【発明の詳細な説明】[Detailed description of the invention]
〔産業上の利用分野〕
本発明は都市ゴミ等の焼却灰の安全な固化処理
方法に関する。
〔従来技術〕
従来より都市ゴミ焼却灰はセメント等により固
化(特開昭51−121029、特開昭55−44316)され、
土中に埋めるか、海中投棄するなどして処理され
ていた。しかし近年その焼却灰中に有害な金属が
多く含まれるため焼却灰は不溶化処理が必要とな
り、固化処理においてもより高い、強度、不透水
性等の物性向上が求められていた。又特に問題点
としてセメント固化処理を行うと固化後にセメン
ト中のアルカリ分と金属が反応して水素ガスを発
生し硬化体が破壊する問題点があつた。このため
充分な強度が得られない、又ひび割れ部分より有
害物が溶出し、再利用できない等の問題があつ
た。
〔発明が解決しようとする問題点〕
本発明者らは、種々検討の結果金属を含む焼却
灰を破壊しない様に固化処理するためには、アル
カリ又は酸で1度焼却灰中の金属を反応させ、水
素ガスを発生させた後、更にスラグ粉末を添加混
合することによつてひび割れのない高強度固化体
とすることの知見を得て、本発明を完成するに到
つた。
〔問題点を解決するための手段〕
すなわち、本発明は、金属を含む焼却灰を固化
処理するにあたり、アルカリ又は酸処理後、アル
カリ条件下においてスラグ粉末を添加することを
特徴とする焼却灰の固化方法である。
以下本発明を詳細に説明する。
本発明に係る焼却灰とは、都市ゴミ等産業廃棄
物の焼却灰で、通常、粒度が1.5m/m篩下のも
のが使用されるが、できるだけ細かいものが好ま
しい。又、焼却灰中には、Al、Fe、Zn、Ti、
Cu、Cr、Ni、Sn、Cd等の金属が含有されてお
り、その量は焼却灰によつて変化するが大体トー
タルで10重量%程度である。
前記問題点は焼却灰中に金属が残存するため
で、これを解決するためにこれら焼却灰にアルカ
リや酸を添加して、一次処理する。一次処理は焼
却灰へ水に溶解させたアルカリや酸を加え混合す
る。これにより焼却灰中の金属とアルカリや酸が
反応して水素ガスを発生する。
アルカリの種類は、K、Na等のアルカリ金属
の水酸化物、炭酸塩等が好ましく、なるべくPHの
高いもの程、短時間で反応するので好ましい。ア
ルカリ溶液の濃度は反応が行われれば特に問題と
されないが、5〜50%溶液が反応速度上好まし
い。アルカリ溶液の添加量は、アルカリ/焼却灰
の重量比で2〜1/5が好ましい。又反応をすみ
やかに終了させる目的で加熱するか焼却灰が高温
である内にアルカリ溶液により処理してもよい。
又、撹拌するなど反応を促進することや、脱ガス
を容易にすることを併用することは好ましい。
又、酸の種類は、塩酸、硝酸、硫酸等の酸で焼却
灰中の金属と反応するものであればよく、通常5
〜10%の濃度の溶液を用いる。反応終了した焼却
灰はアルカリを含んだ状態にあり、又は、アルカ
リを含んだ状態にしてスラグ粉末を混合して固化
処理を行う。その時の焼却灰はアルカリ性である
ことが必要で、PHで12以上が好ましい。又、焼却
灰の固化処理にあたつては、Naなどはセメント
の水和反応に悪影響をおよぼし、処理が不充分と
なるが、本発明の方法によれば問題なく固化処理
が可能となる。
スラグは粉砕されたもので、粉末度はブレーン
値で2000cm2/g以上好ましくは3000〜6000cm2/g
程度が反応性及び経済性より好ましい。
スラグの添加量は、焼却灰に対して即ちスラ
グ/焼却灰の割合で2〜1/5が好ましく、1〜1/3
がさらに好ましい。
混合する水の量は、スラグに対し、即ち水/ス
ラグが100%以下が好ましく、60%以下がさらに
好ましい。実用上固化する範囲であれば水量は特
に問題ないが、水量が多くなると強度が低下す
る。
スラグを添加した焼却灰を通常の方法で混練
し、養生することができる。混練温度は高ければ
高い程よいが、加熱して50〜60℃で行う。又更に
高い強度を得るために減水剤、高流動化剤の混合
は効果が大きい。又有害金属の封鎖剤やアスフア
ルト乳剤等の不透水剤等を加えると有害成分の溶
出を更に少なくできる。また加圧成型等を行ない
密実な固化体とすることも有効である。固化助材
として水ガラス等の珪酸アルカリ、トリエタノー
ルアミン等のアミン類を加えると速硬性、低温強
度発現性が改善される。その他通常使用される混
和材もその目的のために併用することができる。
〔実施例〕
以下実施例で更に詳しく説明する。
実施例 1
都市ゴミ焼却場より発生した金属アルミ1%、
鉄0.5%混入の焼却灰1Kgに苛性ソーダ25%水溶
液1Kgを加えて室温で混合撹拌した。混合後1日
放置し、この混合物に更にブレーン値5500cm2/g
のスラグ500g、水250gを加えてモルタルミキサ
ーで混合した。
この混合物を4×4×16cm型枠につめ供試体を
作製した。1時間30分で凝結が始まり、1日で
120Kgf/cm2、7日で280Kgf/cm2、28日で350Kg
f/cm2の圧縮強度が測定された。供試体にはひび
割れはなく極めて緻密な出来上りであつた。
又供試体を5の水に7時間浸し有害金属の溶
出テストを行つた。その結果有害金属は検出され
なかつた。
比較例 1
前記都市ゴミ焼却灰をスラグのかわりに普通ポ
ルトランドセメントを使用しアルカリ処理なしで
固化試験を行つた。その結果3時間で凝結が始ま
り、同時に水素ガスによる亀裂が生じた。1日後
の強度は測定できなかつた。
又3日放置後再度粉砕し普通ポルトランドセメ
ントを粉砕物と同量添加して水をセメントに対し
て40%加え混合した。この固化物は1日で20Kg
f/cm2、7日で80Kgf/cm2、28日で80Kgf/cm2の
圧縮強度がでたが7日で膨張亀裂を生じた。
比較例 2
スラグの代りに普通ポルトランドセメントを使
用したこと以外は実施例1と同様に行つた。その
結果固化体の圧縮強度は1日で5Kgf/cm2、7日
で20Kgf/cm2、28日で45Kgf/cm2となり、本発明
の方法によるものと比較して、著しく強度の低い
ものであつた。
比較例 3
アルカリ処理をしなかつたこと以外は実施例1
と同様に行つた。その結果固化体の圧縮強度は1
日で6Kgf/cm2、7日で30Kgf/cm2であり、膨張
破壊を起した。
実施例 2
アルカリ溶液の代りに5%塩酸を使用し、一次
処理を行つた。その後NaOHをスラグに対し、
20%(固形分換算)添加して実施例1と同様に実
験を行つた。その結果1日で95Kgf/cm2、7日で
240Kgf/cm2、28日で330Kgf/cm2の圧縮強度が得
られ、ひび割れの発生は見られなかつた。
実施例 3
第1表のような、焼却灰に対するスラグの添加
割合で、実施例1と同様に実験を行つた。結果を
第1表に併記する。
[Industrial Application Field] The present invention relates to a safe solidification treatment method for incinerated ash such as municipal garbage. [Prior art] Traditionally, municipal waste incineration ash has been solidified with cement etc.
