[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0557071B2 - - Google Patents

Info

Publication number
JPH0557071B2
JPH0557071B2 JP59078530A JP7853084A JPH0557071B2 JP H0557071 B2 JPH0557071 B2 JP H0557071B2 JP 59078530 A JP59078530 A JP 59078530A JP 7853084 A JP7853084 A JP 7853084A JP H0557071 B2 JPH0557071 B2 JP H0557071B2
Authority
JP
Japan
Prior art keywords
arc
current
period
pulse
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59078530A
Other languages
Japanese (ja)
Other versions
JPS60223662A (en
Inventor
Kiju Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP7853084A priority Critical patent/JPS60223662A/en
Publication of JPS60223662A publication Critical patent/JPS60223662A/en
Publication of JPH0557071B2 publication Critical patent/JPH0557071B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • B23K9/0731Stabilising of the arc tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は消耗電極を定速度送給して溶接を行う
アーク溶接法に係り、特に溶接中に発生するスパ
ツタを大幅に減少させるのに好適な溶接法に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an arc welding method in which welding is performed by feeding a consumable electrode at a constant rate, and in particular to an arc welding method suitable for greatly reducing spatter generated during welding. Regarding welding methods.

〔発明の背景〕[Background of the invention]

消耗電極を定速度送給して溶接を行うアーク溶
接法においては、従来第1図に示すように直流定
電圧特性の電源1と、直流リアクトル2とから成
る回路を構成したものが実用化されている。この
ように構成された回路を用いた溶接を行つた場合
には溶接電流の大きさによつて溶接現象がまつた
く異なる。すなわち比較的溶接電流値の低い領域
では消耗電極先端の溶融金属が母材に接触して移
行する、いわゆる短絡移行現象がみられる。第2
図は短絡とアークを繰り返す時の溶接電流、アー
ク電圧の変化を示したもので、図において線
KPRは電源の外部特性曲線を示し、L0,L1,L2
はアーク長がそれぞれL0,L1,L2の場合のアー
ク特性でL0はアーク長が零の場合である。短絡
が始まると電流は1から2に急増し2において短
絡が破れるとアーク電圧3が発生し、たちまちア
ーク長が延びてアーク長はL2となりアーク電圧
3′に移る。しかし電極は絶えず送給され続けてい
るのでアーク長は次第に短くなつて3′→4→5の
如く変化して5において再び短絡する。この時の
溶接現象を高速度カメラにより観察すると、スパ
ツタが発生するのはアークから短絡になつた瞬間
と短絡からアークになつた瞬間が最も著しい。こ
のうちアークから短絡になつた時に発生するスパ
ツタは第1図の直流リアクトルのインダクタンス
を適当な値にして、第2図の1から2への電流の
立上がり速度を制御することによつて減少させる
ことができる。このため従来から種々の方法が考
えられ、実施されてきた。例えばリアクトルに2
次制御巻線を設けて溶接条件に合せて適切なイン
ダクタンスを選定する方法が考えられている。ま
た短絡時の電流の立上がりと、短絡からアークに
なつた時の電流の立下がりを制御する方法も考え
られている。これらの方法では前述のアークから
短絡になつた時に発生するスパツタを減少するの
に効果がある。しかし短絡からアークになつた瞬
間には第2図に示すように従来法では原理的に必
ず高い電流値になるので、この高い電流によつて
生じるアーク力が強く、またアーク柱の急熱膨張
の程度が多いのでスパツタが発生する。このため
溶接中に発生するスパツタを大幅に減少させるま
でには至つていない。
In the arc welding method in which welding is performed by feeding a consumable electrode at a constant speed, a circuit consisting of a power source 1 with constant DC voltage characteristics and a DC reactor 2 as shown in Figure 1 has been put into practical use. ing. When welding is performed using a circuit configured in this manner, welding phenomena vary greatly depending on the magnitude of the welding current. That is, in a region where the welding current value is relatively low, a so-called short-circuit transfer phenomenon is observed in which the molten metal at the tip of the consumable electrode contacts and transfers to the base metal. Second
The figure shows the changes in welding current and arc voltage when short circuits and arcs are repeated.
KPR indicates the external characteristic curve of the power supply, L 0 , L 1 , L 2
are the arc characteristics when the arc lengths are L 0 , L 1 , and L 2 respectively, and L 0 is the arc characteristic when the arc length is zero. When a short circuit starts, the current increases rapidly from 1 to 2, and when the short circuit breaks at 2, an arc voltage of 3 is generated, and the arc length immediately increases, and the arc length becomes L 2 and the arc voltage
Move to 3′. However, since the electrode is constantly fed, the arc length gradually becomes shorter and changes from 3' to 4 to 5, and at 5, the arc length is shorted again. When the welding phenomenon at this time is observed using a high-speed camera, spatter is most noticeable at the moment when an arc becomes a short circuit and at the moment when a short circuit becomes an arc. Among these, the spatter that occurs when a short circuit occurs from an arc can be reduced by setting the inductance of the DC reactor in Figure 1 to an appropriate value and controlling the rising speed of the current from 1 to 2 in Figure 2. be able to. For this purpose, various methods have been considered and implemented. For example, 2 in the reactor
A method has been considered in which a secondary control winding is provided and an appropriate inductance is selected according to the welding conditions. Also, methods are being considered to control the rise of the current during a short circuit and the fall of the current when the short circuit turns into an arc. These methods are effective in reducing spatter that occurs when the aforementioned arc becomes a short circuit. However, at the moment when a short circuit becomes an arc, as shown in Figure 2, in the conventional method, the current value is always high in principle, so the arc force generated by this high current is strong, and the arc column undergoes rapid thermal expansion. Since there are many degrees of this, spatter occurs. For this reason, it has not yet been possible to significantly reduce spatter generated during welding.

