A (en) Method for working welded steel tube
JP2962054B2 (en) Manufacturing method of high strength electric resistance welded steel pipe for machine structure
JP2732885B2 (en) High strength hot rolled steel sheet excellent in cold workability and surface quality and method for producing the same
JPH08337815A (en) Production of chromium-molybdenum steel excellent in strength and toughness
JP3584726B2 (en) High strength non-heat treated steel
JP2000061655A (en) Base material for clad steel superior in toughness in solution and manufacture of clad steel