[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH055775B2 - - Google Patents

Info

Publication number
JPH055775B2
JPH055775B2 JP63041020A JP4102088A JPH055775B2 JP H055775 B2 JPH055775 B2 JP H055775B2 JP 63041020 A JP63041020 A JP 63041020A JP 4102088 A JP4102088 A JP 4102088A JP H055775 B2 JPH055775 B2 JP H055775B2
Authority
JP
Japan
Prior art keywords
coating material
optical communication
coating
group
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63041020A
Other languages
Japanese (ja)
Other versions
JPH01215744A (en
Inventor
Yoshiisa Hida
Shohei Kosakai
Hiroshi Kanbara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP63041020A priority Critical patent/JPH01215744A/en
Publication of JPH01215744A publication Critical patent/JPH01215744A/en
Publication of JPH055775B2 publication Critical patent/JPH055775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、光通信フアイバー用被覆剤及び該被
覆剤の硬化体で被覆された光通信フアイバーに関
し、更に詳述すると、特に形成された被膜(硬化
体)の光通信フアイバーに対する接着力或いは剥
離力の経時的変化が少なく、具体的には水中に置
いたような場合でもガラスとの剥離性の増大が可
及的に防止され、かつ空気中高温条件下に置いて
も、ガラスとの密着性が極度に増大して被覆後の
処理工程を困難にするようなことのない、安定し
たガラス面との密着性を有する被膜を与える光通
信フアイバー用被覆剤及び該被覆剤の硬化体で被
覆された光通信フアイバーに関する。 従来の技術及び発明が解決しようとする課題 光通信フアイバーとしては、従来より石英ガラ
ス系、多成分ガラス系、プラスチツク系などの
種々のものが知られているが、現実にはその軽量
性、低損失性、無誘導性、耐熱性、耐候性、更に
は伝送容量などから石英ガラス系のものが実用化
されている。しかし、この石英ガラス系のものは
極めて細く、経時変化も起りやすいということか
ら、石英ガラス系の光通信フアイバーは、その石
英ガラスフアイバーの表面を適当な材料で被覆す
ることが行なわれており、この被覆剤としては温
度依存性が小さくて使用温度範囲が広く、強度保
持、ストレス緩和に有効で、しかもマイクロベン
ドによる伝送損失も招きにくく、散乱によるノイ
ズも起りにくいということから、シリコーン樹脂
の使用が好ましいものとされている。しかし、こ
のシリコーン樹脂は、その化学構造からガラスと
のなじみはよいが、硬化被膜の強度が弱いため
に、被覆工程中あるいは被覆後の処理工程中に被
膜が破れたり、ガラス面から剥がれるという欠点
がある。 他方、ポリエーテルもしくはポリエステルのア
クリレートなども光通信フアイバー被覆剤として
実用化されているが、これらの有機樹脂には硬化
被膜の強度が強いため、被覆工程中或いは被覆後
の処理工程中に被膜が破れないという利点があ
り、この点で注目されているものの、ガラスとの
なじみが悪く、特に被膜の光通信フアイバーに対
する接着力或いか剥離力の経時的変化が大きく、
水中に放置しておくと次第にガラス面から剥離し
てしまい、そのため光通信フアイバーの伝送損失
が増大してしまう。また、空気中であつても、高
温条件下に放置しておくと、逆にガラス面との密
着力が必要以上に増大し、そのため被覆後の処理
工程を困難にするという問題点を有する。 本発明は上記事情に鑑みなされたもので、水中
下に放置した場合でもガラス面との良好な密着性
を有するとともに、高温条件下においても過度の
密着力増大を生ずることなく、光通信フアイバー
に対する接着力あるいは剥離力の経時的変化が少
なく、適度な密着性を維持した被膜(硬化体)を
与え、被覆後の処理工程を容易に行ない得る光通
信フアイバー用被覆剤及び該被覆剤の硬化体で被
