[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH056284B2 - - Google Patents

Info

Publication number
JPH056284B2
JPH056284B2 JP58186991A JP18699183A JPH056284B2 JP H056284 B2 JPH056284 B2 JP H056284B2 JP 58186991 A JP58186991 A JP 58186991A JP 18699183 A JP18699183 A JP 18699183A JP H056284 B2 JPH056284 B2 JP H056284B2
Authority
JP
Japan
Prior art keywords
film
polymer film
substrate
insulating
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58186991A
Other languages
Japanese (ja)
Other versions
JPS6079609A (en
Inventor
Osamu Niwa
Toshiaki Tamamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58186991A priority Critical patent/JPS6079609A/en
Priority to US06/657,314 priority patent/US4559112A/en
Priority to DE8787106076T priority patent/DE3484598D1/en
Priority to DE8484306764T priority patent/DE3481849D1/en
Priority to EP19840306764 priority patent/EP0144127B1/en
Priority to CA000464743A priority patent/CA1231670A/en
Priority to EP19870106076 priority patent/EP0247366B1/en
Priority to KR1019840006200A priority patent/KR890004938B1/en
Publication of JPS6079609A publication Critical patent/JPS6079609A/en
Publication of JPH056284B2 publication Critical patent/JPH056284B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は改良された導電性高分子フイルムとそ
の製造方法に関する。 〔従来技術〕 芳香族化合物は電解質を添加した溶剤中で電解
酸化を行うことにより、高導電性の高分子フイル
ムを電極基板上に形成させることができる。この
ような芳香族化合物としてはピロール類、チオフ
エン酸、アズレン酸、ピレン、トリフエニレン等
の多環芳香族化合物類が知られている〔例えばJ.
バーゴン(J.Bargon)、S.モーマンド(S.
Mohmand)、R.J.ウオルトマン(R.J.Waltman)、
IBMジヤーナル オブ リサーチ エンド デ
ベロツプメント(IBM Journal of Reserch &
Development)第27巻 第4号第330頁(1983
年)参照〕。 しかしながら、従来の電極基板上に直接電解酸
化して形成した導電性高分子フイルムは基板との
密着力がなく、フイルム形成中あるいは形成後の
洗浄過程で容易にはがれてしまう。また、フイル
ム表面が非常に粗く通常良好なフイルムでも1μ
m前後の粒径が全面にみられるという欠点があ
る。更に、フイルム自体の機械的強度が低く、基
板上でも、フイルムとして単離した状態でも破れ
やすく取扱いが困難である。 ポリピロール膜の密着力については、ネサガラ
ス電極基板表面をピロール環含有シラン化合物で
処理することによつて接着強度を向上させた試み
があるがフイルム表面やフイルム強度の改良には
至つていない。 〔発明の目的〕 本発明はこれらの欠点を除去するためになされ
たものであり、その目的は密着性が良く、そして
表面の滑かな導電性高分子フイルム及びその製造
方法を提供することにある。 〔発明の構成〕 本発明を概説すれば、本発明の第1の発明は導
電性高分子フイルムの発明であつて、電極基板上
に形成した絶縁性の三次元架橋高分子フイルム
と、該基板上に電解酸化により電気化学的に形成
した芳香族系高分子化合物とから成ることを特徴
とする。 また、本発明の第2の発明は導電性高分子フイ
ルムの発明であつて、絶縁性の三次元架橋高分子
フイルムと、電解酸化により電気化学的に形成し
た芳香族系高分子化合物とから成ることを特徴と
する。 そして、本発明の第3の発明は導電性高分子フ
イルムの製造方法の発明であつて、電極基板上に
絶縁性の三次元架橋の可能な高分子フイルムをコ
ーテイングする工程、該高分子フイルムを熱ある
いは高エネルギー線により三次元架橋する工程、
及びその上に電解酸化により芳香族系高分子化合
物を電気化学的に形成する工程の各工程を包含す
ることを特徴とする。 導電性高分子フイルムは通常電極基板を、アセ
トニトリル等の有機溶媒中にモノマーとなる芳香
族化合物の通電させるための電解質とを溶解させ
た溶液中に、対向電極と共に入れ、両電極間に通
電させることにより形成される。この際、電極基
板を絶縁性の高分子フイルムでコーテイングすれ
ば、当然通電されず導電性フイルムは全く形成さ
れない。しかしながら本発明者等は絶縁性の三次
元架橋可能な高分子フイルムを電極基板上にコー
テイングし、熱あるいは高エネルギー線で架橋さ
せることにより反応溶液に対して不溶化させた基
板を用いると、電解反応が通常の電極上と同様に
進むことを見出した。このようにして得られたフ
イルムは、絶縁性の三次元架橋したフイルムと形
成された導電性フイルムの間に境界がみられず均
一なポリマーの混合体になる。すなわち、膜厚方
向の電導度を測定するとフイルム中に絶縁性の三
次元架橋したポリマーの成分が多い場合でも、単
独の導電性フイルムに近い値を示す。 しかもこのフイルムは基板との密着力に優れ、
導電性フイルムを厚く成長させても基板からはく
離することがない。更に、フイルム表面も、滑ら
かになつており、絶縁性の三次元架橋型の高分子
フイルムにフイルム強度の大きい材料を用いるこ
とによりフイルムの強度を大幅に向上させること
ができる。 このようにして均一で良質の導電性高分子フイ
ルムが得られる原因は、絶縁性の三次元架橋した
高分子フイルムが電解液中で全く不溶でなく、モ
ノマー分子が架橋フイルム内に拡散でき、この拡
散した一部のモノマーが電極に達し、それによつ
て導通部分が形成され、電解反応が起き、電極面
上で電解酸化反応が進行し、導電性高分子フイル
ムが形成するためと推定される。したがつて、適
当にモノマー分子がフイルム内に拡散できるよう
な絶縁性の三次元架橋型ポリマーと、電解反応溶
液組成を選択することにより均一な導電性フイル
ムが得られる。 なお、本発明におけるフイルム用高分子材料中
には、可塑剤、顔料及び色素等の常用の添加剤を
添加してもよく、それらを添加した場合でも、そ
れら添加剤が電解液中に溶出することはなく、ま
た得られた導電性高分子フイルムの所望の特性は
変化しない。 〔実施例〕 以下、本発明を実施例により更に具体的に説明
するが、本発明はこれらに限定されない。 実施例 1 ネサガラス基板上にスピンコート法によるクロ
ロメチル化ポリスチレン(以下CMSと略記する)
(分子量30万)を塗布した。このフイルムをコー
テイングした基板にXeランプにより10分間光照
射を行いCMSの三次元架橋を行わせた。この基
板を正極とし、負極に網目状の白金電極を用い
て、電解溶液に浸し、1.3Vの定電圧でピロール
の電解重合を行つた。 電解液はアセトニトリルにピロール1M、電解
塩(テトラエチルアンモニウムテトラフルオロボ
レート)0.3Mを溶解させたものとし、電解時間
は5〜60分の間で変化させ適当な時間を選んだ。
ネサガラス基板上は1μm程度の絶縁性フイルム
(CMS)に覆われているのにかかわらず、電解を
かけると、黒色のポリピオロールが基板上に析出
した。 このフイルムは、アセトニトリルによつてリン
ス後常温で一昼夜減圧乾燥した後暗所に保存し
た。 このようにして得られたCMS/ポリピロール
複合フイルムは、ネサガラス上に直接ポリピロー
ルのみを析出させた場合と比較して、表面がより
滑らかで基板との密着性が良好で、フイルム強度
も向上した。 次にこのCMS/ポリピロールフイルムをネサ
ガラス基板からはく離させて水面上に浮かせ、絶
縁基板(酸化膜付シリコン基板)上に移し取つ
て、フイルムの電導度測定を行つた。 電導度測定は、CMS/ポリピロールフイルム
上に、メタルマスクを用いて一定面積を金を蒸着
して電極とし、そこからリード線を取つて4端子
法によつて測定した。測定の結果CMC/ポリピ
ロールフイルムの電導度は、5.2Ω-1cm1-であつ
た。 実施例 2〜8 実施例1と同様に導電性基板上にノボラツク樹
脂(実施例2、3)、レゾール樹脂(実施例4)、
AZ−1350(実施例5)、RTVシリコーンゴム(実