一方比較的溶接電流値の高い領域では第3図に
示すようにアークが強く、電極先端の溶融金属を
押し上げるので、なかなか短絡せず、したがつて
溶滴は大きくなり、かつ片溶けがはげしく、大き
なスパツタが数多く発生する。このため従来、こ
の電流域では、積極的にアーク電圧を下げてうも
れアーク法を用いて発生するスパツタを溶融プー
ルの中にとじ込めて外へ出さないようにする方
法、あるいは電源回路のインダクタンスを非常に
大きく(600μH以上)して短絡した場合の電流変
動を少なくする方法などが考えられているが、い
ずれもスパツタを大幅に減少させるまでには至つ
ていない。
On the other hand, in a region where the welding current is relatively high, as shown in Figure 3, the arc is strong and pushes up the molten metal at the tip of the electrode, making it difficult to short-circuit, resulting in larger droplets and severe partial melting. Many large spatters occur. Therefore, in this current range, conventional methods have been used to actively lower the arc voltage and use the bleed arc method to trap the generated spatter in the molten pool and prevent it from coming out, or to reduce the inductance of the power supply circuit. Methods have been considered to reduce current fluctuations in the event of a short circuit by making it extremely large (more than 600 μH), but none of these methods have led to a significant reduction in spatter.

〔発明の目的〕[Purpose of the invention]

本発明は以上のような事柄に鑑みてなされたも
のであり、その目的は低電流域から大電流域に渡
る広い溶接電流域においてスパツタがほとんど発
生せず、しかも安定したアークが得られる新規な
アーク溶接法を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a novel method that generates almost no spatter and provides a stable arc in a wide welding current range from low current to high current. The object of the present invention is to provide an arc welding method.

〔発明の概要〕[Summary of the invention]