They were disposed of by burying them in the ground or dumping them into the sea. However, in recent years, the incinerated ash contains many harmful metals, so it has become necessary to insolubilize the incinerated ash, and even in the solidification process, there has been a demand for higher physical properties such as strength and water impermeability. Another problem in particular is that when cement solidification is performed, the alkaline content in the cement reacts with the metal after solidification, generating hydrogen gas and destroying the hardened product. For this reason, there were problems such as not being able to obtain sufficient strength, and harmful substances leaching out from the cracked parts, making it impossible to reuse them. [Problems to be solved by the invention] As a result of various studies, the present inventors found that in order to solidify the incinerated ash containing metals without destroying them, the metals in the incinerated ash should be reacted once with an alkali or acid. The present invention was completed based on the knowledge that a crack-free, high-strength solidified body can be obtained by adding and mixing slag powder after hydrogen gas is generated. [Means for Solving the Problems] That is, the present invention provides a method for solidifying incinerated ash containing metal, which is characterized in that slag powder is added under alkaline conditions after alkali or acid treatment. This is a solidification method. The present invention will be explained in detail below. The incinerated ash according to the present invention is the incinerated ash of industrial waste such as municipal garbage, and usually has a particle size of 1.5 m/m under a sieve, but is preferably as fine as possible. In addition, the incineration ash contains Al, Fe, Zn, Ti,
It contains metals such as Cu, Cr, Ni, Sn, and Cd, and the amount varies depending on the incineration ash, but the total amount is approximately 10% by weight. The above-mentioned problem is due to metal remaining in the incinerated ash, and in order to solve this problem, alkali or acid is added to the incinerated ash for primary treatment. The primary treatment involves adding and mixing alkali or acid dissolved in water to the incinerated ash. As a result, the metal in the incineration ash reacts with the alkali or acid to generate hydrogen gas. The type of alkali is preferably a hydroxide or carbonate of an alkali metal such as K or Na, and the higher the pH value, the more preferable it is because it reacts in a short time. The concentration of the alkaline solution is not a particular problem as long as the reaction is carried out, but a 5-50% solution is preferred from the viewpoint of reaction rate. The amount of alkaline solution added is preferably 2 to 1/5 in weight ratio of alkali/incineration ash. Further, in order to quickly terminate the reaction, the incineration ash may be heated or treated with an alkaline solution while the incineration ash is still at a high temperature.
Further, it is preferable to use methods such as stirring to promote the reaction and to facilitate degassing.
In addition, the type of acid may be any acid such as hydrochloric acid, nitric acid, or sulfuric acid, as long as it reacts with the metal in the incineration ash.