施例6)、ポリグリシジルメタクリレート(実施
例7)、ブタジエンゴム(実施例8)をスピンコ
ートし、熱又は高エネルギー線によつて三次元架
橋させた。これらの基板を使用して実施例1と同
様な手法で電解重合させ、三次元網目ポリマー/
ポリピロールフイルムを得た。得られたフイルム
の膜厚の電導度を表1に示す。いずれの場合でも
高導電性のフイルムが得られた。なおEGはエチ
レングリコールを意味する。
[Industrial Field of Application] The present invention relates to an improved conductive polymer film and a method for producing the same. [Prior Art] A highly conductive polymer film can be formed on an electrode substrate by electrolytically oxidizing an aromatic compound in a solvent containing an electrolyte. Polycyclic aromatic compounds such as pyrroles, thiophenoic acid, azulenic acid, pyrene, and triphenylene are known as such aromatic compounds [for example, J.
J.Bargon, S.Mormand (S.
Mohmand), RJ Waltman,
IBM Journal of Research & Development
Development) Vol. 27 No. 4 No. 330 (1983
year). However, conventional conductive polymer films formed by direct electrolytic oxidation on electrode substrates do not have adhesive strength to the substrate and are easily peeled off during film formation or during the cleaning process after formation. In addition, even if the film surface is very rough and is normally in good condition, the
It has the disadvantage that grain sizes of around m can be seen over the entire surface. Furthermore, the mechanical strength of the film itself is low, making it easy to tear and difficult to handle both on a substrate and when isolated as a film. Regarding the adhesion of polypyrrole films, there have been attempts to improve the adhesive strength by treating the surface of the Nesa glass electrode substrate with a pyrrole ring-containing silane compound, but this has not led to improvements in the film surface or film strength. [Object of the Invention] The present invention was made to eliminate these drawbacks, and its purpose is to provide a conductive polymer film with good adhesion and a smooth surface, and a method for producing the same. . [Structure of the Invention] To summarize the present invention, the first invention of the present invention is an invention of a conductive polymer film, which comprises an insulating three-dimensional crosslinked polymer film formed on an electrode substrate, and the substrate. and an aromatic polymer compound electrochemically formed by electrolytic oxidation. Further, the second invention of the present invention is an invention of a conductive polymer film, which is composed of an insulating three-dimensional crosslinked polymer film and an aromatic polymer compound electrochemically formed by electrolytic oxidation. It is characterized by The third invention of the present invention is an invention of a method for manufacturing a conductive polymer film, which includes a step of coating an insulating three-dimensionally crosslinkable polymer film on an electrode substrate. A process of three-dimensional crosslinking using heat or high-energy rays,
and a step of electrochemically forming an aromatic polymer compound thereon by electrolytic oxidation. For conductive polymer films, the electrode substrate is usually placed together with a counter electrode in a solution containing an electrolyte for energizing an aromatic compound as a monomer dissolved in an organic solvent such as acetonitrile, and electricity is passed between the two electrodes. It is formed by At this time, if the electrode substrate is coated with an insulating polymer film, then of course no electricity will be applied and no conductive film will be formed. However, the present inventors have discovered that electrolytic reactions can occur by coating an insulating three-dimensionally crosslinkable polymer film on an electrode substrate and making it insolubilized in the reaction solution by crosslinking with heat or high-energy rays. was found to proceed in the same way as on normal electrodes. The film thus obtained is a homogeneous mixture of polymers with no boundaries between the insulating three-dimensionally crosslinked film and the conductive film formed. That is, when measuring the electrical conductivity in the film thickness direction, even if the film contains a large amount of insulating three-dimensionally crosslinked polymer components, it shows a value close to that of a single electrically conductive film. Moreover, this film has excellent adhesion to the substrate,