本発明は消耗電極を定速度送給して溶接を行う
アーク溶接法において、短絡状態とアーク状態を
検出し、この検出信号によつて、最適なパルス電
流を前記パルス電流よりも十分小なるベース電流
に重畳し、アークに移行した時には溶接電流をベ
ース電流になるように制御することによつて短絡
からアークになる時に発生するスパツタを防止す
ると共に、アーク期間中には電極ワイヤと母材を
溶融させるための最適な第1のアークパルス電流
と、アークを安定させるために前記第1のアーク
パルス電流よりも小さくかつ順次減衰するアーク
パルス電流とを前記第1のパルス電流よりも十分
小なるベース電流に重畳することによつて強制的
に短絡を行わせ、かつアーク電圧を検出し、この
検出信号と設定値を比較し、その差に応じてアー
ク期間中の電流値を制御することによつてアーク
電圧をほぼ一定に保ち、低電流から大電流に至る
広い溶接条件範囲でスパツタの発生がほとんどな
くしかも安定したアークが得られるようにしたこ
とを特徴とする。
The present invention detects a short circuit state and an arc state in an arc welding method in which welding is performed by feeding a consumable electrode at a constant speed, and uses this detection signal to determine an optimal pulse current based on a value sufficiently smaller than the pulse current. By superimposing the welding current on the current and controlling the welding current so that it becomes the base current when it transitions to an arc, it is possible to prevent spatter that occurs when a short circuit turns into an arc, and also to prevent the electrode wire and base metal from being separated during the arcing period. The optimal first arc pulse current for melting and the arc pulse current that is smaller than the first arc pulse current and gradually attenuates in order to stabilize the arc are set to be sufficiently smaller than the first pulse current. By superimposing it on the base current, a short circuit is forced, the arc voltage is detected, this detection signal is compared with the set value, and the current value during the arc period is controlled according to the difference. Therefore, the arc voltage is kept almost constant, and a stable arc can be obtained with almost no spatter in a wide range of welding conditions from low current to high current.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第4図〜第7図により
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 4 to 7.

第4図において3は変圧器、4は整流器、5は
出力電流を制御する限流素子、6は5の駆動回
路、7は溶接部で7aは母材、7bはアーク、7
cは消耗電極、7dは給電チツプ、7eは消耗電
極を送給する送給ローラ、8は消耗電極送給モー
タ、9はアーク電圧検出回路、10は短絡とアー
クを11の基準信号発生回路の信号との比較によ
つて判別する回路、12は短絡パルス電流用遅延
回路、13は短絡パルス電流信号発生回路、14
は第1のアークパルス電流用遅延回路、15は第
1のアークパルス電流信号発生回路、16はアー
ク電圧を平均化する回路、17は18の基準信号
発生回路の信号と16で得られた信号とを比較す
る回路、19はベース電流信号発生回路、20は
電流ワイヤ送給制御装置、21は第2のアークパ
ルス電流用遅延回路である。
In Fig. 4, 3 is a transformer, 4 is a rectifier, 5 is a current limiting element that controls the output current, 6 is a drive circuit for 5, 7 is a welding part, 7a is a base material, 7b is an arc, 7
7d is a consumable electrode, 7d is a power supply chip, 7e is a feeding roller that feeds the consumable electrode, 8 is a consumable electrode feeding motor, 9 is an arc voltage detection circuit, 10 is a reference signal generation circuit 11 that detects short circuits and arcs. 12 is a short-circuit pulse current delay circuit; 13 is a short-circuit pulse current signal generation circuit; 14
15 is the first arc pulse current delay circuit, 15 is the first arc pulse current signal generation circuit, 16 is the arc voltage averaging circuit, and 17 is the signal of the reference signal generation circuit 18 and the signal obtained in 16. 19 is a base current signal generation circuit, 20 is a current wire feed control device, and 21 is a delay circuit for second arc pulse current.

