JPH0560460A - Device for manufacturing high purity nitrogen and oxygen gas - Google Patents
Device for manufacturing high purity nitrogen and oxygen gasInfo
- Publication number
- JPH0560460A JPH0560460A JP3356055A JP35605591A JPH0560460A JP H0560460 A JPH0560460 A JP H0560460A JP 3356055 A JP3356055 A JP 3356055A JP 35605591 A JP35605591 A JP 35605591A JP H0560460 A JPH0560460 A JP H0560460A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- nitrogen
- liquid
- gas
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04854—Safety aspects of operation
- F25J3/0486—Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
- F25J3/0426—The cryogenic component does not participate in the fractionation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/0443—A main column system not otherwise provided, e.g. a modified double column flowsheet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04824—Stopping of the process, e.g. defrosting or deriming; Back-up procedures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/50—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
- F25J2200/54—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/42—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/50—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
- F25J2240/44—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/42—One fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/50—One fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2280/00—Control of the process or apparatus
- F25J2280/02—Control in general, load changes, different modes ("runs"), measurements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高純度窒素および酸素
ガス製造装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing high purity nitrogen and oxygen gas.
【0002】[0002]
【従来の技術】電子工業では極めて多量の窒素ガスが使
用されているが、部品精度維持向上の観点から窒素ガス
の純度について厳しい要望をだしてきている。すなわ
ち、窒素ガスは、一般に、空気を原料とし、これを圧縮
機で圧縮したのち、吸着筒に入れて炭酸ガスおよび水分
を除去し、さらに熱交換器を通して冷媒と熱交換させて
冷却し、ついで精留塔で深冷液化分離して製品窒素ガス
を製造し、これを前記の熱交換器を通して常温近傍に昇
温させるという工程を経て製造されている。しかしなが
ら、このようにして製造される製品窒素ガスには、酸素
が不純分として混在しているため、これをそのまま使用
することは不都合なことが多い。不純酸素の除去方法と
しては、Pt触媒を使用し窒素ガス中に微量の水素を
添加して不純酸素と200℃程度の温度雰囲気中で反応
させ水として除去する方法およびNi触媒を使用し、
窒素ガス中の不純酸素を200℃程度の温度雰囲気にお
いてNi触媒と接触させNi+1/2O2 →NiOの反
応を起こさせて除去する方法がある。しかしながら、こ
れらの方法は、いずれも窒素ガスを高温にして触媒と接
触させなければならないため、その装置を、超低温系で
ある窒素ガス製造装置中には組み込めない。したがつ
て、窒素ガス製造装置とは別個に精製装置を設置しなけ
ればならず、全体が大形になるという欠点がある。その
うえ、前記の方法では、水素の添加量の調整に高精度
が要求され、不純酸素量と丁度反応するだけの量の水素
を添加しないと、酸素が残存したり、また添加した水素
が残存して不純分となつてしまうため、操作に熟練を要
するという問題がある。さらに、前記の方法では、不
純酸素との反応で生じたNiOの再生(NiO+H2 →
Ni+H2 O)をする必要が生じ、再生用H2 ガス設備
が必要となつて精製費の上昇を招いていた。したがつ
て、これらの改善が強く望まれていた。2. Description of the Related Art An extremely large amount of nitrogen gas is used in the electronic industry, but there is a strict demand for the purity of nitrogen gas from the viewpoint of maintaining and improving the accuracy of parts. That is, nitrogen gas generally uses air as a raw material, compresses it with a compressor, puts it in an adsorption column to remove carbon dioxide gas and water, and further cools it by exchanging heat with a refrigerant through a heat exchanger. It is manufactured through a process in which a product nitrogen gas is manufactured by cryogenic liquefaction separation in a rectification tower and heated to near room temperature through the heat exchanger. However, in the product nitrogen gas produced in this way, oxygen is mixed as an impurity, so that it is often inconvenient to use it as it is. As a method of removing impure oxygen, a method of adding a trace amount of hydrogen to nitrogen gas using Pt catalyst to react with impure oxygen in a temperature atmosphere of about 200 ° C. and removing as water, and a Ni catalyst are used.
There is a method of removing impure oxygen in nitrogen gas by bringing it into contact with a Ni catalyst in a temperature atmosphere of about 200 ° C. to cause a reaction of Ni + 1 / 2O 2 → NiO. However, in any of these methods, the temperature of nitrogen gas must be raised to bring it into contact with the catalyst, and therefore the apparatus cannot be incorporated in a nitrogen gas production apparatus which is an ultralow temperature system. Therefore, the refining device must be installed separately from the nitrogen gas production device, which has the disadvantage of increasing the overall size. Moreover, in the above method, high precision is required for adjusting the amount of hydrogen added, and if hydrogen is not added in an amount just enough to react with the amount of impure oxygen, oxygen will remain or the added hydrogen will remain. Therefore, there is a problem that it requires skill to operate because it becomes impure. Furthermore, in the above method, the NiO generated by the reaction with impure oxygen is regenerated (NiO + H 2 →
Ni + H 2 O) is required, and a H 2 gas facility for regeneration is required, which causes an increase in refining cost. Therefore, these improvements were strongly desired.
【0003】また、従来の窒素ガスの製造装置は、圧縮
機で圧縮された圧縮空気を冷却するための熱交換器の冷
媒冷却用に、膨脹タービンを用い、これを精留塔内に溜
る液体空気(深冷液化分離により低沸点の窒素はガスと
して取り出され、残部が酸素リツチな液体空気となつて
溜る)から蒸発したガスの圧力で駆動するようになつて
いる。ところが、膨脹タービンは回転速度が極めて大
(数万回/分)であつて負荷変動に対する追従運転が困
難であり、特別に養成した運転員が必要である。また、
このものは高速回転するため機械構造上高精度が要求さ
れ、かつ高価であり、機構が複雑なため特別に養成した
要員が必要という難点を有している。すなわち、膨脹タ
ービンは高速回転部を有するため、上記のような諸問題
を生じるのであり、このような高速回転部を有する膨脹
タービンの除去に対して強い要望があつた。Further, the conventional nitrogen gas producing apparatus uses an expansion turbine for cooling the refrigerant of a heat exchanger for cooling the compressed air compressed by the compressor, and a liquid which collects the expansion turbine in the rectification column. It is driven by the pressure of the gas evaporated from the air (nitrogen having a low boiling point is taken out as a gas by the cryogenic liquefaction separation, and the rest is stored as oxygen-rich liquid air). However, the expansion turbine has an extremely high rotation speed (tens of thousands of times / minute), and it is difficult to follow the load fluctuation, and a specially trained operator is required. Also,
Since this machine rotates at high speed, it requires high precision in terms of mechanical structure, is expensive, and has a complicated mechanism, which requires specially trained personnel. That is, since the expansion turbine has a high-speed rotating part, the above-mentioned various problems occur, and there is a strong demand for the removal of the expansion turbine having such a high-speed rotating part.
【0004】この発明者は、このような要望に応えるた
め、膨脹タービンを除去し、それに代えて外部から液体
窒素を寒冷として精留塔内に供給する窒素ガス製造装置
を開発し、すでに特許出願(特願昭58−38050)
している。この装置は、極めて高純度の窒素ガスを製造
しうるため、これまでのような精製装置が全く不要にな
る。また、膨脹タービンを除去しているため、それにも
とづく弊害も生じない。したがつて、電子工業向に最適
である。しかしながら、電子工業では、窒素ガス以外
に、酸素ガスも使用しており、1台の装置で窒素ガスの
みならず酸素ガスも製造しうるような装置の提供が望ま
れてきている。In order to meet such a demand, the inventor of the present invention has developed a nitrogen gas production apparatus which removes the expansion turbine and instead supplies liquid nitrogen from the outside into the rectification column as refrigeration, and has already applied for a patent. (Japanese Patent Application No. 58-38050)
is doing. Since this apparatus can produce extremely high-purity nitrogen gas, the refining apparatus as in the past is completely unnecessary. Further, since the expansion turbine is removed, no harmful effect based on it is caused. Therefore, it is most suitable for the electronics industry. However, in the electronics industry, oxygen gas is used in addition to nitrogen gas, and it has been desired to provide a device that can produce not only nitrogen gas but also oxygen gas with one device.