Even if the conductive film is grown thickly, it will not peel off from the substrate. Furthermore, the surface of the film is smooth, and by using a material with high film strength for the insulating three-dimensionally crosslinked polymer film, the strength of the film can be greatly improved. The reason why a uniform and high-quality conductive polymer film can be obtained in this way is that the insulating three-dimensionally crosslinked polymer film is not completely insoluble in the electrolyte, and monomer molecules can diffuse into the crosslinked film. This is presumed to be because some of the diffused monomer reaches the electrode, thereby forming a conductive part, causing an electrolytic reaction, and proceeding with an electrolytic oxidation reaction on the electrode surface, forming a conductive polymer film. Therefore, a uniform conductive film can be obtained by appropriately selecting an insulating three-dimensional crosslinked polymer and an electrolytic reaction solution composition that allow monomer molecules to diffuse into the film. In addition, commonly used additives such as plasticizers, pigments, and dyes may be added to the polymeric material for films in the present invention, and even if they are added, these additives may be eluted into the electrolytic solution. There is no change in the desired properties of the obtained conductive polymer film. [Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 Chloromethylated polystyrene (hereinafter abbreviated as CMS) by spin coating on a Nesa glass substrate
(molecular weight 300,000) was applied. The substrate coated with this film was irradiated with light for 10 minutes using a Xe lamp to effect three-dimensional crosslinking of the CMS. This substrate was used as a positive electrode, a mesh platinum electrode was used as a negative electrode, and immersed in an electrolyte solution, electrolytic polymerization of pyrrole was performed at a constant voltage of 1.3V. The electrolytic solution was prepared by dissolving 1 M of pyrrole and 0.3 M of electrolytic salt (tetraethylammonium tetrafluoroborate) in acetonitrile, and the electrolysis time was varied between 5 and 60 minutes and an appropriate time was selected.
Even though the Nesa glass substrate was covered with a 1 μm thick insulating film (CMS), when electrolysis was applied, black polypiolol was deposited on the substrate. This film was rinsed with acetonitrile, dried under reduced pressure at room temperature overnight, and then stored in a dark place. The CMS/polypyrrole composite film thus obtained had a smoother surface, better adhesion to the substrate, and improved film strength compared to the case where only polypyrrole was directly deposited on Nesa glass. Next, this CMS/polypyrrole film was peeled off from the Nesa glass substrate, floated on the water surface, and transferred onto an insulating substrate (silicon substrate with oxide film), and the conductivity of the film was measured. The conductivity was measured using a four-terminal method using a metal mask to deposit gold over a certain area on the CMS/polypyrrole film to form an electrode, and then taking a lead wire from the electrode. As a result of the measurement, the electrical conductivity of the CMC/polypyrrole film was 5.2Ω -1 cm 1 - . Examples 2 to 8 Similar to Example 1, novolak resin (Examples 2 and 3), resol resin (Example 4),
AZ-1350 (Example 5), RTV silicone rubber (Example 6), polyglycidyl methacrylate (Example 7), and butadiene rubber (Example 8) were spin-coated and three-dimensionally crosslinked using heat or high-energy radiation. I let it happen. Using these substrates, electropolymerization was carried out in the same manner as in Example 1 to form a three-dimensional network polymer/
A polypyrrole film was obtained. Table 1 shows the electrical conductivity of the film thickness obtained. In either case, highly conductive films were obtained. Note that EG means ethylene glycol.

