[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0562107B2 - - Google Patents

Info

Publication number
JPH0562107B2
JPH0562107B2 JP59153934A JP15393484A JPH0562107B2 JP H0562107 B2 JPH0562107 B2 JP H0562107B2 JP 59153934 A JP59153934 A JP 59153934A JP 15393484 A JP15393484 A JP 15393484A JP H0562107 B2 JPH0562107 B2 JP H0562107B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic belt
belt conveyor
moving body
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59153934A
Other languages
Japanese (ja)
Other versions
JPS6133364A (en
Inventor
Takao Ootsubo
Kazumi Matsui
Shin Kumazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP15393484A priority Critical patent/JPS6133364A/en
Publication of JPS6133364A publication Critical patent/JPS6133364A/en
Publication of JPH0562107B2 publication Critical patent/JPH0562107B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Conveyors (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Non-Mechanical Conveyors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は磁石を設けた移動体が、駆動源により
周回するようにした磁性コンベアユニツトに追随
して、所定の走行路を走行するようにした磁石式
連続輸送装置に関する。 〔従来技術〕 第3図は例えば特公昭58−23270号公報に示さ
れた従来の磁石式連続輸送方式を示す平面図であ
り、図において1および2は相隣なつた磁性ベル
トコンベアユニツトを示し、各々駆動輪3,3′、
従動輪4,4′及び磁性ベルト5,5′を有してい
る。駆動輪3,3′は各々誘導電動動機6,6′を
駆動源とし、それぞれ交流電源7から供給される
電圧によりそれぞれ所定の固有回転速度V1,V2
で駆動される。8は複数の磁石9を有し、磁性ベ
ルトコンベアユニツト1,2に磁気吸着されて追
随走行する移動体、10は移動体8の車輪であ
る。11は駆動輪3,3′の回転速度を検出する
速度検出器、12は速度検出器11の検出信号に
より誘導電動機6,6′を制御する制御器である。 上記のように構成した従来の磁石式連続輸送方
式の動作を移動体8の加速の場合すなわち駆動輪
3,3′の回転速度V1,V2がV1<V2の場合につ
いて説明する。 移動体8が矢印A方向へ後方側の磁性ベルトコ
ンベアユニツト1に磁気吸着されて追随走行し、
図に示すように移動体8の先行部磁石9が先方側
磁性ベルトコンベアユニツト2に進入吸着したと
きに、この先行部磁石9により先方側磁性ベルト
コンベアユニツト2との磁気吸着力が発生し、前
方側磁性ベルトコンベアユニツト2の誘導電動機
6′にも磁気吸着力に応じた負荷がかかるように
なる。誘導電動機6′に負荷がかかると、それま
で無負荷状態で回転速度V2で磁性ベルト5′を周
回させていた誘導電動機6′は、一旦後方側の誘
導電動機6が負荷状態で回動していた移動体8の
走行速度V1′近く(V1′<V1)まで滑り減速した
後、負荷に応じ走行速度V2′まで加速されて安定
する。なお加速の際、後方側の誘導電動機6が自
速以上となり発電機として作動することを防ぐた
め、速度検出器11により駆動輪3の回転速度を
検出し、その検出信号により制御器12を作動さ
せ、輸導電動機6をフリーの状態で回転するよう
制御する。 上記したような動作を隣接する磁性ベルトコン
ベアユニツト間で順次繰返すことにより、移動体
8を摺動音の発生を少なく滑らかに加速すること
ができる。 しかしながら上記した従来の磁石式連続輸送方
式においては、移動体の加減速時に先方側磁性ベ
ルトコンベアユニツトの駆動源である誘導電動機
のみで加減速するため、より大きい加減速を得よ
うとすれば誘導電動機容量(出力)をより大きく
する必要があつた。 〔発明の目的〕 本発明は上記問題を改善した磁石式連続輸送装
置を提供することを目的とするものである。 〔発明の概要〕 本発明の磁石式連続輸送方法は、駆動源により
磁性ベルトを周回するようにした磁性ベルトコン
ベアユニツトを所望数延設して磁性ベルトコンベ
アラインを形成し、該ラインに沿う走行路を走行
する移動体には定常的な磁力を有する磁石を複数
設け、該磁石と磁性ベルトコンベアユニツト間の
磁気吸引力により移動体を同ユニツトの磁性ベル
トの周回に追随走行させるようにした連続輸送装
置において、移動体を加減速させる場合、移動体
に磁石が後方側磁性ベルトコンベアユニツトに吸
着している間に、後方側磁性ベルトコンベアユニ
ツトの周回速度を所定速度に加減速し、移動体が
前方側磁性ベルトコンベアユニツトの周回速度を
所定速度に加減速し、移動体が前方側磁性ベルト
コンベアユニツトへ移行する際に、後方側磁性ベ
ルトの周回速度を前方側磁性ベルトの周回速度に
一致させるようにしたことを特徴とする磁石式連
続輸送方法である。 〔発明の実施例〕 第1図は本発明の一実施例を示す平面図であ
り、1〜5′,7〜10は上記従来の磁石式連続
輸送装置と同一のものである。13,13′は磁
性ベルトコンベアユニツト(以下、ユニツトとい
う。)1,2の駆動軸3,3′を各々駆動する極数
変換誘導電動機である。極数変換誘導電動機1
3,13′は巻線接続を切換えることにより、極
数が変わるようにした誘導電導機であり、多極数
で使用した場合は回転速度が遅く、少極数で使用
した場合は回転速度が早くなる。14,14′は
駆動軸3,3′の回転トルクあるいは回転速度を
検出する検出器、15,15′は検出器14,1
4′の検出信号を入力し、極数変換誘導電動機1
3,13′の極数変換を行う極数変換制御器であ
る。 上記のように構成した磁石式連続輸送装置の動
作を移動体8を加減速する場合について説明す
る。加速する場合、極数変換誘導電動機をもち、
あらかじめ設定された所定の大小2種類の固有速
度で磁性ベルトが回動することができる磁性ベル
トコンベアユニツトは移動体の進行方向に沿つて
所定間隔で配置され、この磁性ベルトコンベアユ
ニツトは順次前方側に行くに従つてその磁性ベル
トの回動速度が早いものになり、かつ各ユニツト
の誘導電動動機は移動体の負荷がない定常時には
多極数すなわち回転速度が遅い方の極数で回転し
ている。 減速の場合には、極数変換誘導電動機をもち、
あらかじめ設定された所定の大小2種類の固有速
度で磁性ベルトを回動することができる磁性ベル
トコンベアユニツトは、移動体の進行方向に沿つ
て所定間隔で配置され、この磁性ベルトコンベア
ユニツトは順次前方側に行くに従つて、その磁性
ベルトの回動速度が遅いものになり、かつ各ユニ
ツトの誘導電動機は定常的(即ち無負荷的)には
回転速度の速い少極数すわち磁性ベルトの回動速
度が速くなる極数で回転している。 移動体8が後方側のユニツト1に追随走行し、
図に示すように移動体8の先行部磁石9が加速の
場合周回速度が速く、減速の場合は周回速度が遅
い先方側ユニツト2に進入し、該磁石9が先方側
ユニツト2の磁性ベルトに磁気吸着したら、後方
側の駆動源である極数変換誘導電動機13の極数
を加速の場合は少極数に、減速の場合は多極数に
切換える。いまこれらの順次有隣なる各ユニツト
の極数変換誘導電動機の極数と磁性ベルトの固有
大小2種類の設定回動速度を例えば表1に示すよ
うにする。