【0005】[0005]
【発明が解決しようとする課題】本発明は、膨脹タービ
ンや精製装置を用いることなく高純度の窒素ガスを製造
でき、かつ同時に高純度の酸素ガスも製造しうる高純度
窒素および酸素ガス製造装置の提供をその目的とするも
のである。DISCLOSURE OF THE INVENTION The present invention is a high-purity nitrogen and oxygen gas production apparatus capable of producing high-purity nitrogen gas without using an expansion turbine or a refining apparatus and at the same time producing high-purity oxygen gas. The purpose is to provide.
【0006】[0006]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、外部より取り入れた空気を圧縮する空
気圧縮手段と、この空気圧縮手段によつて圧縮された圧
縮空気中の炭酸ガスと水とを除去する除去手段と、この
除去手段を経た圧縮空気を超低温に冷却する熱交換手段
と、液体窒素を貯蔵する液体窒素貯蔵手段と、上記熱交
換手段により超低温に冷却された圧縮空気の一部を液化
して内部に溜め窒素のみを気体として保持する窒素精留
塔と、上記液体窒素貯蔵手段内の液体窒素を圧縮空気液
化用の寒冷源として上記窒素精留塔内に導く液体窒素導
入路と、寒冷源としての作用を終えて気化した液体窒素
および上記窒素精留塔内に保持されている気化窒素の双
方を製品窒素ガスとして上記窒素精留塔より取り出す窒
素ガス取出路と、液体空気を対象とし窒素と酸素の沸点
の差を利用して両者を分離する酸素精留塔と、上記窒素
精留塔内の滞留液体空気を上記酸素精留塔内に供給する
液体空気供給路と、液体酸素を貯蔵する液体酸素貯蔵手
段と、この液体酸素貯蔵手段内の液体酸素を寒冷源とし
て上記酸素精留塔に導く液体酸素導入路と、液体空気を
原料とし酸素と窒素の沸点の差を利用して分離された酸
素ガスおよび寒冷源としての作用を終えて気化した液体
酸素の双方を製品酸素ガスとして上記酸素精留塔より取
り出す酸素ガス取出路を備えている高純度窒素および酸
素ガス製造装置を第1の要旨とし、外部より取り入れた
空気を圧縮する空気圧縮手段と、この空気圧縮手段によ
つて圧縮された圧縮空気中の炭酸ガスと水とを除去する
除去手段と、この除去手段を経た圧縮空気を超低温に冷
却する熱交換手段と、液体窒素を貯蔵する液体窒素貯蔵
手段と、上記熱交換手段により超低温に冷却された圧縮
空気の一部を液化して内部に溜め窒素のみを気体として
保持する窒素精留塔と、上記液体窒素貯蔵手段内の液体
窒素を圧縮空気液化用の寒冷源として上記窒素精留塔内
に導く液体窒素導入路と、寒冷源としての作用を終えて
気化した液体窒素および上記窒素精留塔内に保持されて
いる気化窒素の双方を製品窒素ガスとして上記窒素精留
塔より取り出す窒素ガス取出路と、液体空気を対象とし
その窒素分を気化させ酸素分に富んだ状態にする酸素凝
縮塔と、上記窒素精留塔内の滞留液体空気を上記酸素凝
縮塔内に供給する液体空気供給路と、酸素と窒素の沸点
の差を利用して両者を分離する酸素精留塔と、上記酸素
凝縮塔内の酸素分に富んだ液体空気を上記酸素精留塔内
に供給する供給路と、液体酸素を貯蔵する液体酸素貯蔵
手段と、この液体酸素貯蔵手段内の液体酸素を寒冷源と
して上記酸素精留塔に導く液体酸素導入路と、酸素分に
富んだ液体空気を原料とし酸素と窒素の沸点の差を利用
して分離された酸素ガスおよび寒冷源としての作用を終
えて気化した液体酸素の双方を製品酸素ガスとして上記
酸素精留塔から取り出す酸素ガス取出路を備えている高
純度窒素および酸素ガス製造装置を第2の要旨とするも
のである。In order to achieve the above object, the present invention provides an air compression means for compressing air taken in from the outside, and carbon dioxide in compressed air compressed by the air compression means. Removal means for removing gas and water, heat exchange means for cooling the compressed air passed through the removal means to an ultra low temperature, liquid nitrogen storage means for storing liquid nitrogen, and compression cooled to an ultra low temperature by the heat exchange means. Nitrogen rectification column that liquefies a part of air and retains only nitrogen as a gas inside, and introduces the liquid nitrogen in the liquid nitrogen storage means into the nitrogen rectification column as a cold source for liquefying compressed air. A liquid nitrogen introduction passage and a nitrogen gas extraction passage for taking out both the liquid nitrogen vaporized after finishing the action as a cold source and the vaporized nitrogen held in the nitrogen rectification tower as product nitrogen gas from the nitrogen rectification tower. When, An oxygen rectification column that targets body air by utilizing the difference in the boiling points of nitrogen and oxygen, and a liquid air supply path that supplies the retained liquid air in the nitrogen rectification column into the oxygen rectification column A liquid oxygen storage means for storing liquid oxygen, a liquid oxygen introduction path for guiding liquid oxygen in the liquid oxygen storage means to the oxygen rectification column as a cold source, and liquid air as a raw material for the boiling points of oxygen and nitrogen. High-purity nitrogen and oxygen provided with an oxygen gas take-out path for taking out from the oxygen rectification column both oxygen gas separated by utilizing the difference and liquid oxygen vaporized after finishing the action as a cold source as product oxygen gas The first aspect of the present invention is a gas production apparatus, an air compression means for compressing air taken in from the outside, a removal means for removing carbon dioxide gas and water in the compressed air compressed by the air compression means, and Pressure through removal means A heat exchange means for cooling the air to an ultra low temperature, a liquid nitrogen storage means for storing liquid nitrogen, and a part of the compressed air cooled to an ultra low temperature by the heat exchange means is liquefied to retain only nitrogen as a gas inside Nitrogen rectification column, liquid nitrogen in the liquid nitrogen storage means to introduce liquid nitrogen into the nitrogen rectification column as a cold source for compressed air liquefaction, and liquid vaporized after finishing the action as a cold source Both nitrogen and vaporized nitrogen retained in the nitrogen rectification tower are taken out from the nitrogen rectification tower as product nitrogen gas, and a nitrogen gas extraction path for liquid air to vaporize the nitrogen content and enrich it with oxygen content. Oxygen condensing column to be in a state of being in a state, a liquid air supply path for supplying the retained liquid air in the nitrogen rectifying column into the oxygen condensing column, and oxygen for separating the two by utilizing the difference in boiling points of oxygen and nitrogen. Rectification tower and above oxygen A supply path for supplying liquid oxygen-rich liquid in the condensing tower into the oxygen rectification tower, liquid oxygen storage means for storing liquid oxygen, and liquid oxygen in the liquid oxygen storage means as a cold source. Liquid oxygen introduction path leading to the oxygen rectification column, oxygen gas separated from liquid air rich in oxygen as a raw material by utilizing the difference in boiling points of oxygen and nitrogen, and liquid vaporized after the action as a cold source The second gist of the present invention is a high-purity nitrogen and oxygen gas production apparatus provided with an oxygen gas take-out path for taking out both of oxygen as product oxygen gas from the oxygen rectification column.
【0007】つぎに、本発明を実施例にもとづいて詳し
く説明する。Next, the present invention will be described in detail based on examples.
