[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0561650B2 - - Google Patents

Info

Publication number
JPH0561650B2
JPH0561650B2 JP57223942A JP22394282A JPH0561650B2 JP H0561650 B2 JPH0561650 B2 JP H0561650B2 JP 57223942 A JP57223942 A JP 57223942A JP 22394282 A JP22394282 A JP 22394282A JP H0561650 B2 JPH0561650 B2 JP H0561650B2
Authority
JP
Japan
Prior art keywords
axis
pulse movement
amount
acceleration
teaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57223942A
Other languages
Japanese (ja)
Other versions
JPS59114604A (en
Inventor
Shigeru Futami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP22394282A priority Critical patent/JPS59114604A/en
Publication of JPS59114604A publication Critical patent/JPS59114604A/en
Publication of JPH0561650B2 publication Critical patent/JPH0561650B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Description

【発明の詳細な説明】 本発明は、離散的なテイーチング点データが与
えられ、このテイーチング点データから一定周期
毎に各軸のパルス移動量が演算される産業用ロボ
ツトの加減速制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an acceleration/deceleration control method for an industrial robot in which discrete teaching point data is given and the pulse movement amount of each axis is calculated at regular intervals from the teaching point data.

産業用ロボツトの加減速制御は、従来、PTP
方式における断続軌道制御の、すなわち各テイー
チング点毎に停止する、例えばスポツト溶接ロボ
ツトの位置決めに対してのみ行なわれている。第
1図はテイーチング点列を一般的に示すもので、
時刻tn−1,tn,tn+1において、それぞれテイ
ーチング点Pn−1,Pn,Pn+1に位置決めされ
る。第2図は直交座標型産業用ロボツトに対する
上記の加減速制御の例で、ある軸の時刻毎の各
X,Y,Z軸についてのパルス移動量、すなわち
速度を示している。テイーチング点Pn−1から
ある一定速度で移動してきてテイーチング点Pn
の近傍に近づくと直線的に減速されて時刻tnにお
いてパルスパルス移動量は零となりテイーチング
点Pnに停止する。そして時刻tn′から直線的に加
速されて、ある時刻に一定速度に達し、次のテイ
ーチング点Pn+1に向かつて移動する。テイー
チングPn+1の近傍でも、同様に、直線的な加
減制御が行なわれる。産業用ロボツトは、一般に
多軸であるので、上記の加減速制御は複雑なもの
となる。そして、各軸の定速時の速度が異なる場
合でも、全ての軸の速度パターンが相似形、つま
り一定の比例関係になるように加減速制御が行な
われる。この最も単純な直線加減速制御において
も、定速度時のパルス移動量の計算、加減速時の
一次差分パルス移動量の計算、加速→定速t切替
判定演算、定速→減速切替判定演算を必要とし
た。
Acceleration/deceleration control for industrial robots has traditionally been performed using PTP.
Intermittent trajectory control in this system, that is, stopping at each teaching point, is performed only for positioning, for example, a spot welding robot. Figure 1 shows a general teaching point sequence.
At times tn-1, tn, and tn+1, the teaching points Pn-1, Pn, and Pn+1 are positioned, respectively. FIG. 2 is an example of the above-mentioned acceleration/deceleration control for an orthogonal coordinate type industrial robot, and shows the pulse movement amount, that is, the speed, for each of the X, Y, and Z axes at each time of a certain axis. Moving at a certain speed from teaching point Pn-1, teaching point Pn
When approaching the vicinity of , the pulse is decelerated linearly, and at time tn, the pulse pulse movement amount becomes zero and stops at the teaching point Pn. Then, it is linearly accelerated from time tn', reaches a constant speed at a certain time, and moves toward the next teaching point Pn+1. In the vicinity of teaching Pn+1, linear adjustment control is similarly performed. Since industrial robots generally have multiple axes, the acceleration/deceleration control described above is complicated. Even if the speeds of the respective axes at constant speed are different, acceleration/deceleration control is performed so that the speed patterns of all the axes are similar, that is, have a constant proportional relationship. Even in this simplest linear acceleration/deceleration control, calculation of pulse movement amount during constant speed, calculation of first-order difference pulse movement amount during acceleration/deceleration, acceleration → constant speed t switching judgment calculation, and constant speed → deceleration switching judgment calculation are performed. I needed it.