覆された光通信フアイバーを提供することを目的
とする。 課題を解決するための手段及び作用 本発明者らは、上記目的を達成するため鋭意検
討を行なつた結果、ポリエーテル系化合物又はポ
リエステル系化合物のアクリレート等の分子内に
重合性炭素・炭素二重結合を1個以上有する光重
合化合物にγ−アミノプロピルトリアルコキシシ
ラン等のアミノアルキルシラン及び下記一般式 (但し、式中m及びnは0又は正の数を示し、
0≦m+n≦10である) で示されるアセチレンアルコール又は式中の炭素
原子に結合した水素原子の一部又は全部をハロゲ
ン原子と置換したものを添加することにより、得
られた被覆剤が、水中であつてもガラス面との密
着性の低下を極く小さいものとすることができる
とともに、高温条件下においても密着力の増加が
極く小さい硬化体を与えることができることを知
見し、本発明を完成するに至つたものである。 従つて、本発明は、 (A) 分子内に重合性炭素・炭素二重結合を1個以
上有する光重合化合物、 (B) アミノアルキルシラン、 (C) 下記一般式(1) (但し、式中m及びnは0又は正の数を示し、
0≦m+n≦10である) で示されるアセチレンアルコール又は上記式(1)中
の炭素原子に結合した水素原子の一部又は全部を
ハロゲン原子と置換したもの、及び (D) 光重合開始剤 を含有することを特徴とする光通信フアイバー用
被覆剤及び該被覆剤の硬化体で被覆されたことを
特徴とする光通信フアイバーを提供するものであ
る。 以下、本発明につき更に詳しく説明する。 本発明の被覆剤を構成する(A)成分の分子内に重
合性炭素・炭素二重結合を1個以上有する光重合
性化合物としては、その官能基として、アクリル
基、メタクリル基及びこれらの基の炭素原子に結
合している水素原子の一部又は全部をハロゲン原
子で置換した基などから選択される基を有するも
のが挙げられるが、この場合、(A)成分としては分
子内に重合性炭素・炭素二重結合を1個有するも
のと、2個以上有するものが共存していても差支
えない。 この光重合性化合物の骨格は、特に制限されず
種々のものを採用し得る。具体的には、ポリテト
ラメチレングリコール、ポリプロピレングリコー
ル、テトラヒドロフランとプロピレンオキシドと
のランダム共重合体等のポリエーテル系化合物、
ポリ−ε−カプロラクトン等のポリエステル系化
合物が挙げられ、本発明(A)成分としては、これら
の化合物の分子鎖末端をアクリル又はメタクリル
変成したものなどが使用される。 次に、(B)成分のアミノアルキルシランは特に制
限されず、種々のものを使用し得る。具体的に
は、アミノアルキル基としてγ−アミノプロピル
基、δ−アミノブチル基、ε−アミノペンチル基
等の1級アミノ基、N−フエニル−γ−アミノプ
ロピル基等の2級アミノ基、N,N′−ジメチル
−γ−アミノプロピル基等の3級アミノ基、N−
β(アミノエチル)−γ−アミノプロピル基等のア
ミノ基が複数個存在する基又はこれらの基の炭素
原子に結合している水素原子の一部又は全部をハ
ロゲン原子で置換した基などを有するシラン化合
物を挙げることができる。また、この(B)成分のア
ミノアルキルシランには、アルコシキ基、水酸
基、アルキル基、アルケニル基、アリーロキシ基
又はアリール基が含まれていてもよく、アルコキ
シ基としては、メトキシ基、エトキシ基、プロポ
キシ基、ブトキシ基、ビニロキシ基、アリロキシ
基などを、アリーロキシ基としては、フエノキシ
基などを、アルケニル基としては、ビニル基、ア
リル基などを、アリール基としては、フエニル
基、トリル基などを、アルキル基としては、メチ
ル基、エチル基、プロピル基、ブチル基又はこれ
らの基の炭素原子に結合している水素原子の一部
又は全部をハロゲン原子で置換した基などをそれ
ぞれ例示することができる。なお、これらのアミ
ノアルキルシランの中でも特にγ−アミノプロピ
ルトリアルコキシラシンが好ましい。 また、(C)成分のアセチレンアルコールは、下記
一般式(1) (但し、式中m及びnは0又は正の数を示し、
0≦m+n≦10である) で示されるものである。具体的には市販品として
サーフイノール104(m+n=0、日信化学工業(株)
製商品名)、サーフイノール440(m+n=3.5、日
信化学工業(株)製商品名)、サーフイノール465(m
+n=10、日信化学工業(株)製商品名)などを挙げ
ることができる。また、(C)成分としては、上記式
(1)中の炭素原子に結合している水素原子の一部又
は全部をハロゲン原子で置換したものも好適に用
いられる。 ここで、上記式(1)中m及びnは上記したように
0又は0≦m+n≦10を満足する正の数であり、
m+nが10を超ると得られる被覆剤をガラス板上
に硬させた後の水中での剥離性が増大してしま
い、本発明の目的を達し得ない。 本発明の被覆剤中には更に(D)成分として重合開