【表】 特に実施例6及び8の導電性フイルムは50%以
上の延伸が可能で機械的強度が大幅に改良され
た。 実施例 9〜15 実施例1と同様にネサガラス上にCMSをスピ
ンコートし光照射によつて三次元架橋させた。こ
の基板を正極としてチオフエン(実施例9)、3
−メチルピロール(実施例10)、N−メチルピロ
ール(実施例11)、アズレン(実施例12)、メチル
アズレン(実施例13)、ピレン(実施例14)又は
カルバゾール(実施例15)を溶解させた液に浸
し、対極に白金電極を用いて、電解重合によつて
CMS/に導電性ポリマーフイルムを得た。これ
らのフイルムは実施例1で示したポリマー同様導
電性ポリマー単独よりも機械的強度が向上した。
得られたフイルムについての膜厚と電導度を表2
に示した。なお、基板はネサガラスを、三次元架
橋ポリマーはCMSを用い、電解塩はフルオロボ
レート、パークロレート、サルフエート等を使用
した。
[Table] In particular, the conductive films of Examples 6 and 8 could be stretched by 50% or more, and their mechanical strength was significantly improved. Examples 9 to 15 In the same manner as in Example 1, CMS was spin-coated onto Nesa glass and three-dimensionally crosslinked by light irradiation. Using this substrate as a positive electrode, thiophene (Example 9), 3
-Methylpyrrole (Example 10), N-methylpyrrole (Example 11), azulene (Example 12), methylazulene (Example 13), pyrene (Example 14) or carbazole (Example 15) is dissolved by electrolytic polymerization using a platinum electrode as a counter electrode.
A conductive polymer film was obtained on CMS/. Similar to the polymer shown in Example 1, these films had improved mechanical strength compared to the conductive polymer alone.
Table 2 shows the thickness and conductivity of the obtained film.
It was shown to. Note that the substrate used was Nesa Glass, the three-dimensional crosslinked polymer used was CMS, and the electrolytic salt used was fluoroborate, perchlorate, sulfate, etc.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による絶縁性の三
次元架橋したポリマーをコーテイングした電極上
に芳香族系化合物の電解酸化により形成した導電
性フイルムは、表面の滑らかさ、基板との密着力
が改善され、しかも十分に高い導電性を示し、更
に絶縁性の三次元架橋ポリマーとして機械的強度
に優れた材料を選ぶことにより導電性フイルムの
機械的強度を向上させることができる。この導電
性高分子フイルムは、電磁干渉防止フイルム、静
電気・帯電防止フイルム、感光体イメージセン
サ、太陽電池フイルム等に適用することができ
る。
As explained above, the conductive film formed by electrolytic oxidation of an aromatic compound on an electrode coated with an insulating three-dimensionally crosslinked polymer according to the present invention has improved surface smoothness and adhesion to the substrate. The mechanical strength of the conductive film can be improved by selecting a material that exhibits sufficiently high conductivity and has excellent mechanical strength as an insulating three-dimensional crosslinked polymer. This conductive polymer film can be applied to electromagnetic interference prevention films, static electricity/static charge prevention films, photoreceptor image sensors, solar cell films, and the like.