以上のPTP方式における継続軌道制御に対し
て、各テイーチング点では停止せずに速度が変化
する、PTP方式における連続軌道制御がある。
この連続軌道制御が行なわれる産業用ロボツトと
して、例えばアーク溶接ロボツトが有る。このよ
うな産業用ロボツトではテイーチング点毎に各軸
の速度変化が発生し、これらの速度変化は各軸、
全く独立で、加速軸も有れば減速軸も有り、速度
変化がない軸も有るというようにばらばらである
ため、上記の直線加減速制御を行いながら、同時
に各テイーチング点毎に全軸のパルス分配が完了
するようにすることはオンライン的には演算速度
の制限で事実上、不可能であつた。第3図a,
b,cは、それぞれこのような連続軌道制御の産
業用ロボツトのある軸のX軸、Y軸、Z軸に関す
るパルス移動量の時間的変化の例を示している。
図から明らかなように、テイーチング点の前後で
の速度変化は、第2図の断続軌道制御の場合と異
なり、ステツプ状に行なわれ振動の原因となつて
いた。すなわち、この連続軌道制御を行なう多軸
の産業用ロボツトにおいては、テイーチング点に
おける速度変化を滑らかに制御する方法は未解決
のままであつた。
In contrast to the above continuous trajectory control in the PTP method, there is continuous trajectory control in the PTP method in which the speed changes without stopping at each teaching point.
An example of an industrial robot that performs this continuous trajectory control is an arc welding robot. In such industrial robots, speed changes occur on each axis at each teaching point, and these speed changes
They are completely independent, with some acceleration axes, some deceleration axes, and some axes with no speed change, so while performing the linear acceleration/deceleration control described above, the pulses of all axes are simultaneously controlled at each teaching point. It was virtually impossible to complete the distribution online due to limitations in calculation speed. Figure 3a,
b and c show examples of temporal changes in pulse movement amounts regarding the X-axis, Y-axis, and Z-axis, respectively, of such a continuous trajectory-controlled industrial robot.
As is clear from the figure, the speed change before and after the teaching point was performed in steps, unlike in the case of the intermittent orbit control shown in FIG. 2, which caused vibrations. That is, in multi-axis industrial robots that perform continuous trajectory control, a method for smoothly controlling speed changes at the teaching point has remained unresolved.

本発明は上述の問題点に鑑み提案されたもの
で、連続軌道制御を行なう多軸の産業用ロボツト
は勿論、継続軌道制御を行なう多軸の産業用ロボ
ツトに適用可能で、速度変化を滑らかに制御す
る、産業用ロボツトの加減速制御方式を提供する
ことを目的とする。
The present invention was proposed in view of the above-mentioned problems, and is applicable not only to multi-axis industrial robots that perform continuous trajectory control, but also to multi-axis industrial robots that perform continuous trajectory control, and can smoothly change speed. The purpose of this invention is to provide an acceleration/deceleration control method for industrial robots.

本発明の産業用ロボツトの加減速制御方式は、
各軸について、 (1) テイーチング点列の隣接する2点を定速で移
動するときのパルス移動量を演算し、 (2) n番目の時刻tnにおけるこのパルス移動量を
Snとするとき、時刻tnより以前の(N−1)
周期間のN個のパルス移動量Sn−j(j=N−
1,N−2……1,0)の重み付き移動平均 nN-1 〓Wjj=0 ・Sn−j,(N-1 〓Wj=1O=0 を演算し、この重み付き移動平均nを時刻
tnにおけるパルス移動量として加減速制御を行
なうものである。
The acceleration/deceleration control method of the industrial robot of the present invention is as follows:
For each axis, (1) calculate the pulse movement amount when moving two adjacent points in the teaching point sequence at a constant speed, and (2) calculate this pulse movement amount at the nth time tn.
When Sn, (N-1) before time tn
The amount of movement of N pulses between periods Sn-j (j=N-
1, N-2...1,0), calculate the weighted moving average n N-1 〓Wj j=0・Sn-j, ( N-1 〓Wj=1 O=0 , and calculate this weighted moving average n is time
Acceleration/deceleration control is performed as the pulse movement amount at tn.