【0008】[0008]
【実施例】図1は本発明の一実施例を示している。図に
おいて、1は第1の空気圧縮機、2は廃熱回収器、3は
インタークーラ、4は第2の空気圧縮機、5はアフター
クーラ、6は2個1組の空気冷却筒で、一方(6a)が
密閉型になつており、他方(6b)が上部開放型になつ
ている。7は2個1組の吸着筒で、内部にモレキユラー
シーブが充填されており、第1および第2の空気圧縮機
1,4により圧縮された空気中のH2 OおよびCO2 を
交互に作動して吸着除去する。8は第1の熱交換器であ
り、この熱交換器8に、吸着筒7によりH2 OおよびC
O2 を吸着除去された圧縮空気が、圧縮空気供給パイプ
9を経て送り込まれ熱交換作用により超低温に冷却され
る。10は第2の熱交換器であり、上記圧縮空気供給パ
イプ9から分岐した分岐パイプ11により、H2 Oおよ
びCO2 の吸着除去された圧縮空気が送り込まれる。こ
の第2の熱交換器10に送り込まれた圧縮空気も熱交換
作用により超低温に冷却され、ついで上記第1の熱交換
器8で冷却された超低温圧縮空気に合流される。12は
棚段式の窒素精留塔であり、第1および第2の熱交換器
8,10により超低温に冷却されパイプ9を経て送り込
まれる圧縮空気をさらに冷却し、その一部を液化し液体
空気13として底部に溜め、窒素のみを気体状態で取り
出すようになつている。この精留塔12の上部側の部分
には、液体窒素溜め12aが設けられ、そこに、液体窒
素貯槽14から液体窒素が導入路パイプ14aを介して
送入される。送入された液体窒素は、上記液体窒素溜め
12aから溢れて精留塔12内を下方に流下し、精留塔
12の底部から上昇する圧縮空気と向流的に接触し冷却
してその一部を液化するようになつている。すなわち、
この過程で圧縮空気中の高沸点成分(酸素分)が液化さ
れて精留塔12の底部に溜り、低沸点成分の窒素ガスが
精留塔12の上部に溜る。19は、このようにして精留
塔12の上部に溜つた窒素ガスを製品窒素ガスとして取
り出す取出パイプで、超低温の窒素ガスを第1の熱交換
器8内に案内し、そこに送り込まれる圧縮空気と熱交換
させて常温にしメインパイプ20に送り込む作用をす
る。この場合、精留塔12の最上部には、窒素ガスとと
もに、沸点の低いHe(−269℃),H2 (−253
℃)が溜りやすいため、取出パイプ19は、精留塔12
の最上部よりかなり下側に開口しており、He,H2 の
混在しない純窒素ガスのみを取り出すようになつてい
る。15は棚段式の酸素凝縮塔で、内部に凝縮器16が
配設されている。この凝縮器16に、精留塔12の上部
に溜る窒素ガスの一部がパイプ12bを介して送入され
て液化し、パイプ12cを経て上記導入路パイプ14a
内の液体窒素に合流する。上記酸素凝縮塔15内は、精
留塔12内よりも減圧状態になつており、精留塔12の
底部の貯留液体空気(N2 :50〜70%,O2 :30
〜50%)13が、液面計17によつて制御されている
膨脹弁17a付きパイプ18を経て送り込まれ、その高
沸点成分である窒素分を気化させて塔15の内部温度を
超低温に保持し、それ自身は酸素リツチな超低温液体と
なつて塔15の底部に溜るようになつている。この酸素
リツチな超低温液体の冷熱により凝縮器16内に送入さ
れた窒素ガスが液化し、前記のように導入路パイプ14
a内の液体窒素に合流するのである。30は、酸素凝縮
塔15の上部に溜つた窒素分(純度はそれ程高くない)
を廃窒素ガスとして取り出す廃窒素ガス取出パイプで、
上記廃窒素ガスを第1の熱交換器8に案内してその冷熱
により原料空気を超低温に冷却し、続いてその一部を、
2個1組の冷却筒6のうちの上部開放型冷却筒6bに案
内し、パイプ34の先端ノズルからシヤワー状に流下さ
れる水と接触させて冷却し、熱交換を終えた廃窒素ガス
を矢印Dのように大気中に放出するとともに、上記廃窒
素ガスの残部を分岐パイプ30aから矢印Aのように直
接大気中に放出するようになつている。この場合、冷却
筒6に送られる廃窒素ガスは、その一部が、前記2個1
組の吸着筒7における吸着作動していない方の吸着筒の
再生に用いられる。すなわち、弁38を開いて超低温の
廃窒素ガスをパイプ39を経由させ廃熱回収器2に送入
して昇温させ、ついで再生用ヒータ41でさらに常温ま
で昇温させ、吸着作動していない方の吸着筒に送入して
モレキユラーシーブの再生を行わせ、ついで大気中に矢
印Bのように放出する。上記モレキユラーシーブは常温
では吸着能が殆どなく、超低温において優れた吸着能を
発揮するものであり、上記のようにして再生されたまま
の状態では常温になつていて吸着能を発揮しえない。そ
のため、常温の廃窒素ガスを流したのち、直ちに弁38
を閉じ弁37を開き、超低温の廃窒素ガスを流してモレ
キユラーシーブを冷却し、使用済みの廃窒素ガスを矢印
Bのように放出するということが行われ、これによつて
モレキユラーシーブの再生が完了する。2個1組の吸着
筒7はこのようにして交互に再生され使用される。35
aは液面計35により制御される膨脹弁である。なお、
上部開放型冷却筒6bにおいて、廃窒素ガスにより冷却
された水31は、上部開放型冷却筒6bの底部に溜り、
モータ32の作用により、パイプ33を経て密閉型冷却
筒6aの上部に送られ、そこからシヤワー状に流下して
空気圧縮機1から送り込まれる原料空気を冷却する。そ
して、冷却を終えた水31は、モータ32の作用により
上部開放型冷却筒6bに還流され、廃窒素ガスの冷熱に
より再び冷却される。21は棚段式の酸素精留塔で、パ
イプ22によつて酸素凝縮塔15の底部と連通してお
り、酸素凝縮塔15の底部に溜つた酸素リツチな超低温
流体を圧力差によつて取り込むようになつている。25
は液面計、26はその液面計25により制御される膨脹
弁、27はアセチレン吸収器で、上記酸素リツチな超低
温流体中のアセチレンを吸収除去する。28は上記酸素
リツチな超低温流体を冷却する第3の熱交換器である。
この熱交換器28による冷却により、酸素リツチな超低
温流体が一層冷却され、酸素精留塔21内に、膨脹弁2
6の作用によつて噴霧状になつて取り込まれる際、酸素
分が直ちに液化するとともに窒素分がガス化し両者が高
精度で分離されるようになる。上記酸素精留塔21の下
部側の部分には、液体酸素貯槽23から液体酸素が寒冷
として導入路パイプ23aを介して送入され、酸素精留
塔21内に内蔵された凝縮器24を冷却し、酸素凝縮塔
15を上部からその凝縮器24内に送り込まれる廃窒素
ガスを液化しパイプ15bを介して酸素凝縮塔15の還
流液留め15cに戻す作用をする。29は酸素精留塔2
1の上部に溜る超低温の窒素ガスを上記熱交換器28の
冷媒として送るパイプ、29bは冷媒としての作用を終
えた窒素ガスを第1の熱交換器8に送るパイプであり、
第1の熱交換器8において熱交換を終えた窒素ガスを廃
窒素ガスに合流させるよう先端が廃窒素ガス取出パイプ
30に連結している。29aは逆止弁である。25aは
酸素精留塔21に設けられた液面計、23bはそれによ
つて制御される流量調節弁である。上記液面計25a
は、液体酸素の流量だけでなく、液体窒素貯槽14から
送出される液体窒素の流量も、流量調節弁14bに対す
る制御によつて制御し、常時精留塔12,21に適正量
の寒冷が送入されるようにしている。21aは、酸素ガ
ス取出パイプで、酸素精留塔21の底部滞留液体酸素2
1c(純度99.5%)から気化した超高純度の酸素ガ
スを取り出し、第1の熱交換器8内に案内し、そこに送
り込まれる圧縮空気と熱交換させて常温にし、製品酸素
ガス取出パイプ21bに送り込む作用をする。29cは
酸素精留塔21の底部の滞留液体酸素21cを廃棄する
廃棄パイプであり、上記液体酸素を第2の熱交換器10
に送り込み、そこで原料空気と熱交換させて原料空気を
超低温に冷却したのち、矢印Cのように放出する。上記
滞留液体酸素21cには、メタン,アセチレン等の不純
分が含まれており、これら不純分は滞留液体酸素21c
の下部側に多いため、廃棄パイプ29cは、酸素精留塔
21の底部に開口している。42,44はバツクアツプ
系ラインであり、空気圧縮系ラインが故障したとき弁4
2a,44aを開き、液体窒素貯槽14内の液体窒素を
蒸発器43により蒸発させてメインパイプ20に送り込
み、窒素ガスの供給がとだえることのないようにすると
ともに、液体酸素貯槽23内の液体酸素を蒸発器45に
より蒸発させてメインパイプ21bに送り込み、酸素ガ
スの供給もとだえることのないようにする。一点鎖線は
真空保冷函を示している。この真空保冷函は外部からの
熱侵入を遮断し、一層精製効率を向上させるものであ
る。FIG. 1 shows an embodiment of the present invention. In the figure, 1 is a first air compressor, 2 is a waste heat recovery device, 3 is an intercooler, 4 is a second air compressor, 5 is an aftercooler, and 6 is a set of two air cooling tubes. One (6a) is a closed type, and the other (6b) is an upper open type. Numeral 7 is a set of two adsorption cylinders, which are filled with a molecular sieve, and alternate between H 2 O and CO 2 in the air compressed by the first and second air compressors 1 and 4. It works by adsorbing and removing. Reference numeral 8 is a first heat exchanger, and H 2 O and C are added to the heat exchanger 8 by the adsorption cylinder 7.