Claims (1)

【特許請求の範囲】 1 電極基板上に形成した絶縁性の三次元架橋高
分子フイルムと、該基板上に電解酸化により電気
化学的に形成した芳香族系高分子化合物とから成
ることを特徴とする導電性高分子フイルム。 2 絶縁性の三次元架橋高分子フイルムと、電解
酸化により電気化学的に形成した芳香族系高分子
化合物とから成ることを特徴とする導電性高分子
フイルム。 3 電極基板上に絶縁性の三次元架橋の可能な高
分子フイルムをコーテイングする工程、該高分子
フイルムを熱あるいは高エネルギー線により三次
元架橋する工程、及びその上に電解酸化により芳
香族系高分子化合物を電気化学的に形成する工程
の各工程を包含することを特徴とする導電性高分
子フイルムの製造方法。
[Scope of Claims] 1. It is characterized by comprising an insulating three-dimensional crosslinked polymer film formed on an electrode substrate, and an aromatic polymer compound electrochemically formed on the substrate by electrolytic oxidation. conductive polymer film. 2. A conductive polymer film comprising an insulating three-dimensional crosslinked polymer film and an aromatic polymer compound electrochemically formed by electrolytic oxidation. 3 A step of coating an insulating three-dimensionally crosslinkable polymer film on an electrode substrate, a step of three-dimensionally crosslinking the polymer film with heat or high-energy rays, and a step of coating an aromatic polymer film on the electrode substrate by electrolytic oxidation. 1. A method for producing a conductive polymer film, comprising the steps of electrochemically forming a molecular compound.
JP58186991A 1983-10-07 1983-10-07 Conductive polymer film and method of producing same Granted JPS6079609A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP58186991A JPS6079609A (en) 1983-10-07 1983-10-07 Conductive polymer film and method of producing same
US06/657,314 US4559112A (en) 1983-10-07 1984-10-02 Electrically conducting polymer film and method of manufacturing the same
DE8787106076T DE3484598D1 (en) 1983-10-07 1984-10-04 ELECTRICALLY CONDUCTIVE POLYMER AND THEIR PRODUCTION.
DE8484306764T DE3481849D1 (en) 1983-10-07 1984-10-04 ELECTRICALLY CONDUCTIVE POLYMERS AND THEIR PRODUCTION.
EP19840306764 EP0144127B1 (en) 1983-10-07 1984-10-04 Electrically conducting polymer film and method of manufacturing the same
CA000464743A CA1231670A (en) 1983-10-07 1984-10-04 Electrically conducting polymer film and method of manufacturing the same
EP19870106076 EP0247366B1 (en) 1983-10-07 1984-10-04 Electrically conducting polymer film and method of manufacturing the same
KR1019840006200A KR890004938B1 (en) 1983-10-07 1984-10-06 Electrically conduction polymer film and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58186991A JPS6079609A (en) 1983-10-07 1983-10-07 Conductive polymer film and method of producing same