始剤が添加されるが、このような重合開始剤とし
ては、イルガキユアー184(チバガイギー(株)製商品
名)、ダロキユア1173(メルク(株)製商品名)等のα
−ヒドロキシアセトフエノン系光重合開始剤、ベ
ンゾフエノン、3,3−ジメチル−4−メトキシ
ベンゾフエノン等のベンゾフエノン系光重合開始
剤、2,4−ジエチルチオキサントン、2−クロ
ルチオイサントン等のチオキサントン系光重合開
始剤などが例示される。 本発明の光通信フアイバー用被覆剤は、上記(A)
成分の光重合性化合物、(B)成分のアミノアルキル
シラン、(C)成分のアセチレンアルコール及び(D)成
分の重合開始剤との混合物を含有するものであ
り、これら各成分の配合比は得られる光通信フア
イバー用被覆剤に求められる特性によつて定める
ことができるが、特に(A)成分100重量部に対し、
(B)成分は0.1重量部以上とすることが好ましく、
より好ましくは0.5〜2重量部である。(A)成分100
重量部に対して(B)成分が0.1重量部未満であると、
被覆剤をガラス板上に硬化させた後の水中での剥
離性が増大してしまい、本発明の目的が達成し得
ない場合がある。また、(C)成分の配合量は(A)成分
100重量部に対して(C)成分を0.1重量部以上とする
ことが好ましく、より好ましくは0.5〜2重量部
である。(A)成分100重量部に対して(C)成分が0.1重
量部未満であると、被覆剤をガラス板上に硬化さ
せた後の高温条件下におけるガラス密着力が極端
に増大してしまい、本発明の目的を達成し得ない
場合がある。更に、(D)成分の配合量は、(A)成分
100重量部に対して1〜5重量部とするのが好ま
しい。 なお、この光通信フアイバー用被覆剤には、必
要に応じて酸化防止剤、耐光安定剤などを添加し
てもよく、またヒユームドシリカの微粉末シリ
カ、酸化チタン、酸化アルミニウムなどのような
金属酸化物、カーボンブラツクなどの充填剤、そ
の他の添加剤を配合しても差支えない。 本発明の被覆剤を用いて光通信フアイバーを被
覆する場合は、光通信フアイバー表面に本発明被
覆剤を塗工し、紫外線を照射することにより硬化
させる方法が好適に採用される。 本発明の光通信フアイバー用被覆剤は、石英系
の光通信フアイバーの被覆剤として好適に用いら
れるものであるが、多成分ガラス系又はプラスチ
ツク系などの光通信フアイバー用被覆剤としても
使用し得、またその他ガラスとの接着剤、プリン
ト基板のコーテイング剤としても好適に採用し得
る。 発明の効果 以上説明したように、本発明の光通信フアイバ
ー用被覆剤は、石英系光通信フアイバーに対して
安定した接着性を示し、水中であつてもガラス面
との良好な密着性を有し、ガラス面から容易に剥
離するようなことがない硬化体を与え、よつて伝
送損失の小さい光通信フアイバーを得ることがで
き、また本発明の光通信フアイバー用被覆剤によ
ればその硬化体が空気中高温条件下でのガラス密
着性の過度の増大を生ずることがないので、被覆
後の処理工程が容易に行ない得る。 従つて、本発明被覆剤の硬化体で被覆された光
通信フアイバーは、伝送特性に優れ、また光通信
フアイバー同士を連結する場合などの処理工程が
容易に行ない得るものである。 以下、実施例及び比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限さ
れるものではない。 実施例 1 平均分子量4000のテトラヒドロフランとプロピ
レンオキシドのランダム共重合体の分子鎖末端を
アクリル変成したポリマー50g、反応性希釈剤と
してオリゴエステルアクリレート(構造式、 p≒2.5 東亜合成化学工業(株)製商品名:アロニツクスM
−117)50g、接着助剤としてγ−アミノプロピ
ルトリメトキシシラン0.5g、テトラメチルデシ
ンジオール(構造式 日信化学工業(株)製商品名:サーフイノール104)
0.5g、重合開始剤として2−ヒドロキシー2−
メチルプロピオフエノン(メルク(株)製商品名:ダ
ロキユアー1173)3gを混合し、25℃における粘
度が6300cpの光通信フアイバー用被覆剤を得た。 この被覆剤を室温で直径125μmのガラスフアイ
バーに30m/分の速度で厚さ100μmに塗工し、塗
工直後に80W/cmの高圧水銀灯を用いて10cmの距
離から1秒照射してこの塗膜を硬化させたとこ
ろ、この被覆剤の硬化体で均一に被覆された光通
信フアイバーが得られた。 一方、上で得られた光通信フアイバー用被覆剤
をガラス板上に25mm巾、0.6mm厚で塗工し、上記
と同様の条件で紫外線を照射して硬化させた被膜
をガラス板ごと80℃の乾燥機で加熱したもの及び
25℃の水中に浸したものについて、それぞれ90゜
引張り剥離力(引張り速度30mm/min)をオート
グラフAGS−500B(島津製作所(株)製商品名)によ