The compressed air from which O 2 has been adsorbed and removed is sent through the compressed air supply pipe 9 and cooled to an ultra-low temperature by the heat exchange action. Reference numeral 10 is a second heat exchanger, and the branch pipe 11 branched from the compressed air supply pipe 9 feeds the compressed air from which H 2 O and CO 2 have been adsorbed and removed. The compressed air sent to the second heat exchanger 10 is also cooled to an ultra-low temperature by the heat exchange action, and then merged with the ultra-low temperature compressed air cooled by the first heat exchanger 8. Reference numeral 12 denotes a tray type nitrogen rectification column, which further cools the compressed air that is cooled to an ultralow temperature by the first and second heat exchangers 8 and 10 and is sent through the pipe 9, and liquefies a part of the compressed air. Air 13 is stored at the bottom and only nitrogen is taken out in a gaseous state. A liquid nitrogen reservoir 12a is provided in the upper portion of the rectification column 12, and liquid nitrogen is fed from the liquid nitrogen storage tank 14 through the introduction pipe 14a. The introduced liquid nitrogen overflows from the liquid nitrogen reservoir 12a and flows downward in the rectification column 12, and comes into countercurrent contact with the compressed air rising from the bottom of the rectification column 12 to cool it. The part is designed to be liquefied. That is,
In this process, the high boiling point component (oxygen content) in the compressed air is liquefied and collected at the bottom of the rectification column 12, and the low boiling point component nitrogen gas is collected at the top of the rectification column 12. Reference numeral 19 is an extraction pipe for taking out the nitrogen gas thus accumulated in the upper portion of the rectification column 12 as product nitrogen gas, which guides the ultra-low temperature nitrogen gas into the first heat exchanger 8 and is compressed therein. It exchanges heat with air to bring it to room temperature and sends it into the main pipe 20. In this case, at the top of the rectification column 12, together with nitrogen gas, He (−269 ° C.) and H 2 (−253 ° C.) having a low boiling point are used.
(° C) tends to accumulate, so the take-out pipe 19 is used in the rectification tower 12
The opening is considerably lower than the uppermost part of the above, and only pure nitrogen gas in which He and H 2 are not mixed is taken out. Reference numeral 15 is a tray type oxygen condensing tower, in which a condenser 16 is disposed. A part of the nitrogen gas accumulated in the upper portion of the rectification column 12 is fed into the condenser 16 through the pipe 12b and liquefied, and the introduction passage pipe 14a is passed through the pipe 12c.
It joins the liquid nitrogen inside. The inside of the oxygen condensing tower 15 is in a reduced pressure state as compared with the inside of the rectification tower 12, and the stored liquid air (N 2 : 50 to 70%, O 2 : 30) at the bottom of the rectification tower 12 is used.
(~ 50%) 13 is fed through a pipe 18 with an expansion valve 17a controlled by a liquid level gauge 17 to vaporize the nitrogen component, which is a high boiling point component, to keep the internal temperature of the column 15 at an ultralow temperature. However, it itself becomes an oxygen-rich ultra-low temperature liquid and accumulates at the bottom of the column 15. Due to the cold heat of the oxygen-rich ultra-low temperature liquid, the nitrogen gas fed into the condenser 16 is liquefied and, as described above, the introduction path pipe 14
It joins the liquid nitrogen in a. 30 is the nitrogen content accumulated in the upper part of the oxygen condensing tower 15 (purity is not so high)
With a waste nitrogen gas extraction pipe that takes out as waste nitrogen gas,
The waste nitrogen gas is guided to the first heat exchanger 8 to cool the raw material air to an ultra-low temperature by its cold heat, and then a part thereof is
The waste nitrogen gas, which has been heat-exchanged, is guided to the upper open type cooling cylinder 6b of the pair of cooling cylinders 6 and brought into contact with water flowing in a shower from the tip nozzle of the pipe 34 to cool the waste nitrogen gas. The waste nitrogen gas is discharged into the atmosphere as indicated by an arrow D, and the rest of the waste nitrogen gas is directly discharged through the branch pipe 30a into the atmosphere as indicated by an arrow A. In this case, a part of the waste nitrogen gas sent to the cooling cylinder 6 is the above-mentioned two pieces.
It is used to regenerate the adsorption cylinder of the set adsorption cylinder 7 that is not in adsorption operation. That is, the valve 38 is opened, and the ultra-low temperature waste nitrogen gas is sent to the waste heat recovery device 2 via the pipe 39 to raise the temperature, and then the regeneration heater 41 further raises the temperature to normal temperature, and the adsorption operation is not performed. It is sent to the other adsorption cylinder to regenerate the molecular sieve, and then released into the atmosphere as indicated by arrow B. The molecular sieve has almost no adsorptive capacity at room temperature and exhibits excellent adsorptive capacity at ultra-low temperature.In the state of being regenerated as described above, the molecular sieve is still at room temperature and can exhibit adsorptive capacity. Absent. Therefore, immediately after flowing the waste nitrogen gas at room temperature, the valve 38
The valve 37 is closed, the ultra-low temperature waste nitrogen gas is caused to flow to cool the molecular sieve, and the used waste nitrogen gas is discharged as shown by the arrow B. The playback of the sheave is complete. In this way, a set of two adsorption tubes 7 are alternately regenerated and used. 35
Reference numeral a is an expansion valve controlled by the liquid level gauge 35. In addition,
In the upper open type cooling cylinder 6b, the water 31 cooled by the waste nitrogen gas collects at the bottom of the upper open type cooling cylinder 6b,
By the action of the motor 32, the raw material air sent to the upper part of the hermetically-sealed cooling cylinder 6a through the pipe 33 and flowing down from there in a shower shape to be sent from the air compressor 1 is cooled. Then, the cooled water 31 is returned to the upper open type cooling cylinder 6b by the action of the motor 32, and is cooled again by the cold heat of the waste nitrogen gas. Reference numeral 21 denotes a tray type oxygen rectification column, which is connected to the bottom of the oxygen condensing column 15 by a pipe 22 and takes in the oxygen-rich ultra-low temperature fluid accumulated at the bottom of the oxygen condensing column 15 by a pressure difference. It is becoming like this. 25
Is a liquid level gauge, 26 is an expansion valve controlled by the liquid level gauge 25, and 27 is an acetylene absorber, which absorbs and removes acetylene in the oxygen-rich ultra-low temperature fluid. 28 is a third heat exchanger for cooling the oxygen-rich ultra-low temperature fluid.