次に上記実施例の動作について説明すると、変
圧器3で通常200Vから60〜80Vに変圧され整流
器4で直流に整流され電圧が出力されると限流素
子5、給電チツプ7dを通して電極7cに通電さ
れ、電極7cと母材7aとの間にアーク7dが発
生する。この時電極7cは送給モータ8によつて
駆動される送給ローラ7eによつて定速送給され
る。この場合、アークから短絡に移行すると前述
の第2図に示すように数十ボルトから零ボルト付
近に急変するので、基準信号発生回路11で例え
ば数ボルトを設定してこの値とアーク電圧検出回
路9で検出した値とを判別回路10で比較するこ
とにより短絡したことが判別できる。短絡を判別
すると判別回路10は遅延回路12を通して短絡
パルス電流信号発生回路13に起動をかける。こ
の時遅延回路12は判別回路10からの信号が印
加された後あらかじめ設定された遅延時間後に短
絡パルス電流信号発生回路13に信号を印加す
る。遅延回路12からの信号が印加されると短絡
パルス電流信号発生回路13はあらかじめ設定さ
れた波形信号を駆動回路6に出力し、限流素子5
から短絡パルス電流が出力される。また駆動回路
6への短絡パルス信号回路13からの信号は判別
回路10からのアーク状態の信号が印加されると
瞬時に停止する。この結果電極先端の溶融プール
に瞬間的に触れるだけで移行しない約0.5ms以下
の瞬間的短絡時に短絡パルス電流が流れてスパツ
タが発生するのを防ぐことができるのと同時に十
分短絡された後に短絡パルス電流が流れるのでア
ークから短絡に移行した時に発生するスパツタを
防止することができる。
Next, to explain the operation of the above embodiment, the transformer 3 transforms the normal 200V to 60 to 80V, the rectifier 4 rectifies it to DC, and when the voltage is output, current is applied to the electrode 7c through the current limiting element 5 and the power supply chip 7d. An arc 7d is generated between the electrode 7c and the base material 7a. At this time, the electrode 7c is fed at a constant speed by a feed roller 7e driven by a feed motor 8. In this case, when transitioning from an arc to a short circuit, there is a sudden change from several tens of volts to around zero volts as shown in FIG. By comparing the value detected in step 9 with the determination circuit 10, it can be determined that a short circuit has occurred. When determining a short circuit, the determination circuit 10 activates the short circuit pulse current signal generation circuit 13 through the delay circuit 12. At this time, the delay circuit 12 applies a signal to the short circuit pulse current signal generation circuit 13 after a preset delay time after the signal from the discrimination circuit 10 is applied. When the signal from the delay circuit 12 is applied, the short-circuit pulse current signal generation circuit 13 outputs a preset waveform signal to the drive circuit 6, and the current-limiting element 5
A short circuit pulse current is output from. Further, the signal from the short-circuit pulse signal circuit 13 to the drive circuit 6 stops instantaneously when the arc state signal from the discrimination circuit 10 is applied. As a result, it is possible to prevent spatter from occurring due to short-circuit pulse current flowing during an instantaneous short-circuit of approximately 0.5 ms or less, which does not occur just by momentarily touching the molten pool at the tip of the electrode. Since a pulsed current flows, it is possible to prevent spatter that occurs when an arc transitions to a short circuit.

また判別回路10でアーク状態を判別すると、
第1のアークパルス用遅延回路14を通してアー
クパルス電流信号発生回路10からの信号が印加
された後あらかじめ設定された遅延時間後にアー
クパルス電流信号発生回路15に信号を印加す
る。第2のアークパルス電流も同様に遅延回路2
1で設定された時間後にアークパルス電流信号発
生回路15に信号を印加する。遅延回路14及び
21からの信号が印加されるとアークパルス電流
信号発生回路15はあらかじめ設定された波形信
号を駆動回路6に出力し、限流素子5からアーク
パルス電流が出力される。以上の短絡パルス電流
及びアークパルス電流はベース電流信号発生回路
19からの信号によつて出力される前記パルス電
流よりも十分小なるベース電流に重畳される。
Moreover, when the arc state is determined by the determination circuit 10,
After a signal from the arc pulse current signal generation circuit 10 is applied through the first arc pulse delay circuit 14, a signal is applied to the arc pulse current signal generation circuit 15 after a preset delay time. Similarly, the second arc pulse current is also applied to the delay circuit 2.
After the time set in 1, a signal is applied to the arc pulse current signal generation circuit 15. When the signals from the delay circuits 14 and 21 are applied, the arc pulse current signal generating circuit 15 outputs a preset waveform signal to the drive circuit 6, and the current limiting element 5 outputs an arc pulse current. The above-mentioned short circuit pulse current and arc pulse current are superimposed on the base current which is sufficiently smaller than the pulse current outputted by the signal from the base current signal generation circuit 19.