以上の本発明の原理を具体的に説明する。第4
図aはパルス移動量S=2の定速でテイーチング
点間を移動して、時刻t3であるテイーチング点に
到達し、以後、次のテイーチング点までパルス移
動量S=12の定速で移動する軸に対して本発明の
方法を適用したものである。本例では、N=4W0
=0.4,W1=0.3,W2=0.2,W1=0.1である。以
下、各時刻t3,t4,t5,t6,t7におけるパルス移動
量S3,S4,S5,S6,S7の重み付き移動平均3
4567を計算すると、 (i) t=t3のとき S3=S2=S1=S0=2であるか
3=2 (ii) t=t4のとき S4=12,S3=S2=S1=2であ
るから、4=0.4×12+0.3×2+0.2×2+0.1
×2=6 (iii) t=t5のとき S5=S4=12,S3=S2=2であ
るから、5=0.4×12+0.3×12+0.2×2+0.1
×2=9 (iv) t=t6のとき S6=S5=S4=1,S3=2であ
るから 6=0.4×12+0.3×12+0.2×12+0.1
×2=11 (v) t=t7のとき S7=S6=S5=S4=12であるか
7=0.4×12+0.3×12+0.2×12+0.1×12
=12 となる。これを図示すると、第4図aのようなス
テツプ状となり、周期は小さいので近似的に図の
ような曲線となる。第4図bはテイーチング点間
でパルス移動量の変化がない軸の場合で、勿論、
パルス移動量の重み付き移動平均は実際のパルス
移動量と同じである。
The above principle of the present invention will be specifically explained. Fourth
In Figure a, the robot moves between teaching points at a constant speed with a pulse movement amount S = 2, reaches the teaching point at time t 3 , and then moves at a constant speed with a pulse movement amount S = 12 to the next teaching point. The method of the present invention is applied to the axis. In this example, N=4W 0
= 0.4, W 1 = 0.3, W 2 = 0.2, W 1 = 0.1. Below, the weighted moving average 3 of the pulse movement amounts S 3 , S 4 , S 5 , S 6 , S 7 at each time t 3 , t 4 , t 5 , t 6 , t 7 ,
Calculating S 4 , 5 , 6 , 7 shows that (i) When t=t 3 , S 3 = S 2 = S 1 = S 0 = 2, so 3 = 2. (ii) When t= t 4 , S Since 4 = 12, S 3 = S 2 = S 1 = 2, 4 = 0.4 × 12 + 0.3 × 2 + 0.2 × 2 + 0.1
×2 = 6 (iii) When t = t 5 , S 5 = S 4 = 12, S 3 = S 2 = 2, so 5 = 0.4 × 12 + 0.3 × 12 + 0.2 × 2 + 0.1
×2=9 (iv) When t=t 6 , S 6 = S 5 = S 4 = 1, S 3 = 2, so 6 = 0.4 × 12 + 0.3 × 12 + 0.2 × 12 + 0.1
×2=11 (v) When t=t 7 , S 7 = S 6 = S 5 = S 4 = 12, so 7 = 0.4 × 12 + 0.3 × 12 + 0.2 × 12 + 0.1 × 12
=12. If this is illustrated, it will have a step shape as shown in FIG. 4a, and since the period is small, it will approximately become a curve as shown in the figure. Figure 4b shows the case of an axis where the pulse movement amount does not change between teaching points, and of course,
The weighted moving average of the pulse movement amount is the same as the actual pulse movement amount.

第5図は他の例を示しており、同図aはN=
7,W0=0.05,W1=0.1,W2=0.2,W3=0.3,
W4=0.2,W5=0.1,W6=0.05,同図bはN=7,
W0=W1=W2=0.2,W3=W4=W5=W6=0.1の
場合、同図cはN=7、W0=W1=W2=W3=W4
=W5=W6=,1/7すなわち各重み付けが等しい
場合である。したがつて、各場合におけるパルス
移動量の重み付き移動平均は図のようなステツプ
状になり、曲線((c)の場合は直線)で近似され
る。
Figure 5 shows another example, where a shows N=
7, W 0 = 0.05, W 1 = 0.1, W 2 = 0.2, W 3 = 0.3,
W 4 = 0.2, W 5 = 0.1, W 6 = 0.05, N = 7 in b of the same figure,
When W 0 = W 1 = W 2 = 0.2, W 3 = W 4 = W 5 = W 6 = 0.1, c in the same figure is N = 7, W 0 = W 1 = W 2 = W 3 = W 4
=W 5 =W 6 =, 1/7, that is, the case where each weighting is equal. Therefore, the weighted moving average of the pulse movement amount in each case has a step shape as shown in the figure, and is approximated by a curve (a straight line in the case of (c)).