By the cooling by the heat exchanger 28, the oxygen-rich ultra-low temperature fluid is further cooled, and the expansion valve 2 is placed in the oxygen rectification column 21.
By the action of 6, when being taken in as a spray, the oxygen component is immediately liquefied and the nitrogen component is gasified, so that both are separated with high precision. Liquid oxygen is sent to the lower part of the oxygen rectification tower 21 from the liquid oxygen storage tank 23 as cold via an introduction pipe 23a, and a condenser 24 built in the oxygen rectification tower 21 is cooled. Then, the waste nitrogen gas fed into the condenser 24 from the upper portion of the oxygen condensing tower 15 is liquefied and returned to the reflux liquid retainer 15c of the oxygen condensing tower 15 via the pipe 15b. 29 is an oxygen rectification tower 2
1 is a pipe for sending the ultra-low temperature nitrogen gas accumulated in the upper part of 1 as the refrigerant of the heat exchanger 28, and 29b is a pipe for sending the nitrogen gas, which has finished its function as the refrigerant, to the first heat exchanger 8,
The end of the first heat exchanger 8 is connected to the waste nitrogen gas extraction pipe 30 so that the nitrogen gas that has finished heat exchange merges with the waste nitrogen gas. 29a is a check valve. Reference numeral 25a is a liquid level gauge provided in the oxygen rectification column 21, and 23b is a flow rate control valve controlled thereby. Liquid level gauge 25a
Controls not only the flow rate of liquid oxygen but also the flow rate of liquid nitrogen delivered from the liquid nitrogen storage tank 14 by controlling the flow rate control valve 14b, and an appropriate amount of cold is constantly sent to the rectification columns 12 and 21. I am trying to get in. Reference numeral 21a denotes an oxygen gas extraction pipe, which is used for retaining liquid oxygen 2 at the bottom of the oxygen rectification column 21.
The vaporized ultra-high-purity oxygen gas is taken out from 1c (purity 99.5%), guided into the first heat exchanger 8, and heat-exchanged with the compressed air fed into the first heat exchanger 8 to bring it to room temperature, and the product oxygen gas is taken out. It acts to feed it into the pipe 21b. Reference numeral 29c is a waste pipe for discarding the retained liquid oxygen 21c at the bottom of the oxygen rectification column 21, and the liquid oxygen is supplied to the second heat exchanger 10.
And then exchanges heat with the raw material air to cool the raw material air to an ultralow temperature, and then discharges it as indicated by arrow C. The accumulated liquid oxygen 21c contains impurities such as methane and acetylene, and these impurities are accumulated in the accumulated liquid oxygen 21c.
The waste pipe 29c is open at the bottom of the oxygen rectification column 21 because it is located on the lower side of the column. Numerals 42 and 44 are back-up system lines, and when the air compression system line fails, the valve 4
2a and 44a are opened, the liquid nitrogen in the liquid nitrogen storage tank 14 is evaporated by the evaporator 43 and sent to the main pipe 20 so that the supply of nitrogen gas is not interrupted, and the liquid nitrogen storage tank 23 has Liquid oxygen is vaporized by the evaporator 45 and sent to the main pipe 21b so that the supply of oxygen gas is kept constant. The alternate long and short dash line indicates the vacuum insulation box. This vacuum cool box blocks heat intrusion from the outside and further improves the purification efficiency.
【0009】この装置は、つぎのようにして製品窒素ガ
スおよび酸素ガスを製造する。すなわち、空気圧縮機1
により空気を圧縮し、このとき発生した熱を廃熱回収器
2で回収する。そして、圧縮された空気をインタークー
ラ3で加給冷却し、ついで空気圧縮機4により圧縮し、
アフタークーラ5でさらに冷却したのち、密閉型冷却筒
6aに送入し、廃窒素ガスで冷却された水と向流接触さ
せて冷却する。つぎに、これを吸着筒7に送り込み、H
2 OおよびCO2 を吸着除去する。ついで、H2 Oおよ
びCO2 が吸着除去された圧縮空気の一部を、パイプ9
を経由させ第1の熱交換器8内に送り込んで超低温に冷
却するとともに、残部を、分岐パイプ11を経由させ第
2の熱交換器10に送り込んで超低温に冷却し、両者を
合流させて精留塔12の下部内に投入する。ついで、こ
の投入圧縮空気を、液体窒素貯槽14から精留塔12内
に送り込まれた液体窒素および液体窒素溜め12aから
の溢流液体窒素と向流的に接触させて冷却し、その一部
を液化して精留塔12の底部に溜める。この過程におい
て、窒素と酸素の沸点の差(酸素の沸点−183℃,窒
素の沸点−196℃)により、圧縮空気中の高沸点成分
である酸素が液化し、窒素が気体のまま残る。そして、
精留塔12の底部には酸素分が多い液体空気13が溜
る。ついで、上記気体のまま残つた窒素を取出パイプ1
9から取り出して第1の熱交換器8に送り込み、常温近
くまで昇温させメインパイプ20から超高純度の製品窒
素ガスとして送り出す。この場合、液体窒素貯槽14か
らの液体窒素は、圧縮空気液化用の寒冷源として作用
し、それ自身は気化して取出パイプ19から製品窒素ガ
スの一部として取り出される。他方、精留塔12の底部
に溜つた液体空気は、パイプ18を介して酸素凝縮塔1
5内に噴霧され、還流液溜め15cからの溢流液体窒素
と接触しながら塔15の底部に流下する。このとき、前
記同様、窒素と酸素の沸点の差により、高沸点成分であ
る酸素が液化し窒素が気体のまま残るため、塔15の底
部に溜る液体空気の酸素濃度は、前記精留塔12におけ
る液体空気13の酸素濃度よりも高くなる(O2 :60
〜80%)。つぎに、この酸素リツチな液体空気13を
膨脹弁26で断熱膨脹させたのちアセチレン吸収器に送
入してアセチレンを除去し、第3の熱交換器に送入して
冷却し、酸素分を液化して分離し(窒素分は気体のまま
残る)、その状態で酸素精留塔21に送り込む。酸素精
留塔21に送り込まれた気液混合物のうち、液体酸素は
塔底に溜り、窒素ガスは塔21の上部に溜つたのちパイ
プ29を経由して上記第3の熱交換器28に送入され冷
媒として作用し、その後第1の熱交換器8を経て廃窒素
ガス取出パイプ30に送入され投棄等される。上記酸素
精留塔21には、液体酸素貯槽23から液体酸素が寒冷
として供給され、上記液化分離された液体酸素と混じり
合つて塔底に溜り、酸素精留塔21内蔵の凝縮器24を
冷却する。他方、酸素凝縮塔15内で分離された窒素ガ
スは、その殆どが廃窒素ガス取出パイプ30から取り出
され、第1の熱交換器8の冷媒として、また空気冷却筒
6の冷却水の作製および吸着筒7の再生に利用される。
そして、上記窒素ガスの残部が、酸素精留塔21内蔵の
凝縮器24に送り込まれ、液体酸素により冷却され液化
して酸素凝縮塔15内の還流液溜め15c内に還流す
る。上記酸素精留塔21の底部の液体酸素は、そのまま
製品として取り出されるのではなく、その気化物(酸素
ガス)として製品酸素ガスパイプ21aからとり出さ
れ、第1の熱交換器8で熱交換したのち、常温製品ガス
として系外に送出される。なお、上記酸素精留塔21の
滞留液体酸素のうち、底部近傍のものには、アセチレ
ン,メタン等の不純分が多く含まれているため、パイプ
29cを経由して外部に投棄される。このようにして、
高純度の窒素ガスと酸素ガスが1台の装置により同時に
得られる。This apparatus produces product nitrogen gas and oxygen gas as follows. That is, the air compressor 1
The air is compressed by, and the heat generated at this time is recovered by the waste heat recovery device 2. Then, the compressed air is supplied and cooled by the intercooler 3, and then compressed by the air compressor 4.