Publications (2)

Publication Number Publication Date
JPS6079609A JPS6079609A (en) 1985-05-07
JPH056284B2 true JPH056284B2 (en) 1993-01-26

Family

ID=16198288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58186991A Granted JPS6079609A (en) 1983-10-07 1983-10-07 Conductive polymer film and method of producing same

Country Status (1)

Country Link
JP (1) JPS6079609A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889639A (en) * 1981-11-25 1983-05-28 Teijin Ltd Polypyrrole composite and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889639A (en) * 1981-11-25 1983-05-28 Teijin Ltd Polypyrrole composite and its manufacture

Also Published As

Publication number Publication date
JPS6079609A (en) 1985-05-07

Similar Documents

Publication Publication Date Title
EP0247366B1 (en) Electrically conducting polymer film and method of manufacturing the same
KR900003155B1 (en) Polymer film with conductive pattern and method of manufacturing the same
PT89687B (en) PROCESS FOR PREPARING A ELECTRICALLY CONDUCTIVE COATING MASS
JPH056284B2 (en)
US5281327A (en) Method of producing conductive polymer composites
JPH047521B2 (en)
JPH0678493B2 (en) Method for producing conductive polymer composition
JP4083297B2 (en) Method for producing polymer electrode
JP2613911B2 (en) Method of forming conductive film
JP2674783B2 (en) Method for producing conductive polymer composite film
JPH056285B2 (en)
JPS63308807A (en) Conductive compound film
JPS5931565A (en) Polymer covering electrode
JPS60177506A (en) Conductive polymer film and method of producing same
JPS60228546A (en) Antistatic film having excellent transparency
JPS62292855A (en) Electrically conductive high-molecular material
JPS63156832A (en) Production of transparent and electrically conductive film
JPS60177197A (en) Electrochemical doping method of polymer having ferrocene nucleus
JPS60251675A (en) Conductive high-molecular film solar cell and manufacture thereof
JPS61113626A (en) Production of polymeric composite material
JPS60257011A (en) Method of producing polymer film having conductivity in pattern shape
JPS612204A (en) Conductive polymer film material and method of producing same
JPS61279001A (en) Conducting high polymer film and manufacture thereof
Zhao et al. Studies of electropolymerisation of sodium 2-(3-thienyl) ethyl sulfonate
JPS6339664A (en) Production of semiconductive or conductive thin film