以上のように、パルス移動量の周期の数(N−
1)と各重み付けの値Wj(j=0,N−1)を適
宜定めることにより、各テイーチング点におい
て、任意の、例えば、直線、S字曲線、指数関数
状曲線、折線等の加減速度のパターンを選択する
ことが可能となる。
As described above, the number of cycles of the pulse movement amount (N-
1) and each weighting value Wj (j=0, N-1), it is possible to adjust the acceleration/deceleration of arbitrary lines, S-shaped curves, exponential curves, broken lines, etc. at each teaching point. It becomes possible to select a pattern.

次に本発明の産業用ロボツトの加減速制御方式
を適用した実施例として直交座標型産業用ロボツ
トの要部ブロツク図を第6図に示す。テイーチン
グ点データ1にはテイーチング点間の移動に要す
るクロツク数M,X,Y,Z各軸のテイーチング
点間のインクリメントパルス数Lx,Ly,Lz等の
テイーチングデータが記憶されている。
Next, FIG. 6 shows a block diagram of the main parts of an orthogonal coordinate type industrial robot as an embodiment to which the industrial robot acceleration/deceleration control method of the present invention is applied. Teaching point data 1 stores teaching data such as the number of clocks M required for movement between teaching points, the number of increment pulses Lx, Ly, and Lz between teaching points on each axis of X, Y, and Z.

PTP演算回路2ではテイーチング点データメ
モリ1に記憶されたクロツク数M、インクリメン
トパルス数Lx,Ly,LzのデータからX,Y,Z
各軸のパルス移動量Sxn=Lx/M,Syn=Ly/
M,Szn=Lz/Mが演算される。3,4,5はそ
れぞれPTP演算回路2で演算したX軸パルス移
動量SxnY軸パルス移動量Syn,Z軸パルス移動
量Sznの重み付き移動平均xn,yn,znを
演算するX軸パルス移動量重み付き移動平均演算
回路、Y軸パルス移動量重み付き移動平均演算回
路、Z軸パルス移動量重み付き移動平均演算回路
である。X軸パルス移動量重み付き移動平均演算
回路3の動作について、第7図のフローチヤート
に基づいて説明する。各時刻tn(n−0,1,2
……,n)のX軸パルス移動量Sxn(n=0,1,
2……,n)は一定の周期でPTP演算回路2か
ら直列に入力される。そしてこれらのX軸パルス
移動量のうち(N−1)周期間のN個のX軸パル
ス移動量Sxn,Sx(n−1)Sx(n−2),……
Sx(n−N+1)(n=0,1,2,……n)が
メモリに常時記憶される。そして、上記Nの値と
共に予め設定されて他のメモリに記憶されたN個
の重み付けW0,W1……WN-1の値と上記のメモ
リに記憶されたN個のX軸パルス移動量Sxn,
Sx(n−1),Sx(n−2),……Sx(n−N+1)
の値から、時刻tnにおけるX軸パルス移動量の重
み付き移動平均xnが演算され、デジタル量と
してX軸デジタルサーボ系6の制御装置6′に回
転位置検出器PGxで検出した回転モータMxの回
転位置の信号Xと共に出力される。Y軸パルス移
動量重み付き移動平均演算回路4、Z軸パルス移
動量重み付き移動平均演算回路5も同様にしてそ
れぞれY軸パルス移動量重み付き移動平均yn,
Z軸パルス移動量重み付き移動平均znを演算
して、Y軸デジタルサーボ系7の制御装置7′、
Z軸デジタルサーボ系8の制御装置8′に出力す
る。なお、My,PGy,yはそれぞれY軸の回転
モータ、Y軸の回転位置検出器、Y軸の回転位
置、Mz,PGz,zはそれぞれZ軸の回転モータ、
Z軸の回転位置検出器、Z軸の回転変位である。
The PTP calculation circuit 2 calculates X, Y, Z from the data of the number of clocks M and the number of increment pulses Lx, Ly, and Lz stored in the teaching point data memory 1.
Pulse movement amount of each axis Sxn=Lx/M, Syn=Ly/
M, Szn=Lz/M is calculated. 3, 4, and 5 are the X-axis pulse movement amounts for calculating the weighted moving averages xn, yn, and zn of the X-axis pulse movement amount Sxn, the Y-axis pulse movement amount Syn, and the Z-axis pulse movement amount Szn calculated by the PTP calculation circuit 2, respectively. They are a weighted moving average calculation circuit, a Y-axis pulse movement weighted moving average calculation circuit, and a Z-axis pulse movement weighted moving average calculation circuit. The operation of the X-axis pulse movement weighted moving average calculating circuit 3 will be explained based on the flowchart of FIG. 7. Each time tn (n-0, 1, 2
..., n) X-axis pulse movement amount Sxn (n=0, 1,
2..., n) are input in series from the PTP calculation circuit 2 at a constant cycle. Of these X-axis pulse movement amounts, N X-axis pulse movement amounts Sxn, Sx (n-1) Sx (n-2), . . . during (N-1) periods are
Sx (n-N+1) (n=0, 1, 2, . . . n) is always stored in the memory. Then, N weightings W 0 , W 1 ... W N-1 values set in advance and stored in other memories together with the above N value and N X-axis pulse movements stored in the above memory. Quantity Sxn,
Sx (n-1), Sx (n-2), ...Sx (n-N+1)
From the value of , a weighted moving average xn of the X-axis pulse movement amount at time tn is calculated, and as a digital quantity, the rotation of the rotary motor Mx detected by the rotational position detector PGx is sent to the control device 6' of the X-axis digital servo system 6. It is output together with the position signal X. Similarly, the Y-axis pulse movement weighted moving average calculation circuit 4 and the Z-axis pulse movement weighted moving average calculation circuit 5 calculate the Y-axis pulse movement weighted moving average yn, respectively.
The control device 7' of the Y-axis digital servo system 7 calculates the weighted moving average zn of the Z-axis pulse movement amount;
It is output to the control device 8' of the Z-axis digital servo system 8. In addition, My, PGy, and y are respectively the Y-axis rotation motor, the Y-axis rotation position detector, and the Y-axis rotation position, and Mz, PGz, and z are the Z-axis rotation motor, respectively.
Z-axis rotational position detector, Z-axis rotational displacement.