つて測定した。結果を第1表に示す。 比較例 1 γ−アミノプロピルトリメトキシシラン及びテ
トラメチルデシンジオール(商品名:サーフイノ
ール104)を添加しない以外は実施例1と同様に
して25℃における粘度が6750cpの被覆剤を調製
した。この被覆剤を実施例1と同様にガラスフア
イバーに塗工し、紫外線照射によつてこの塗膜を
硬化させたところ、この被覆剤の硬化体で均一に
被覆された光通信フアイバーが得られた。 一方、この被覆剤の硬化被膜につき実施例1と
同様にして引張り剥離力を測定した。結果を第1
表に示す。 比較例 2 テトラメチルデシンジオール(商品名:サーフ
イノール104)を添加しない以外は実施例1と同
様にして25℃における粘度が6410cpの被覆剤を
調製した。この被覆剤を実施例1と同様にガラス
フアイバーに塗工し、紫外線照射によつてこの塗
膜を硬化させたところ、この被覆剤の硬化体で均
一に被覆された光通信フアイバーが得られた。 一方、この被覆剤の硬化被膜につき実施例1と
同様にして引張り剥離力を測定した。結果を第1
表に示す。 比較例 3 γ−アミノプロピルトリメトキシシランを添加
しない以外は実施例1と同様にして25℃における
粘度が6650cpの被覆剤を調製した。この被覆剤
を実施例1と同様にガラスフアイバーに塗工し、
紫外線照射によつてこの塗膜を硬化さてたとこ
ろ、この被覆剤の硬化体で均一に被覆された光通
信フアイバーが得られた。 一方、この被覆剤の硬化被膜につき実施例1と
同様にして引張り剥離力を測定した。結果を第1
表に示す。 比較例 4 テトラメチルデシンジオール(商品名:サーフ
イノール104)の代りに (日信化学工業(株)製商品名:サーフイノール
485)を0.5g添加した以外は実施例1と同様の方
法で25℃における粘度が6260cpの被覆剤を調製
した。この被覆剤を実施例1と同様にガラスフア
イバーに塗工し、紫外線照射によつてこの塗膜を
硬化させたところ、この被覆剤の硬化体で均一に
被覆された光通信フアイバーが得られた。 次に、この被覆剤の硬化被膜につき実施例1と
同様の方法で引張り剥離力を測定した。結果を第
1表に示す。 実施例 2 平均分子量3000のポリテトラメチレングリコー
ルの分子鎖末端をアクリル変成したポリマー70
g、反応性希釈剤として q≒4 (東亜合成化学工業(株)製商品名:アロニツクス
M−113)を30g、接着助剤としてγ−アミノプ
ロピルトリエトキシシラン2.0g、 (日信化学工業(株)製商品名:サーフイノール
465)を1.0g及び重合開始剤として2−ヒドロキ
シ−2−メチルプロピオフエノン(メルク(株)製商
品名:ダロキユアー1173)3gを混合し、25℃に
おける粘度が4550cpの被覆剤を得た。この被覆
剤を実施例1と同様にガラスフアイバーに塗工
し、紫外線照射によつてこの塗膜を硬化させたと
ころ、この被覆剤の硬化体で均一に被覆された光
通信フアイバーが得られた。 一方、この被覆剤の硬化被膜につき実施例1と
同様の方法で引張り剥離力を測定した。結果を第
1表に示す。 実施例 3 平均分子量3000のポリε−カプロラクトンの分
子鎖末端をアクリル変成したポリマー60g、反応
性希釈剤として (日本化薬(株)製商品名:R−629)40g、接着
助剤としてγ−アミノプロピルトリメトキシシラ
ン1.0g、ポリオキシエチレンテトラメチルデシ
ンジオール・ジエーテル(構造式: 日信化学工業(株)製商品名:サーフイノール440)
2.0g、重合開始剤として2−ヒドロキシ−2−
メチルプロピオフエノン(メルク(株)製商品名:ダ
ロキユアー1173)3gを混合し、25℃における粘
度が7320cpの被覆剤を得た。 この被覆剤を実施例1と同様にガラスフアイバ
ーに塗工し、紫外線を照射してこの塗膜を硬化さ
せたところ、この被覆剤の硬化体で均一に被覆さ
れた光通信フアイバーが得られた。 一方、この被覆剤の硬化被膜につき実施例1と
同様の方法で引張り剥離力を測定した。結果を第
1表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a coating material for optical communication fiber and an optical communication fiber coated with a cured product of the coating material. There is little change in adhesion or peeling force over time, and specifically, even when placed in water, an increase in peelability from glass is prevented as much as possible, and even when placed