またアーク期間中の平均電圧を検出回路16で
検出し、基準信号発生回路18からの信号と比較
回路17で比較し,その差に応じてアークパルス
電流信号発生回路15であらかじめ設定された例
えば第1のアークパルス電流幅を変更する。この
場合、基準信号発生回路18の設定電圧Vsより
も検出回路16で検出した電圧Vaの方が高くな
る(Vs<Va)と、パルス電流幅を設定値よりも
短かくなるように制御する。この結果、アーク期
間中の電極溶融量は減少し、アーク電圧は低くな
り設定値と等しくなる。以上の結果、給電チツプ
7dと母材7aとの距離が変動しても常に安定し
た短絡移行溶接を行うことができる。
Further, the average voltage during the arcing period is detected by the detection circuit 16, and compared with the signal from the reference signal generation circuit 18 by the comparison circuit 17. Change the arc pulse current width in step 1. In this case, if the voltage V a detected by the detection circuit 16 becomes higher than the set voltage V s of the reference signal generation circuit 18 (V s < V a ), the pulse current width is made shorter than the set value. control. As a result, the amount of electrode melting during the arc period decreases and the arc voltage becomes lower and equal to the set value. As a result of the above, stable short-circuit transition welding can always be performed even if the distance between the power supply chip 7d and the base metal 7a changes.

第5図はこの実施例による電流、電圧波形の一
例を示す。A点はアークから短絡に移行した瞬
間、B点は短絡からアークに移行した瞬間であ
る。A点で短絡すると判別回路10で検出して遅
延回路12でTDSの時間遅れて短絡パルス電流信
号発生回路13から信号が出力されて限流素子5
によつてIPSなる短絡パルス電流が流れる。この
短絡パルス電流は判別回路10からの信号が印加
されるまで出力されるのでIPSの幅tPSは短絡の状
態によつて異なる。第6図aは短絡時間が比較的
短かくて設定値IPSになる途中で判別回路10か
らの信号が印加された場合、b図は設定値IPS
到達した後に印加された場合を示す。またB点で
短絡からアークになつた状態を検出すると遅延回
路14でTDAの時間遅れてアークパルス電流信号
発生回路15から信号が出力されて限流素子5に
よつてIPAなる第1のアークパルス電流が流れる。
以上の結果、短絡からアークになつた瞬間からし
ばらくの間アークを維持するための低いベース電
流を流すことになるので短絡からアークに移行す
る際のスパツタの発生を防止することができる。
一方アーク期間中には電極先端に一定の溶融金属
を生成させると同時に母材を溶融させるために第
1のアークパルス電流IPAを設定時間流し、その
後第1のアークパルス電流よりも小さくかつ順次
減衰するアークパルス電流を流す。この時第1の
アークパルスIPAが流れている間は電極先端の溶
融金属を一定量生成すると共に母材に溶融プール
を生成するが、アーク力によつて電極先端に溶融
金属は押し上げられて容易に短絡しない。次に第
1のアークパルス電流よりも小さくかつ順次減衰
するアークパルス電流をベース電流に重畳して流
すことにより、アーク力が徐々に弱まるので溶融
金属は母材側に下がると共に順次減衰するアーク
パルス電流によつてアークに硬直性が現われるの
でアークが不規則に動き回わることなく安定す
る。順次減衰するアークパルス電流を重畳しない
場合すなわち第1のアークパルス重畳後ベース電
流のみを流した場合には第7図aのようにベース
電流期間中のアーク電圧は非常に不安定になり、
最悪の場合にはアーク切れを起こす。しかし順次
減衰するアークパルス電流を重畳すると第7図b
のようにアーク電圧は非常に安定し、徐々に電圧
が下がりC点で短絡している。このように強制的
に短絡を行わせるので、従来法では不可能であつ
た中、高電流域でのスパツタの発生しない短絡移
行溶接を行うことができる。
FIG. 5 shows an example of current and voltage waveforms according to this embodiment. Point A is the moment of transition from arc to short circuit, and point B is the moment of transition from short circuit to arc. If there is a short circuit at point A, the discrimination circuit 10 detects it, and the delay circuit 12 outputs a signal from the short circuit pulse current signal generation circuit 13 with a delay of T DS to output the signal to the current limiting element 5.
As a result, a short-circuit pulse current called IPS flows. Since this short circuit pulse current is output until the signal from the discrimination circuit 10 is applied, the width t PS of I PS varies depending on the state of the short circuit. Figure 6a shows a case where the short-circuit time is relatively short and the signal from the discrimination circuit 10 is applied while the set value I PS is being reached, and Figure b shows a case where the signal is applied after reaching the set value I PS . . Further, when a short-circuit to arc state is detected at point B, the delay circuit 14 outputs a signal from the arc pulse current signal generation circuit 15 with a time delay of T DA , and the current limiting element 5 outputs a signal from the first signal, which is I PA . Arc pulse current flows.
As a result of the above, a low base current is passed to maintain the arc for a while from the moment the short circuit changes to an arc, so it is possible to prevent spatter from occurring when the short circuit changes to an arc.
On the other hand, during the arc period, the first arc pulse current I PA is applied for a set time in order to generate a certain amount of molten metal at the electrode tip and at the same time melt the base metal, and then the first arc pulse current I A decaying arc pulse current is applied. At this time, while the first arc pulse I PA is flowing, a certain amount of molten metal is generated at the electrode tip and a molten pool is generated in the base metal, but the molten metal is pushed up to the electrode tip by the arc force. Not easily short-circuited. Next, by superimposing an arc pulse current that is smaller than the first arc pulse current and attenuates sequentially on the base current, the arc force gradually weakens, so that the molten metal moves toward the base metal, and the arc pulse gradually attenuates. The current gives the arc rigidity, so the arc is stable without moving around irregularly. If the sequentially attenuating arc pulse current is not superimposed, that is, if only the base current is passed after the first arc pulse is superimposed, the arc voltage during the base current period becomes very unstable as shown in Figure 7a,
In the worst case, arc breakage will occur. However, if we superimpose a sequentially attenuating arc pulse current, Fig. 7b
As shown, the arc voltage is very stable, the voltage gradually decreases, and a short circuit occurs at point C. Since the short circuit is forcibly performed in this way, it is possible to perform short circuit transition welding in a high current range without generating spatter, which was impossible with conventional methods.