本発明はテイーチング点列の2点間を定速で移
動するパルス移動量の演算およびこれらのパルス
移動量の連続する所定数の時系列データの重み付
け移動平均という非常に容易な演算だけで、任意
のパターンの加減速制御を実現できる。そして、
この加減速制御は速度変化がある軸に対してのみ
自動的に行なわれること、および従来は各テイー
チング点で停止する場合にしか行なうことができ
なかつた加減速制御が、任意の2速度間でも可能
となること等、従来の加減速制御にない好ましい
機能を有しているので、産業用ロボツトの軌道制
御をスムーズに行なうことができ、その結果、産
業用ロボツトを高速に動作させることが可能とな
る。
The present invention can perform arbitrary calculations by simply calculating the amount of movement of a pulse that moves at a constant speed between two points in a teaching point sequence, and the weighted moving average of a predetermined number of continuous time-series data of these amounts of pulse movement. It is possible to realize acceleration/deceleration control in the following patterns. and,
This acceleration/deceleration control is automatically performed only for axes with speed changes, and acceleration/deceleration control that could previously only be performed when stopping at each teaching point can now be performed between any two speeds. It has favorable functions that are not found in conventional acceleration/deceleration control, such as the ability to control acceleration and deceleration, so it is possible to smoothly control the trajectory of industrial robots, and as a result, it is possible to operate industrial robots at high speed. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はテイーチング点列を一般的に示す図、
第2図は断続軌道制御の産業用ロボツトの加減速
制御の例を示す図、第3図は従来の連続軌道制御
の産業用ロボツトのパルス移動量の変化を示す
図、第4図、第5図は本発明のパルス移動量の重
み付き平均の計算例を示す図、第6図は本発明の
産業用ロボツトの加減速制御方式を適用した産業
用ロボツトの1実施例の要部ブロツク図、第7図
は第6図のX軸パルス移動量重み付き移動平均演
算回路の動作を示すフローチヤートである。 1……テイーチングメモリ、2……PTP演算
回路、3……X軸パルス移動量重み付き移動平均
演算回路、4……Y軸パルス移動量重み付き移動
平均演算回路、5……Z軸パルス移動量重み付き
移動平均演算回路、6……X軸デジタルサーボ
系、7……Y軸デジタルサーボ系、8……Z軸デ
ジタルサーボ系。
Figure 1 is a diagram generally showing the teaching point sequence.
Fig. 2 is a diagram showing an example of acceleration/deceleration control of an industrial robot with intermittent trajectory control, Fig. 3 is a diagram showing changes in pulse movement amount of an industrial robot with conventional continuous trajectory control, Figs. The figure shows an example of calculating the weighted average of the pulse movement amount of the present invention, and Figure 6 is a block diagram of the main part of an embodiment of an industrial robot to which the industrial robot acceleration/deceleration control method of the present invention is applied. FIG. 7 is a flowchart showing the operation of the X-axis pulse movement amount weighted moving average calculation circuit of FIG. 1...Teaching memory, 2...PTP calculation circuit, 3...X-axis pulse movement weighted moving average calculation circuit, 4...Y-axis pulse movement weighted moving average calculation circuit, 5...Z-axis pulse movement Quantity-weighted moving average calculation circuit, 6...X-axis digital servo system, 7...Y-axis digital servo system, 8...Z-axis digital servo system.