in the air at high temperatures, A coating agent for optical communication fibers that provides a coating having stable adhesion to a glass surface, which does not excessively increase the adhesion to glass and make processing steps after coating difficult, and the coating agent. The present invention relates to an optical communication fiber coated with a cured material. PRIOR ART AND PROBLEMS TO BE SOLVED BY THE INVENTION A variety of optical communication fibers have been known, such as quartz glass, multi-component glass, and plastic fibers, but in reality, their light weight and low Silica glass-based materials have been put into practical use due to their loss properties, non-inductive properties, heat resistance, weather resistance, and transmission capacity. However, since this silica glass fiber is extremely thin and easily deteriorates over time, the surface of the silica glass fiber is coated with an appropriate material. Silicone resin is used as a coating material because it has low temperature dependence, can be used over a wide temperature range, is effective in maintaining strength and relieving stress, and is less likely to cause transmission loss due to microbends and less likely to generate noise due to scattering. is considered preferable. However, although this silicone resin has good compatibility with glass due to its chemical structure, the strength of the cured film is weak, so it has the disadvantage that the film can be torn or peeled off from the glass surface during the coating process or post-coating process. There is. On the other hand, polyether or polyester acrylates have also been put into practical use as coating materials for optical communication fibers, but these organic resins have strong cured coatings, so the coating may be damaged during the coating process or post-coating treatment process. Although it has the advantage of not breaking, and is attracting attention in this respect, it is not compatible with glass, and in particular, the adhesion or peeling force of the coating to optical communication fibers changes significantly over time.