〔発明の効果〕〔Effect of the invention〕

以下のように本発明法によれば、短絡とアーク
を検出し、この信号によつて短絡時とアーク時に
それぞれ最適なパルス電流をパルス電流より十分
小なるベース電流に重畳することにより、強制的
に短絡を行わせることができるので低電流から大
電流までの広い溶接条件範囲で、スパツタがほと
んど発生せずしかも安定したアークを得ることが
できる。したがつて溶滴の移行が規則的に行われ
て良好なビードが得られるとともにスパツタが発
生しないので溶接後の後処理を必要とせず、また
高速溶接が可能になるので作業効率が著しく向上
する。
As described below, according to the method of the present invention, short circuits and arcs are detected, and this signal is used to superimpose optimal pulse currents on a base current that is sufficiently smaller than the pulse current, respectively, during short circuits and arcs. Since it is possible to short-circuit the welding current, it is possible to obtain a stable arc with almost no spatter in a wide range of welding conditions from low current to high current. Therefore, the transfer of the droplets occurs regularly, resulting in a good bead, and since spatter does not occur, there is no need for post-treatment after welding, and high-speed welding becomes possible, which significantly improves work efficiency. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアーク溶接電源の回路図、第2
図、第3図は従来のアーク溶接電源による動作及
び現象の説明図、第4図は本発明法による一実施
例、第5図は実施例による波形図、第6図及び第
7図は実施例による他の波形図である。 5……限流素子、6……駆動回路、9……アー
ク電圧検出回路、10……判別回路、12,1
4,21……遅延回路、13……短絡パルス電流
信号発生回路、15……アークパルス電流信号発
生回路、16……アーク電圧平均化回路、17…
…比較回路、19……ベース電流信号発生回路、
20……電極ワイヤ送給制御回路。
Figure 1 is a circuit diagram of a conventional arc welding power source, Figure 2 is a circuit diagram of a conventional arc welding power source.
3 is an explanatory diagram of the operation and phenomena of a conventional arc welding power source, FIG. 4 is an example of the method according to the present invention, FIG. 5 is a waveform diagram according to the example, and FIGS. FIG. 7 is another waveform diagram according to an example. 5... Current limiting element, 6... Drive circuit, 9... Arc voltage detection circuit, 10... Discrimination circuit, 12, 1
4, 21...delay circuit, 13...short circuit pulse current signal generation circuit, 15...arc pulse current signal generation circuit, 16...arc voltage averaging circuit, 17...
... Comparison circuit, 19 ... Base current signal generation circuit,
20... Electrode wire feeding control circuit.