Claims (1)

【特許請求の範囲】 1 離散的なテイーチング点データが与えられ、
これらのテイーチング点データに基づいて一定周
期毎に各軸のパルス移動量が演算され、これらパ
ルス移動量が対応する各軸のデジタルサーボ系に
指令されて、これらのデジタルサーボ系により各
軸が駆動される産業用ロボツトの加減速制御方式
において、 各軸について、テイーチング点間の移動に要す
るクロツク数と、テイーチング点間の移動に要す
インクリメンタルパルス量を予め記憶する手段
と、 前記インクリメンタルパルス量を前記クロツク
数で除算することにより、少なくとも連続する3
テイーチング点列の中の隣接する2点間をそれぞ
れ定速で移動するように各隣接する2点間のパル
ス移動量を演算する演算手段と、 前記演算手段の出力であるn番目の時刻toにお
けるこのパルス移動量をSoとするとき、時刻to
り以前の(N−1)周期間のN個のパルス移動量 So-j(j=N−1,N−2,……,1,0)の重
み付き移動平均 oN-1 〓Wj=0 j ・So-j (ただし、重み係数WjN-1 〓Wj=0 j =1を満たす) を演算し、この重み付き移動平均oを時刻to
おけるパルス移動量としてサーボ系に指令して加
減速制御を行う制御手段とを備え、 前記重み係数Wjを予め規定した任意の曲線も
しくは折線パターンに対応する値に設定すること
により、連続する少なくとも3つのテイーチング
点の中間のテイーチング点近傍での速度を任意の
曲線もしくは折線パターンで変化させることを特
徴とする産業用ロボツトの加減速制御方式。
[Claims] 1. Discrete teaching point data is given,
Based on these teaching point data, the pulse movement amount of each axis is calculated at regular intervals, and these pulse movement amounts are commanded to the digital servo system of each corresponding axis, and each axis is driven by these digital servo systems. In an acceleration/deceleration control method for an industrial robot, the method includes means for pre-memorizing the number of clocks required for movement between teaching points and the amount of incremental pulses required for movement between teaching points for each axis; By dividing by the number of clocks, at least three consecutive
a calculation means for calculating the amount of pulse movement between each adjacent two points in the teaching point sequence so that each point moves at a constant speed; and an n-th time t o which is the output of the calculation means. When the amount of pulse movement at is S o , the amount of N pulse movement S oj (j=N-1, N-2, ..., 1, 0) weighted moving average o = N-1 〓W j=0 j・S oj (however, the weighting coefficient W j satisfies N-1 〓W j=0 j = 1), and this weighted moving average control means for instructing the servo system to perform acceleration/deceleration control by instructing the moving average o as a pulse movement amount at time t o , and setting the weighting coefficient W j to a value corresponding to a predefined arbitrary curve or line pattern. An acceleration/deceleration control method for an industrial robot, characterized in that the speed in the vicinity of an intermediate teaching point among at least three consecutive teaching points is changed in an arbitrary curve or broken line pattern.
JP22394282A 1982-12-22 1982-12-22 Acceleration and deceleration controlling system of industrial robot Granted JPS59114604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22394282A JPS59114604A (en) 1982-12-22 1982-12-22 Acceleration and deceleration controlling system of industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22394282A JPS59114604A (en) 1982-12-22 1982-12-22 Acceleration and deceleration controlling system of industrial robot