After further cooling by the aftercooler 5, it is fed into the hermetically-sealed cooling cylinder 6a and countercurrently contacted with the water cooled by the waste nitrogen gas to cool it. Next, this is sent to the adsorption cylinder 7, and H
2 O and CO 2 are removed by adsorption. Then, a part of the compressed air from which H 2 O and CO 2 have been adsorbed and removed is removed from the pipe 9
Is sent to the inside of the first heat exchanger 8 to be cooled to an ultra-low temperature, and the rest is sent to the second heat exchanger 10 via a branch pipe 11 to be cooled to an ultra-low temperature. It is put in the lower part of the distillation column 12. Then, this input compressed air is countercurrently contacted with the liquid nitrogen sent from the liquid nitrogen storage tank 14 into the rectification column 12 and the liquid nitrogen overflowed from the liquid nitrogen reservoir 12a to cool a part thereof. It is liquefied and stored at the bottom of the rectification column 12. In this process, due to the difference in the boiling points of nitrogen and oxygen (boiling point of oxygen-183 ° C, boiling point of nitrogen-196 ° C), oxygen, which is a high-boiling point component in the compressed air, is liquefied and nitrogen remains as a gas. And
Liquid air 13 having a large oxygen content is accumulated at the bottom of the rectification column 12. Then, take out the nitrogen that remains as the above gas 1
It is taken out from the reactor 9 and sent to the first heat exchanger 8 where it is heated to near room temperature and sent from the main pipe 20 as ultra-high purity product nitrogen gas. In this case, the liquid nitrogen from the liquid nitrogen storage tank 14 acts as a cold source for liquefying the compressed air, vaporizes itself, and is taken out from the take-out pipe 19 as a part of the product nitrogen gas. On the other hand, the liquid air accumulated at the bottom of the rectification column 12 is passed through the pipe 18 to the oxygen condensation column 1
5 is sprayed into the column 5 and flows down to the bottom of the column 15 while being in contact with the liquid nitrogen overflowing from the reflux liquid reservoir 15c. At this time, similarly to the above, due to the difference between the boiling points of nitrogen and oxygen, oxygen, which is a high-boiling point component, is liquefied and nitrogen remains as a gas, so that the oxygen concentration of the liquid air accumulated at the bottom of the column 15 is the rectification column 12 The oxygen concentration of the liquid air 13 in the above condition (O 2 : 60
~ 80%). Next, the oxygen-rich liquid air 13 is adiabatically expanded by the expansion valve 26, and then sent to the acetylene absorber to remove acetylene, and then sent to the third heat exchanger for cooling to remove oxygen content. It is liquefied and separated (the nitrogen component remains as a gas), and then sent to the oxygen rectification column 21. Of the gas-liquid mixture sent to the oxygen rectification column 21, liquid oxygen accumulates at the bottom of the column, nitrogen gas accumulates at the upper part of the column 21, and then is sent to the third heat exchanger 28 via a pipe 29. It is put in and acts as a refrigerant, and then is sent to the waste nitrogen gas take-out pipe 30 through the first heat exchanger 8 to be discarded. Liquid oxygen is supplied as cold from the liquid oxygen storage tank 23 to the oxygen rectification tower 21, and is mixed with the liquefied and separated liquid oxygen to be collected at the bottom of the tower to cool the condenser 24 built in the oxygen rectification tower 21. To do. On the other hand, most of the nitrogen gas separated in the oxygen condensing tower 15 is taken out from the waste nitrogen gas take-out pipe 30, and is used as a refrigerant for the first heat exchanger 8 and for producing cooling water for the air cooling cylinder 6. It is used to regenerate the adsorption cylinder 7.
Then, the rest of the nitrogen gas is sent to the condenser 24 built in the oxygen rectification tower 21, cooled by liquid oxygen, liquefied, and recirculated into the reflux liquid reservoir 15c in the oxygen condensing tower 15. The liquid oxygen at the bottom of the oxygen rectification column 21 is not directly taken out as a product, but is taken out as a vaporized product (oxygen gas) from the product oxygen gas pipe 21a and heat-exchanged by the first heat exchanger 8. After that, it is sent out of the system as a room temperature product gas. In the liquid oxygen accumulated in the oxygen rectification column 21, the one in the vicinity of the bottom contains a large amount of impurities such as acetylene and methane, and therefore is discarded to the outside via the pipe 29c. In this way
High-purity nitrogen gas and oxygen gas can be simultaneously obtained by one apparatus.
【0010】図2は、他の実施例を示している。この装
置は、酸素凝縮塔を除去し、酸素精留塔21を大形化し
機能アツプして窒素精留塔12に直接接続し、窒素精留
塔12で生成された製品窒素ガスの一部を酸素精留塔の
第1の凝縮器24に送入して冷却液化し還流液とすると
ともに、窒素精留塔12の底部に溜る液体空気を液体酸
素貯槽23から送出される液体酸素に混合し酸素精留塔
21内に送入して酸素を液化分離するようにしている。
そして、酸素精留塔21内に第2の凝縮器48をさらに
設け、分離生成した廃窒素ガスをその冷媒として用い、
酸素に対する液化分離の精度を向上させるようにしてい
る。50は液面計、49はその液面計50によつて制御
される弁である。それ以外の部分は図1と同じであるか
ら、同一部分に同一符号を付して説明の繰り返しを省略
する。FIG. 2 shows another embodiment. This apparatus removes the oxygen condensing tower, enlarges the oxygen rectification tower 21 and improves its function, and directly connects it to the nitrogen rectification tower 12 so that a part of the product nitrogen gas produced in the nitrogen rectification tower 12 is removed. It is fed into the first condenser 24 of the oxygen rectification tower to be cooled and liquefied to form a reflux liquid, and the liquid air accumulated at the bottom of the nitrogen rectification tower 12 is mixed with the liquid oxygen delivered from the liquid oxygen storage tank 23. It is fed into the oxygen rectification column 21 to liquefy and separate oxygen.
Then, a second condenser 48 is further provided in the oxygen rectification column 21, and the separated and generated waste nitrogen gas is used as its refrigerant,
The accuracy of the liquefaction separation for oxygen is improved. Reference numeral 50 is a liquid level gauge, and 49 is a valve controlled by the liquid level gauge 50. Since the other parts are the same as those in FIG. 1, the same parts are designated by the same reference numerals and the description thereof will not be repeated.
【0011】この装置は、図1の装置と同様の作用効果
を奏するほか、全体を小形化しうるという効果を有す
る。なお、図1および図2の実施例において、パイプ1
4aおよび23aの弁14b,23bは液面計25aの
制御から切り離し、独自に制御しうる。すなわち、上記
装置は、液体窒素貯槽14,液体酸素貯槽23のいずれ
か一方のみの寒冷を用いて連続操業し窒素ガスおよび酸
素ガスの双方を製造できるのであり、何らかの事情で一
方の寒冷が入手できないような場合には、直ちに上記弁
14b,23bを操作し他方の寒冷のみを用いて連続操
業しうるのである。This device has the same effects as the device of FIG. 1, and also has the effect that the overall size can be reduced. In the embodiment of FIGS. 1 and 2, the pipe 1
The valves 14b and 23b of 4a and 23a can be independently controlled from the control of the liquid level gauge 25a. That is, the above-mentioned apparatus can continuously operate by using the refrigeration of only one of the liquid nitrogen storage tank 14 and the liquid oxygen storage tank 23 to produce both nitrogen gas and oxygen gas, and one refrigeration cannot be obtained for some reason. In such a case, the valves 14b and 23b can be immediately operated to continuously operate using only the other cold.