[Technical Field of the Invention] The present invention relates to a magnetic continuous transport device in which a moving body provided with a magnet travels along a predetermined travel path following a magnetic conveyor unit which is rotated by a drive source. [Prior Art] Fig. 3 is a plan view showing a conventional magnetic continuous conveyance system disclosed in, for example, Japanese Patent Publication No. 58-23270. In the figure, 1 and 2 indicate adjacent magnetic belt conveyor units. , drive wheels 3, 3', respectively;
It has driven wheels 4, 4' and magnetic belts 5, 5'. The drive wheels 3 and 3' are driven by induction motors 6 and 6', respectively, and are driven to predetermined specific rotational speeds V 1 and V 2 by the voltage supplied from the AC power supply 7, respectively.
is driven by. Reference numeral 8 denotes a moving body having a plurality of magnets 9, which is magnetically attracted to the magnetic belt conveyor units 1 and 2 and follows the moving body, and 10 is a wheel of the moving body 8. 11 is a speed detector that detects the rotational speed of the drive wheels 3, 3'; 12 is a controller that controls the induction motors 6, 6' based on a detection signal from the speed detector 11; The operation of the conventional magnetic continuous transport system configured as described above will be described in the case of acceleration of the moving body 8, that is, in the case where the rotational speeds V 1 and V 2 of the driving wheels 3 and 3' are V 1 <V 2 . The moving body 8 is magnetically attracted to the magnetic belt conveyor unit 1 on the rear side in the direction of the arrow A and follows it.
As shown in the figure, when the leading magnet 9 of the movable body 8 enters and attracts the forward magnetic belt conveyor unit 2, the leading magnet 9 generates a magnetic attraction force with the forward magnetic belt conveyor unit 2. A load corresponding to the magnetic attraction force is also applied to the induction motor 6' of the front side magnetic belt conveyor unit 2. When a load is applied to the induction motor 6', the induction motor 6', which had been rotating the magnetic belt 5' at a rotational speed V 2 in an unloaded state, temporarily rotates with the rear induction motor 6 in a loaded state. After the moving body 8 slides and decelerates to a running speed close to V 1 ' (V 1 '<V 1 ), it is accelerated to a running speed V 2 ' according to the load and becomes stable. During acceleration, in order to prevent the rear induction motor 6 from exceeding its own speed and operating as a generator, the speed detector 11 detects the rotational speed of the drive wheels 3, and the detection signal activates the controller 12. and controls the transport motor 6 to rotate in a free state. By sequentially repeating the above operations between adjacent magnetic belt conveyor units, the moving body 8 can be smoothly accelerated with less sliding noise. However, in the above-mentioned conventional magnetic continuous transport system, when the moving object is accelerated or decelerated, the induction motor that is the drive source of the front side magnetic belt conveyor unit is used alone. It was necessary to increase the motor capacity (output). [Object of the Invention] An object of the present invention is to provide a magnetic continuous transport device that improves the above-mentioned problems. [Summary of the Invention] The magnetic continuous conveyance method of the present invention is to form a magnetic belt conveyor line by extending a desired number of magnetic belt conveyor units which are caused to circulate around a magnetic belt by a driving source. A moving body traveling on a road is equipped with a plurality of magnets having a steady magnetic force, and the magnetic attraction force between the magnets and a magnetic belt conveyor unit causes the moving body to follow the rotation of the magnetic belt of the same unit. In a transportation device, when accelerating or decelerating a moving object, while a magnet is attracted to the rear magnetic belt conveyor unit of the moving