Publications (2)

Publication Number Publication Date
JPS59114604A JPS59114604A (en) 1984-07-02
JPH0561650B2 true JPH0561650B2 (en) 1993-09-06

Family

ID=16806113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22394282A Granted JPS59114604A (en) 1982-12-22 1982-12-22 Acceleration and deceleration controlling system of industrial robot

Country Status (1)

Country Link
JP (1) JPS59114604A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142008A (en) * 1984-08-03 1986-02-28 Sankyo Seiki Mfg Co Ltd Robot course controller
JPS61245209A (en) * 1985-04-23 1986-10-31 Fanuc Ltd Acceleration and deceleration control system
JPS63235557A (en) * 1987-03-24 1988-09-30 株式会社豊田自動織機製作所 Method for controlling operation of machine device apparatus in loom
JPH0452704A (en) * 1990-06-15 1992-02-20 Hitachi Ltd Evaluation method for application of redundancy for improvement of robot operating ability and method and device for control
JP4528577B2 (en) * 2004-08-06 2010-08-18 株式会社神戸製鋼所 Industrial robot
JP7047524B2 (en) * 2018-03-26 2022-04-05 日本電産株式会社 Robot control device, robot control method, program
JP7047525B2 (en) * 2018-03-26 2022-04-05 日本電産株式会社 Robot control device, robot control method, program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014101A (en) * 1973-06-11 1975-02-14
JPS5059680A (en) * 1973-09-27 1975-05-23
JPS55112607A (en) * 1979-02-21 1980-08-30 Toshiba Corp Numeral control unit
JPS5633703A (en) * 1979-08-25 1981-04-04 Fanuc Ltd Signal converting circuit
JPS5990107A (en) * 1982-11-13 1984-05-24 Fanuc Ltd Accelerating and decelerating circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014101A (en) * 1973-06-11 1975-02-14
JPS5059680A (en) * 1973-09-27 1975-05-23
JPS55112607A (en) * 1979-02-21 1980-08-30 Toshiba Corp Numeral control unit
JPS5633703A (en) * 1979-08-25 1981-04-04 Fanuc Ltd Signal converting circuit
JPS5990107A (en) * 1982-11-13 1984-05-24 Fanuc Ltd Accelerating and decelerating circuit

Also Published As

Publication number Publication date
JPS59114604A (en) 1984-07-02

Similar Documents

Publication Publication Date Title
EP0187864B1 (en) Acceleration/deceleration control system
US5303333A (en) Method for controlling the acceleration and velocity of at least one controllable axis of a machine tool or robot
DE3587608T2 (en) ERROR CORRECTION IN THE WAY OF A ROBOT.
US6252368B1 (en) Numerically controlled system and backlash compensation device for use with the system
EP0120970A1 (en) Acceleration and deceleration circuit
EP0359819B1 (en) Speed controller
EP0357778B1 (en) Method of speed control for servomotor
EP0528047B1 (en) Method of controlling flowrate of sealing material in sealing by industrial robot
US4685067A (en) Control system for program controlled manipulator having multiple triggered functions between programmed points
JPS6315604B2 (en)
WO1995004316A1 (en) Method and system for estimating robot tool center point speed
JPH0561650B2 (en)
EP0320515A1 (en) Acceleration/deceleration controller
EP0476381B1 (en) Route interpolation method for robot
EP0538483A1 (en) Acceleration/deceleration time constant control system for servo motor
JPH06214630A (en) Method for control of driving route of robot
JPS61131007A (en) Numerical control for machine tool
JP3121920B2 (en) Acceleration / deceleration control device
KR970003877B1 (en) Method of controlling feed-forward of servo motor
JP3388426B2 (en) Pulse train control method of motor that enables arbitrary interpolation
JP2703099B2 (en) Conveyor tracking method for industrial robots
JP2652789B2 (en) Arc tracking control method
JPH0752363B2 (en) Industrial robot controller
JPS62145306A (en) Driving control method for robot
JPS61138310A (en) Robot controller