【0012】[0012]
【発明の効果】以上のように、本発明の高純度窒素およ
び酸素ガス製造装置は、膨脹タービンを用いず、それに
代えて何ら回転部をもたない液体窒素および液体酸素貯
槽を用いるため、装置全体として回転部がなくなり故障
が全く生じない。しかも膨脹タービンは高価であるのに
対して液体窒素等の貯槽は安価であり、また特別な要員
も不要になる。そのうえ、膨脹タービン(窒素精留塔内
に溜る液体空気から蒸発したガスの圧力で駆動する)
は、回転速度が極めて大(数万回/分)であるため、負
荷変動(製品窒素ガス等の取出量の変化)に対するきめ
細かな追従運転が困難である。したがつて、製品窒素ガ
ス等の取出量の変化に応じて膨脹タービンに対する液体
空気の供給量を正確に変化させ、窒素ガス等の製造原料
である圧縮空気を常時一定温度に冷却することが困難で
あり、その結果、得られる製品窒素ガス等の純度がばら
つき、頻繁に低純度のものがつくりだされ全体的に製品
窒素ガス等の純度が低くなつていた。この装置は、それ
に代えて液体窒素貯槽を用い、供給量のきめ細かい調節
が可能な液体窒素,液体酸素を寒冷として用いるため、
負荷変動に対するきめ細かな追従が可能となり、純度が
安定していて極めて高い窒素および酸素ガスを製造しう
るようになる。したがつて、従来の精製装置が不要とな
る。しかも、この装置は、液体窒素,液体酸素を寒冷と
して用い、使用後これを逃気するのではなく、空気を原
料として製造される窒素ガスおよび酸素ガスに併せて製
品ガスとするため資源の無駄を生じない。そのうえ、こ
の装置は、液体窒素貯槽および液体酸素貯槽の双方を備
えているため、その双方を同時に寒冷として用いても、
またいずれか一方を寒冷として用いても窒素ガスおよび
酸素ガスの双方を製造しうる。したがつて、上記寒冷の
うち入手しやすい方の寒冷のみを用いて操業しうるた
め、極めて便利である。As described above, the high-purity nitrogen and oxygen gas production apparatus of the present invention does not use an expansion turbine, but instead uses liquid nitrogen and liquid oxygen storage tanks that have no rotating parts. As a whole, there are no rotating parts and no failures occur. Moreover, while the expansion turbine is expensive, the storage tank for liquid nitrogen or the like is inexpensive and no special personnel are required. In addition, expansion turbine (driven by the pressure of gas evaporated from liquid air accumulated in the nitrogen rectification column)
Has a very high rotation speed (tens of thousands of revolutions / minute), and thus it is difficult to perform a fine follow-up operation with respect to load fluctuations (changes in the amount of product nitrogen gas taken out). Therefore, it is difficult to constantly change the supply amount of liquid air to the expansion turbine according to the change in the amount of product nitrogen gas, etc. taken out, and to constantly cool the compressed air, which is the raw material for manufacturing nitrogen gas, etc., to a constant temperature. As a result, the purity of the product nitrogen gas or the like obtained varies, and a low-purity product is frequently produced, and the purity of the product nitrogen gas or the like is generally low. This device uses a liquid nitrogen storage tank instead, and uses liquid nitrogen and liquid oxygen that can be finely adjusted in the supply amount as cold,
The load fluctuation can be closely followed, and nitrogen and oxygen gas with stable purity and extremely high purity can be produced. Therefore, the conventional refining device is unnecessary. Moreover, this device uses liquid nitrogen and liquid oxygen as cold and does not escape them after use, but rather wastes resources because it uses nitrogen and oxygen gas produced from air as raw materials to produce product gas. Does not occur. Moreover, since this device has both a liquid nitrogen storage tank and a liquid oxygen storage tank, even if both of them are used as cold at the same time,
Both nitrogen gas and oxygen gas can be produced by using either one as cold. Therefore, it is extremely convenient because it is possible to operate using only one of the above-mentioned colds which is easily available.
【図1】この発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.
【図2】他の実施例の構成図である。FIG. 2 is a configuration diagram of another embodiment.
1 第1の空気圧縮機 4 第2の空気圧縮機 7 吸着筒 8 第1の熱交換器 10 第2の熱交換器 12 窒素精留塔 14 液体窒素貯槽 14a 導入路パイプ 15 酸素凝縮塔 18 パイプ 19 取出パイプ 21 酸素精留塔 21a 酸素ガス取出パイプ 22 パイプ 23 液体酸素貯槽 23a 導入路パイプ 1 1st Air Compressor 4 2nd Air Compressor 7 Adsorption Column 8 1st Heat Exchanger 10 2nd Heat Exchanger 12 Nitrogen Fractionation Tower 14 Liquid Nitrogen Storage Tank 14a Inlet Pipe 15 Oxygen Condensation Tower 18 Pipe 19 Extraction Pipe 21 Oxygen Fractionation Tower 21a Oxygen Gas Extraction Pipe 22 Pipe 23 Liquid Oxygen Storage Tank 23a Introduction Pipe
Claims (2)
圧縮手段と、この空気圧縮手段によつて圧縮された圧縮
空気中の炭酸ガスと水とを除去する除去手段と、この除
去手段を経た圧縮空気を超低温に冷却する熱交換手段
と、液体窒素を貯蔵する液体窒素貯蔵手段と、上記熱交
換手段により超低温に冷却された圧縮空気の一部を液化
して内部に溜め窒素のみを気体として保持する窒素精留
塔と、上記液体窒素貯蔵手段内の液体窒素を圧縮空気液
化用の寒冷源として上記窒素精留塔内に導く液体窒素導
入路と、寒冷源としての作用を終えて気化した液体窒素
および上記窒素精留塔内に保持されている気化窒素の双
方を製品窒素ガスとして上記窒素精留塔より取り出す窒
素ガス取出路と、液体空気を対象とし窒素と酸素の沸点
の差を利用して両者を分離する酸素精留塔と、上記窒素
精留塔内の滞留液体空気を上記酸素精留塔内に供給する
液体空気供給路と、液体酸素を貯蔵する液体酸素貯蔵手
段と、この液体酸素貯蔵手段内の液体酸素を寒冷源とし
て上記酸素精留塔に導く液体酸素導入路と、液体空気を
原料とし酸素と窒素の沸点の差を利用して分離された酸
素ガスおよび寒冷源としての作用を終えて気化した液体
酸素の双方を製品酸素ガスとして上記酸素精留塔より取
り出す酸素ガス取出路を備えていることを特徴とする高
純度窒素および酸素ガス製造装置。1. An air compression means for compressing air taken in from the outside, a removal means for removing carbon dioxide gas and water in the compressed air compressed by the air compression means, and a compression through this removal means. A heat exchange means for cooling the air to an ultra low temperature, a liquid nitrogen storage means for storing liquid nitrogen, and a part of the compressed air cooled to an ultra low temperature by the heat exchange means is liquefied to retain only nitrogen as a gas inside Nitrogen rectification column, liquid nitrogen in the liquid nitrogen storage means to introduce liquid nitrogen into the nitrogen rectification column as a cold source for compressed air liquefaction, and liquid vaporized after finishing the action as a cold source Both nitrogen and vaporized nitrogen retained in the nitrogen rectification tower are used as product nitrogen gas from the nitrogen rectification tower to take out a nitrogen gas withdrawal path, and the difference between the boiling points of nitrogen and oxygen for liquid air is used. And both An oxygen rectification column to be separated, a liquid air supply path for supplying the retained liquid air in the nitrogen rectification column into the oxygen rectification column, a liquid oxygen storage means for storing liquid oxygen, and the liquid oxygen storage means. The liquid oxygen introduction passage that leads the liquid oxygen in the inside to the oxygen rectification column as a cold source, and the oxygen gas separated by utilizing the difference in the boiling points of oxygen and nitrogen from the liquid air as a raw material and the action as a cold source are completed. An apparatus for producing high-purity nitrogen and oxygen gas, comprising an oxygen gas take-out path for taking out both of the vaporized liquid oxygen as product oxygen gas from the oxygen rectification column.