If left in water, it will gradually peel off from the glass surface, which will increase the transmission loss of the optical communication fiber. Furthermore, if the coating is left under high-temperature conditions even in air, the adhesion to the glass surface will increase more than necessary, which will make the post-coating process difficult. The present invention was developed in view of the above circumstances, and has good adhesion to a glass surface even when left underwater, and does not increase adhesion excessively even under high temperature conditions. A coating agent for optical communication fibers that provides a coating (cured product) with little change in adhesive force or peeling force over time, maintains appropriate adhesion, and facilitates post-coating treatment steps, and a cured product of the coating agent. The purpose of the present invention is to provide an optical communication fiber coated with Means and Effects for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies and found that polymerizable carbon and carbon dioxide are present in the molecules of polyether compounds or acrylates of polyester compounds. Aminoalkylsilanes such as γ-aminopropyltrialkoxysilane and the following general formula are used as photopolymerizable compounds having one or more double bonds. (However, in the formula, m and n represent 0 or a positive number,
0≦m+n≦10) or an acetylene alcohol in which some or all of the hydrogen atoms bonded to the carbon atoms in the formula are replaced with halogen atoms, the resulting coating material can be dissolved in water. The inventors have discovered that it is possible to minimize the decrease in adhesion to the glass surface even under high temperature conditions, and to provide a cured product with minimal increase in adhesion even under high-temperature conditions. This is what we have come to complete. Therefore, the present invention provides (A) a photopolymerizable compound having one or more polymerizable carbon-carbon double bonds in the molecule, (B) an aminoalkylsilane, (C) the following general formula (1) (However, in the formula, m and n represent 0 or a positive number,
0≦m+n≦10) or an acetylene alcohol represented by the above formula (1) in which some or all of the hydrogen atoms bonded to the carbon atoms are replaced with halogen atoms, and (D) a photopolymerization initiator. The present invention provides a coating agent for optical communication fiber characterized by containing the present invention, and an optical communication fiber characterized by being coated with a cured product of the coating agent. The present invention will be explained in more detail below. The photopolymerizable compound having one or more polymerizable carbon/carbon double bonds in the molecule of component (A) constituting the coating material of the present invention includes, as its functional group, an acrylic group, a methacrylic group, and groups thereof. Examples include those having a group selected from groups in which part or all of the hydrogen atoms bonded to the carbon atoms of There is no problem even if those having one carbon-carbon double bond and those having two or more carbon-carbon double bonds coexist. The skeleton of this photopolymerizable compound is not particularly limited, and various skeletons may be employed. Specifically, polyether compounds such as polytetramethylene glycol, polypropylene glycol, and random copolymers of tetrahydrofuran and propylene oxide,
Examples include polyester compounds such as poly-ε-caprolactone, and as the component (A) of the present invention, compounds obtained by modifying the molecular chain terminals of these compounds with acrylic or methacryl are used. Next, the aminoalkylsilane of component (B) is not particularly limited, and various kinds can be used. Specifically, the aminoalkyl group includes primary amino groups such as γ-aminopropyl group, δ-aminobutyl group, and ε-aminopentyl group; secondary amino groups such as N-phenyl-γ-aminopropyl group; , tertiary amino group such as N'-dimethyl-γ-aminopropyl group, N-
Groups with multiple amino groups such as β(aminoethyl)-γ-aminopropyl groups, or groups in which some or all of the hydrogen atoms bonded to the carbon atoms of these groups are replaced with halogen atoms, etc. Mention may be made of silane compounds. In addition, the aminoalkylsilane of component (B) may contain an alkoxy group, a hydroxyl group, an alkyl group, an alkenyl group, an aryloxy group, or an aryl group, and examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group. Aryloxy groups include phenoxy groups, alkenyl groups include vinyl groups, allyl groups, etc., aryl groups include phenyl groups, tolyl groups, etc. Examples of the group include a methyl group, an ethyl group, a propyl group, a butyl group, and a group in which some or all of the hydrogen atoms bonded to the carbon atoms of these groups are replaced with halogen atoms. Note that among these aminoalkylsilanes, γ-aminopropyltrialkoxylacine is particularly preferred. In addition, the acetylene alcohol of component (C) is expressed by the following general formula (1). (However, in the formula, m and n represent 0 or a positive number,
0≦m+n≦10). Specifically, a commercially available product is Surf Inol 104 (m+n=0, Nissin Chemical Industry Co., Ltd.).