Use a solution with a concentration of ~10%. After the reaction, the incineration ash is in a state containing an alkali, or is mixed with slag powder and subjected to a solidification treatment. The incinerated ash at that time needs to be alkaline, preferably with a pH of 12 or higher. Furthermore, when solidifying incineration ash, Na and the like have an adverse effect on the hydration reaction of cement, resulting in insufficient treatment, but according to the method of the present invention, solidification can be performed without problems. The slag is pulverized, with a Blaine value of 2000 cm 2 /g or more, preferably 3000 to 6000 cm 2 /g.
degree is more preferable than reactivity and economy. The amount of slag added is preferably 2 to 1/5, and 1 to 1/3 of the incinerated ash, that is, the ratio of slag/incinerated ash.
is even more preferable. The amount of water to be mixed is preferably 100% or less, more preferably 60% or less, based on the slag, ie, water/slag. There is no particular problem with the amount of water as long as it is practically solidified, but as the amount of water increases, the strength decreases. Incineration ash to which slag has been added can be kneaded and cured in a conventional manner. The higher the kneading temperature, the better, but the kneading temperature should be heated to 50 to 60°C. Also, in order to obtain even higher strength, mixing a water reducing agent and a superplasticizer is very effective. Furthermore, the elution of harmful components can be further reduced by adding a sequestering agent for harmful metals or a water-impermeable agent such as an asphalt emulsion. It is also effective to form a dense solidified body by pressure molding or the like. When an alkali silicate such as water glass or an amine such as triethanolamine is added as a solidification aid, rapid hardening and low-temperature strength development are improved. Other commonly used admixtures may also be used for this purpose. [Example] A more detailed explanation will be given below using an example. Example 1 Metal aluminum 1% generated from a municipal waste incinerator,
1 kg of a 25% aqueous solution of caustic soda was added to 1 kg of incinerated ash containing 0.5% iron, and the mixture was mixed and stirred at room temperature. After mixing, leave it for one day and give the mixture a Blaine value of 5500 cm 2 /g.
500g of slag and 250g of water were added and mixed using a mortar mixer. This mixture was packed in a 4 x 4 x 16 cm mold to prepare a specimen. Condensation begins in 1 hour and 30 minutes, and within 1 day
120Kgf/cm 2 , 280Kgf/cm 2 in 7 days, 350Kg in 28 days
The compressive strength in f/cm 2 was measured. The specimen had no cracks and was extremely dense. In addition, the specimen was immersed in water from step 5 for 7 hours to perform a test for elution of harmful metals. As a result, no harmful metals were detected. Comparative Example 1 A solidification test was conducted on the municipal waste incineration ash using ordinary Portland cement instead of slag without alkali treatment. As a result, condensation began in 3 hours, and at the same time cracks appeared due to hydrogen gas. The strength after one day could not be measured. After being allowed to stand for 3 days, the mixture was ground again, and the same amount of ordinary Portland cement as the ground material was added, and 40% water was added to the cement and mixed. This solidified material is 20kg in one day.
f/cm 2 , a compressive strength of 80 Kgf/cm 2 after 7 days, and 80 Kgf/cm 2 after 28 days, but expansion cracks occurred after 7 days. Comparative Example 2 The same procedure as in Example 1 was carried out except that ordinary Portland cement was used instead of slag. As a result, the compressive strength of the solidified material was 5 Kgf/cm 2 in 1 day, 20 Kgf/cm 2 in 7 days, and 45 Kgf/cm 2 in 28 days, which is significantly lower than that obtained by the method of the present invention. It was hot. Comparative Example 3 Example 1 except that no alkali treatment was performed
I went in the same way. As a result, the compressive strength of the solidified material is 1
The pressure was 6 Kgf/cm 2 in one day and 30 Kgf/cm 2 in 7 days, causing expansion and destruction. Example 2 A primary treatment was carried out using 5% hydrochloric acid instead of an alkaline solution. Then add NaOH to the slag,
An experiment was conducted in the same manner as in Example 1 by adding 20% (in terms of solid content). As a result, 95Kgf/cm 2 in 1 day, 7 days
A compressive strength of 240 Kgf/cm 2 and 330 Kgf/cm 2 was obtained in 28 days, and no cracking was observed. Example 3 An experiment was conducted in the same manner as in Example 1, with the addition ratio of slag to incineration ash as shown in Table 1. The results are also listed in Table 1.
【表】
〔発明の効果〕
本発明による効果は
(1) 金属混入焼却灰を問題なく固化できる。
(2) 固化物の強度が高く再利用可能である。
(3) 有害物の溶出を少なくできる。
(4) 固化材混入量が少なくて良く、このため焼却
灰硬化物の増加割合を少なくすることができ
る。[Table] [Effects of the Invention] The effects of the present invention are (1) Metal-containing incineration ash can be solidified without any problem. (2) The solidified product has high strength and can be reused. (3) Elution of harmful substances can be reduced. (4) The amount of solidification agent mixed in can be small, and therefore the rate of increase in hardened incineration ash can be reduced.