圧縮手段と、この空気圧縮手段によつて圧縮された圧縮
空気中の炭酸ガスと水とを除去する除去手段と、この除
去手段を経た圧縮空気を超低温に冷却する熱交換手段
と、液体窒素を貯蔵する液体窒素貯蔵手段と、上記熱交
換手段により超低温に冷却された圧縮空気の一部を液化
して内部に溜め窒素のみを気体として保持する窒素精留
塔と、上記液体窒素貯蔵手段内の液体窒素を圧縮空気液
化用の寒冷源として上記窒素精留塔内に導く液体窒素導
入路と、寒冷源としての作用を終えて気化した液体窒素
および上記窒素精留塔内に保持されている気化窒素の双
方を製品窒素ガスとして上記窒素精留塔より取り出す窒
素ガス取出路と、液体空気を対象としその窒素分を気化
させ酸素分に富んだ状態にする酸素凝縮塔と、上記窒素
精留塔内の滞留液体空気を上記酸素凝縮塔内に供給する
液体空気供給路と、酸素と窒素の沸点の差を利用して両
者を分離する酸素精留塔と、上記酸素凝縮塔内の酸素分
に富んだ液体空気を上記酸素精留塔内に供給する供給路
と、液体酸素を貯蔵する液体酸素貯蔵手段と、この液体
酸素貯蔵手段内の液体酸素を寒冷源として上記酸素精留
塔に導く液体酸素導入路と、酸素分に富んだ液体空気を
原料とし酸素と窒素の沸点の差を利用して分離された酸
素ガスおよび寒冷源としての作用を終えて気化した液体
酸素の双方を製品酸素ガスとして上記酸素精留塔から取
り出す酸素ガス取出路を備えていることを特徴とする高
純度窒素および酸素ガス製造装置。2. An air compression means for compressing air taken in from the outside, a removal means for removing carbon dioxide gas and water in the compressed air compressed by the air compression means, and a compression through this removal means. A heat exchange means for cooling the air to an ultra low temperature, a liquid nitrogen storage means for storing liquid nitrogen, and a part of the compressed air cooled to an ultra low temperature by the heat exchange means is liquefied to retain only nitrogen as a gas inside Nitrogen rectification column, liquid nitrogen in the liquid nitrogen storage means to introduce liquid nitrogen into the nitrogen rectification column as a cold source for compressed air liquefaction, and liquid vaporized after finishing the action as a cold source Both nitrogen and vaporized nitrogen retained in the nitrogen rectification tower are taken out from the nitrogen rectification tower as product nitrogen gas, and a nitrogen gas extraction path for liquid air to vaporize the nitrogen content and enrich it with oxygen content. Cardioid Oxygen condensing tower to be in a state, a liquid air supply path for supplying the retained liquid air in the nitrogen rectification tower into the oxygen condensing tower, and an oxygen concentrator for separating the two by utilizing the difference in boiling points of oxygen and nitrogen. Distillation tower, supply path for supplying oxygen-rich liquid air in the oxygen condensing tower into the oxygen rectification tower, liquid oxygen storage means for storing liquid oxygen, and liquid in the liquid oxygen storage means Liquid oxygen introduction path leading to the oxygen rectification column with oxygen as a cold source, and oxygen gas separated from the oxygen-rich liquid air as a raw material by utilizing the difference in boiling points of oxygen and nitrogen, and the action as a cold source A high-purity nitrogen and oxygen gas production apparatus comprising an oxygen gas take-out path for taking out both of the vaporized liquid oxygen as product oxygen gas from the oxygen rectification column.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3356055A JP2533262B2 (en) | 1985-02-16 | 1991-12-20 | High-purity nitrogen and oxygen gas production equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60029042A JPS61190277A (en) | 1985-02-16 | 1985-02-16 | High-purity nitrogen and oxygen gas production unit |
JP3356055A JP2533262B2 (en) | 1985-02-16 | 1991-12-20 | High-purity nitrogen and oxygen gas production equipment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60029042A Division JPS61190277A (en) | 1985-02-02 | 1985-02-16 | High-purity nitrogen and oxygen gas production unit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0560460A true JPH0560460A (en) | 1993-03-09 |
JP2533262B2 JP2533262B2 (en) | 1996-09-11 |
Family
ID=26367188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3356055A Expired - Fee Related JP2533262B2 (en) | 1985-02-16 | 1991-12-20 | High-purity nitrogen and oxygen gas production equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2533262B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007003097A (en) * | 2005-06-23 | 2007-01-11 | Air Water Inc | Nitrogen generating method and device using the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5632541A (en) * | 1979-07-25 | 1981-04-02 | Gen Electric | Semisphere filled polycarbonate composition |
JPS59164874A (en) * | 1983-03-08 | 1984-09-18 | 大同酸素株式会社 | Device for manufacturing nitrogen gas |
-
1991
- 1991-12-20 JP JP3356055A patent/JP2533262B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5632541A (en) * | 1979-07-25 | 1981-04-02 | Gen Electric | Semisphere filled polycarbonate composition |
JPS59164874A (en) * | 1983-03-08 | 1984-09-18 | 大同酸素株式会社 | Device for manufacturing nitrogen gas |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007003097A (en) * | 2005-06-23 | 2007-01-11 | Air Water Inc | Nitrogen generating method and device using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2533262B2 (en) | 1996-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR930000478B1 (en) | High purity nitrogen and oxygen gas production equipment | |
WO1984003554A1 (en) | Apparatus for producing high-purity nitrogen gas | |
KR900005985B1 (en) | High- purity nitrogen gas production equipment | |
EP0175791B1 (en) | Apparatus for producing high-purity nitrogen gas | |
KR890001744B1 (en) | High-purity nitrogen gas production equipment | |
JP2585955B2 (en) | Air separation equipment | |
JPS6158747B2 (en) | ||
JPH06281322A (en) | Manufacturing apparatus for high purity nitrogen and oxygen gas | |
JP2533262B2 (en) | High-purity nitrogen and oxygen gas production equipment | |
JP2859663B2 (en) | Nitrogen gas and oxygen gas production equipment | |
JPH0882476A (en) | Apparatus for producing high-purity nitrogen gas | |
JPS6115068A (en) | Production unit for high-purity nitrogen gas | |
JPS6115070A (en) | Production unit for high-purity nitrogen gas | |
JPS62116887A (en) | Production unit for high-impurity nitrogen gas | |
JP3021389B2 (en) | High-purity nitrogen gas production equipment | |
JPS6244190B2 (en) | ||
JPH01239375A (en) | Device for manufacturing highly pure nitrogen gas | |
KR900005986B1 (en) | High-purity nitrogen gas production equipment | |
JPH04297780A (en) | High purity nitrogen gas manufacturing equipment | |
JPH06337192A (en) | High-purity nitrogen gas manufacturing device | |
JPH0719724A (en) | High purity nitrogen gas preparing apparatus | |
JPS62158977A (en) | Production unit for high-purity nitrogen gas | |
JPS62158975A (en) | Production unit for high-purity nitrogen gas | |
JPS60232472A (en) | Manufacture of high-purity nitrogen gas | |
JPS6152390B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19950516 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960514 |
|
LAPS | Cancellation because of no payment of annual fees |