object, the rotational speed of the rear magnetic belt conveyor unit is accelerated or decelerated to a predetermined speed, and the moving object is accelerated or decelerated. accelerates or decelerates the rotation speed of the front magnetic belt conveyor unit to a predetermined speed, and when the moving object moves to the front magnetic belt conveyor unit, the rotation speed of the rear magnetic belt is made to match the rotation speed of the front magnetic belt. This is a magnetic continuous transportation method characterized by the following: [Embodiment of the Invention] FIG. 1 is a plan view showing an embodiment of the present invention, in which numerals 1 to 5' and 7 to 10 are the same as those of the conventional magnetic continuous transport device described above. Reference numerals 13 and 13' designate pole-change induction motors that drive drive shafts 3 and 3' of magnetic belt conveyor units (hereinafter referred to as units) 1 and 2, respectively. Pole change induction motor 1
3 and 13' are induction machines in which the number of poles can be changed by switching the winding connection, and when used with a large number of poles, the rotation speed is slow, and when used with a small number of poles, the rotation speed is slow. It gets faster. 14, 14' are detectors for detecting the rotational torque or rotational speed of the drive shafts 3, 3'; 15, 15' are detectors 14, 1;
4' detection signal is input, and the pole number conversion induction motor 1
This is a pole number conversion controller that performs pole number conversion of 3 and 13'. The operation of the magnetic continuous transport device configured as described above will be described with respect to the case where the moving body 8 is accelerated or decelerated. When accelerating, use a pole change induction motor,
Magnetic belt conveyor units, in which magnetic belts can rotate at two predetermined specific speeds, large and small, are arranged at predetermined intervals along the direction of movement of the moving body, and these magnetic belt conveyor units are sequentially placed on the front side. The rotation speed of the magnetic belt becomes faster as the rotation speed increases, and the induction motor of each unit rotates with a large number of poles, that is, the number of poles with a slow rotation speed, when there is no load on the moving body. There is. For deceleration, a pole change induction motor is used.
Magnetic belt conveyor units capable of rotating magnetic belts at two predetermined specific speeds, large and small, are arranged at predetermined intervals along the traveling direction of the moving object, and these magnetic belt conveyor units are sequentially moved forward and backward. The rotation speed of the magnetic belt becomes slower as it goes to the side, and the induction motor of each unit has a small number of poles with a fast rotation speed (i.e., rotation of the magnetic belt) at steady state (i.e., under no load). It rotates with the number of poles that increases the speed of movement. The moving body 8 follows the unit 1 on the rear side,
As shown in the figure, when the leading part magnet 9 of the moving body 8 is accelerating, the circulating speed is high, and when decelerating, it enters the forward side unit 2 where the circulating speed is slow, and the magnet 9 is attached to the magnetic belt of the forward side unit 2. Once magnetically attracted, the number of poles of the pole-changing induction motor 13, which is the drive source on the rear side, is switched to a small number of poles for acceleration, and to a large number of poles for deceleration. Now, the number of poles of the pole-changing induction motor of each of these sequentially adjacent units and the set rotating speed of the magnetic belt of two types, large and small, are set as shown in Table 1, for example.