Surf Inol 440 (m + n = 3.5, product name manufactured by Nissin Chemical Industry Co., Ltd.), Surf Inol 465 (m
+n=10, trade name manufactured by Nissin Chemical Industry Co., Ltd.). In addition, as component (C), the above formula
Those in which part or all of the hydrogen atoms bonded to the carbon atoms in (1) are replaced with halogen atoms are also preferably used. Here, m and n in the above formula (1) are 0 or positive numbers satisfying 0≦m+n≦10, as described above,
When m+n exceeds 10, the peelability of the resulting coating material in water after being hardened onto a glass plate increases, making it impossible to achieve the object of the present invention. A polymerization initiator is further added as component (D) to the coating material of the present invention, and examples of such polymerization initiators include IRGAKYUR 184 (trade name manufactured by Ciba Geigy Co., Ltd.) and DAROCKYUR 1173 (trade name manufactured by Merck Co., Ltd.). ) product name) etc.
-Hydroxyacetophenone photoinitiator, benzophenone, benzophenone photoinitiator such as 3,3-dimethyl-4-methoxybenzophenone, thioxanthone such as 2,4-diethylthioxanthone, 2-chlorothioisanthone, etc. Examples include photopolymerization initiators. The coating material for optical communication fiber of the present invention includes the above (A)
It contains a mixture of a photopolymerizable compound (component), an aminoalkylsilane (component (B)), acetylene alcohol (component (C)), and a polymerization initiator (component (D)). It can be determined depending on the properties required for the coating material for optical communication fiber, but in particular, for 100 parts by weight of component (A),
Component (B) is preferably 0.1 part by weight or more,
More preferably, it is 0.5 to 2 parts by weight. (A) Ingredient 100
When component (B) is less than 0.1 parts by weight based on parts by weight,
The object of the present invention may not be achieved due to increased peelability in water after the coating is cured on the glass plate. In addition, the amount of (C) component is (A) component
The amount of component (C) is preferably 0.1 parts by weight or more, more preferably 0.5 to 2 parts by weight, per 100 parts by weight. If the amount of component (C) is less than 0.1 part by weight relative to 100 parts by weight of component (A), the adhesion to the glass under high temperature conditions after curing the coating material on the glass plate will be extremely increased. In some cases, the object of the present invention may not be achieved. Furthermore, the blending amount of component (D) is the same as that of component (A).