Claims (1)

【特許請求の範囲】 1 消耗電極を定速度送給して溶接を行うアーク
溶接法において、短絡状態とアーク状態を検出
し、アーク期間中には第1のアークパルス電流と
第1のアークパルス電流よりも小さくかつ順次減
衰するアークパルス電流とを第1のアークパルス
電流よりも十分小なるベース電流に重畳し、短絡
を検出したときにはあらかじめ設定した時間後短
絡が解消するまでの間あらかじめ定めた短絡パル
ス電流を上記ベース電流に重畳することを特徴と
するアーク溶接法。 2 アーク期間中のアーク電圧の平均値を検出
し、この検出信号と設定値とを比較し、その差に
応じてアーク期間中の電流値を制御することによ
りアーク電圧をほぼ一定にするようにしたことを
特徴とする特許請求の範囲第1項記載のアーク溶
接法。 3 第1のアークパルス期間中のアーク電圧の平
均値を検出し、この検出信号と設定値とを比較
し、その差に応じてアーク期間中の電流値を制御
することによりアーク電圧をほぼ一定にするよう
にしたことを特徴とする特許請求の範囲第1項記
載のアーク溶接法。 4 順次減衰するアークパルス電流期間中のアー
ク電圧の平均値を検出し、この検出信号と設定値
とを比較し、その差に応じてアーク期間中の電流
値を制御することによりアーク電圧をほぼ一定に
するようにしたことを特徴とする特許請求の範囲
第1項記載のアーク溶接法。 5 アーク期間中の電流値を、第1のアークパル
ス電流のピーク値を変更することによつて制御す
ることを特徴とする特許請求の範囲第2項、第3
項および第4項記載のアーク溶接法。 6 アーク期間中の電流値を、第1のアークパル
ス電流のパルス幅を変更することによつて制御す
ることを特徴とする特許請求の範囲第2項、第3
項および第4項記載のアーク溶接法。 7 アーク期間中の電流値を、順次減衰するアー
クパルス電流のピーク値を変更することによつて
制御することを特徴とする特許請求の範囲第2
項、第3項および第4項記載のアーク溶接法。 8 アーク期間中の電流値を、順次減衰するアー
クパルス電流のパルス幅を変更することによつて
制御することを特徴とする特許請求の範囲第2
項、第3項および第4項記載のアーク溶接法。 9 アーク期間中の電流値を、順次減衰するアー
クパルス電流のパルス時間と休止時間の比率
(duty)を変更することによつて制御することを
特徴とする特許請求の範囲第2項、第3項および
第4項記載のアーク溶接法。
[Claims] 1. In an arc welding method in which welding is performed by feeding a consumable electrode at a constant rate, a short circuit state and an arc state are detected, and during the arc period, a first arc pulse current and a first arc pulse An arc pulse current that is smaller than the current and gradually attenuates is superimposed on a base current that is sufficiently smaller than the first arc pulse current, and when a short circuit is detected, a predetermined period of time is elapsed until the short circuit is resolved after a preset time. An arc welding method characterized by superimposing a short circuit pulse current on the base current. 2 Detects the average value of the arc voltage during the arc period, compares this detection signal with a set value, and controls the current value during the arc period according to the difference to keep the arc voltage almost constant. The arc welding method according to claim 1, characterized in that: 3. Detect the average value of the arc voltage during the first arc pulse period, compare this detection signal with the set value, and control the current value during the arc period according to the difference to keep the arc voltage almost constant. The arc welding method according to claim 1, wherein the arc welding method is characterized in that: 4 Detecting the average value of the arc voltage during the period of the arc pulse current that gradually attenuates, comparing this detection signal with the set value, and controlling the current value during the arc period according to the difference, the arc voltage can be approximately reduced. The arc welding method according to claim 1, characterized in that the welding temperature is constant. 5. Claims 2 and 3, characterized in that the current value during the arc period is controlled by changing the peak value of the first arc pulse current.
The arc welding method described in Items 1 and 4. 6. Claims 2 and 3, characterized in that the current value during the arc period is controlled by changing the pulse width of the first arc pulse current.
The arc welding method described in Items 1 and 4. 7. Claim 2, characterized in that the current value during the arcing period is controlled by changing the peak value of the arc pulse current that gradually attenuates.
The arc welding method described in Items 1, 3 and 4. 8. Claim 2, characterized in that the current value during the arc period is controlled by changing the pulse width of the arc pulse current that gradually attenuates.
The arc welding method described in Items 1, 3 and 4. 9. Claims 2 and 3, characterized in that the current value during the arc period is controlled by changing the ratio (duty) between the pulse time and the rest time of the arc pulse current that gradually attenuates. The arc welding method described in Items 1 and 4.
JP7853084A 1984-04-20 1984-04-20 Arc welding method Granted JPS60223662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7853084A JPS60223662A (en) 1984-04-20 1984-04-20 Arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7853084A JPS60223662A (en) 1984-04-20 1984-04-20 Arc welding method