【表】【table】

Claims (1)

【特許請求の範囲】 1 駆動源により磁性ベルトを周回するようにし
た磁性ベルトコンベアユニツトを所望数延設して
磁性ベルトコンベアラインを形成し、該ラインに
沿う走行路を走行する移動体には定常的な磁力を
有する磁石を複数設け、該磁石と磁性ベルトコン
ベアユニツト間の磁気吸引力により移動体を同ユ
ニツトの磁性ベルトの周回に追随走行させるよう
にした連続輸送装置において、 移動体を加減速させる場合、移動体の磁石が後
方側磁性ベルトコンベアユニツトに吸着している
間に、後方側磁性ベルトコンベアユニツトの周回
速度を所定速度に加減体し、移動体が前方側磁性
ベルトコンベアユニツトへ移行する際に、後方側
磁性ベルトのの周回速度を前方側磁性ベルトの周
回速度に一致させるようにしたことを特徴とする
磁石式連続輸送方法。
[Scope of Claims] 1. A magnetic belt conveyor line is formed by extending a desired number of magnetic belt conveyor units which are caused to circulate around a magnetic belt by a driving source, and a moving object traveling on a traveling path along the line is In a continuous transport device, a plurality of magnets having a steady magnetic force are provided, and a moving object is caused to follow the rotation of the magnetic belt of the same unit by the magnetic attraction force between the magnets and a magnetic belt conveyor unit. When decelerating, while the magnet of the moving body is attracted to the rear magnetic belt conveyor unit, the rotational speed of the rear magnetic belt conveyor unit is increased or decreased to a predetermined speed, and the moving body moves toward the front magnetic belt conveyor unit. A magnetic continuous transport method characterized in that the rotation speed of the rear magnetic belt is made to match the rotation speed of the front magnetic belt during transfer.
JP15393484A 1984-07-26 1984-07-26 Magnet type continuous transport system Granted JPS6133364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15393484A JPS6133364A (en) 1984-07-26 1984-07-26 Magnet type continuous transport system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15393484A JPS6133364A (en) 1984-07-26 1984-07-26 Magnet type continuous transport system

Publications (2)

Publication Number Publication Date
JPS6133364A JPS6133364A (en) 1986-02-17
JPH0562107B2 true JPH0562107B2 (en) 1993-09-07

Family

ID=15573270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15393484A Granted JPS6133364A (en) 1984-07-26 1984-07-26 Magnet type continuous transport system

Country Status (1)

Country Link
JP (1) JPS6133364A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6490158B2 (en) 2017-07-19 2019-03-27 ファナック株式会社 Straightness confirmation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823270A (en) * 1981-08-03 1983-02-10 Nissan Motor Co Ltd Ignition device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823270A (en) * 1981-08-03 1983-02-10 Nissan Motor Co Ltd Ignition device for internal combustion engine

Also Published As

Publication number Publication date
JPS6133364A (en) 1986-02-17

Similar Documents

Publication Publication Date Title
EP0595428A1 (en) Material handling car and track assembly
US3880088A (en) Vehicle control system and method
US4360753A (en) Motor having concentric ring rotor
JP2598711Y2 (en) Linear motor type conveyor device
JPH0562107B2 (en)
JP7077666B2 (en) Transport equipment and transport system
JPH05184010A (en) Levitation conveyor
JPS6067326A (en) Propulsion device of article transport device
US5996196A (en) Speed adjusting apparatus for plastic drawing installations
JP3267056B2 (en) Traveling control method and device for tracked bogie
JP2023091616A (en) Article transportation facility
JPH05115107A (en) Magnetic levitation conveyor
JPS5823270B2 (en) Magnetic continuous transport method
JP2665609B2 (en) Traveling control method of moving body driven by linear motor
JPH0344746Y2 (en)
JP2514092B2 (en) Linear motor driven moving body fixed position stop control method
JP3491306B2 (en) Transport method
KR100615551B1 (en) Linear Motor Carrier with Swivel
JPS6399702A (en) Carrier device
JP2581043B2 (en) Linear motor type transfer device
JPH0340821Y2 (en)
JPS60148368A (en) Magnetic force propulsion conveying apparatus
JPH0822122B2 (en) Transport device control device
JPH0344747Y2 (en)
JPH0392472A (en) Linear ceiling running car