Publications (2)

Publication Number Publication Date
JPS60223662A JPS60223662A (en) 1985-11-08
JPH0557071B2 true JPH0557071B2 (en) 1993-08-23

Family

ID=13664467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7853084A Granted JPS60223662A (en) 1984-04-20 1984-04-20 Arc welding method

Country Status (1)

Country Link
JP (1) JPS60223662A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299769A (en) * 1988-05-24 1989-12-04 Sansha Electric Mfg Co Ltd Output control method for gas shielded arc welding power source
US8373093B2 (en) * 2008-06-27 2013-02-12 Lincoln Global, Inc. Method and system to increase heat input to a weld during a short-circuit arc welding process
WO2013190746A1 (en) 2012-06-18 2013-12-27 パナソニック株式会社 Arc-welding method and arc-welding apparatus
JP6695030B2 (en) 2014-10-17 2020-05-20 パナソニックIpマネジメント株式会社 Control method of arc welding
JP6577879B2 (en) * 2015-02-13 2019-09-18 リンカーン グローバル,インコーポレイテッド Method and system for increasing heat input to a weld during a short-circuit arc welding process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947226A (en) * 1972-03-23 1974-05-07
JPS5362755A (en) * 1976-11-17 1978-06-05 Hitachi Ltd Pulse arc welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947226A (en) * 1972-03-23 1974-05-07
JPS5362755A (en) * 1976-11-17 1978-06-05 Hitachi Ltd Pulse arc welding method

Also Published As

Publication number Publication date
JPS60223662A (en) 1985-11-08

Similar Documents

Publication Publication Date Title
EP1985400B1 (en) Method of controlling arc welding and welding device
JP3844004B1 (en) Pulse arc welding control method and pulse arc welding apparatus
CN111989182B (en) Arc welding control method
JP5840921B2 (en) Constriction detection control method for consumable electrode arc welding
JPWO2017169899A1 (en) Arc welding control method
WO2017029783A1 (en) Arc welding control method
JP6524412B2 (en) Arc welding control method
JP4739874B2 (en) Constriction detection control method for consumable electrode arc welding
JP2013173161A (en) Consumable electrode arc welding control method
JPH0557071B2 (en)
JP6596675B2 (en) Arc welding control method
JPS60223661A (en) Arc welding method
JP5871360B2 (en) Constriction detection control method for consumable electrode arc welding
JP3736065B2 (en) Output control device for consumable electrode arc welding machine
JPH0342997B2 (en)
JP7499434B2 (en) Arc welding method and arc welding apparatus
US11491571B2 (en) Arc welding method
JPS58224070A (en) Arc welding
JPH08267239A (en) Output control method of power source for consumable electrode type gas shielded pulsed arc welding
JPS60177963A (en) Arc welding method
JP2519321B2 (en) Consumable electrode arc welding equipment
JP2005288540A (en) Welding power source with function of quickly reducing current when detecting constriction and welding equipment
JPS60223660A (en) Arc welding method
JP7489582B2 (en) Arc welding method and arc welding apparatus
JP7576764B2 (en) DC arc welding control method