The amount is preferably 1 to 5 parts by weight per 100 parts by weight. In addition, antioxidants, light stabilizers, etc. may be added to this optical communication fiber coating material as necessary, and metal oxides such as finely powdered silica such as fumed silica, titanium oxide, aluminum oxide, etc. , fillers such as carbon black, and other additives may be added. When coating an optical communication fiber with the coating material of the present invention, a method is preferably employed in which the coating material of the present invention is applied to the surface of the optical communication fiber and cured by irradiation with ultraviolet rays. The coating material for optical communication fibers of the present invention is suitably used as a coating material for quartz-based optical communication fibers, but it can also be used as a coating material for multi-component glass-based or plastic-based optical communication fibers. It can also be suitably used as an adhesive for other glasses and as a coating agent for printed circuit boards. Effects of the Invention As explained above, the coating material for optical communication fiber of the present invention exhibits stable adhesion to quartz-based optical communication fiber and has good adhesion to glass surfaces even in water. In addition, the coating material for optical communication fiber of the present invention provides a cured product that does not easily peel off from the glass surface, thereby providing an optical communication fiber with low transmission loss. Since the coating does not cause an excessive increase in adhesion to glass under high temperature conditions in air, processing steps after coating can be carried out easily. Therefore, the optical communication fiber coated with the cured product of the coating material of the present invention has excellent transmission properties and can be easily subjected to processing steps such as when connecting optical communication fibers to each other. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below. Example 1 50 g of a random copolymer of tetrahydrofuran and propylene oxide with an average molecular weight of 4000 and acrylic modified polymer at the molecular chain end, oligoester acrylate (structural formula: p≒2.5 Manufactured by Toagosei Chemical Industry Co., Ltd. Product name: Aronix M
-117) 50 g, 0.5 g of γ-aminopropyltrimethoxysilane as an adhesion aid, tetramethyldecynediol (structural formula: Manufactured by Nissin Chemical Industry Co., Ltd. Product name: Surf Inol 104)
0.5g, 2-hydroxy-2- as polymerization initiator
3 g of methylpropiophenone (trade name: Darokyure 1173, manufactured by Merck & Co., Ltd.) was mixed to obtain a coating material for optical communication fibers having a viscosity of 6300 cp at 25°C. This coating was applied to a glass fiber with a diameter of 125 μm at room temperature to a thickness of 100 μm at a speed of 30 m/min. When the film was cured, an optical communication fiber uniformly coated with the cured product of this coating material was obtained. On the other hand, the coating material for optical communication fiber obtained above was coated on a glass plate in a width of 25 mm and a thickness of 0.6 mm, and the coating was cured by irradiating ultraviolet rays under the same conditions as above at 80°C. and those heated in a dryer.
For each sample immersed in 25°C water, the 90° tensile peeling force (pulling speed 30 mm/min) was measured using Autograph AGS-500B (trade name, manufactured by Shimadzu Corporation). The results are shown in Table 1. Comparative Example 1 A coating material having a viscosity of 6750 cp at 25° C. was prepared in the same manner as in Example 1 except that γ-aminopropyltrimethoxysilane and tetramethyldecynediol (trade name: Surfynol 104) were not added. When this coating material was applied to a glass fiber in the same manner as in Example 1 and the coating film was cured by ultraviolet irradiation, an optical communication fiber uniformly coated with the cured product of this coating material was obtained. . On the other hand, the tensile peeling force of the cured film of this coating material was measured in the same manner as in Example 1. Results first
Shown in the table. Comparative Example 2 A coating material having a viscosity of 6410 cp at 25° C. was prepared in the same manner as in Example 1 except that tetramethyldecynediol (trade name: Surfynol 104) was not added. When this coating material was applied to a glass fiber in the same manner as in Example 1 and the coating film was cured by ultraviolet irradiation, an optical communication fiber uniformly coated with the cured product of this coating material was obtained. . On the other hand, the tensile peeling force of the cured film of this coating material was measured in the same manner as in Example 1. Results first
Shown in the table. Comparative Example 3 A coating having a viscosity of 6650 cp at 25° C. was prepared in the same manner as in Example 1 except that γ-aminopropyltrimethoxysilane was not added. This coating material was applied to a glass fiber in the same manner as in Example 1,
When this coating film was cured by irradiation with ultraviolet rays, an optical communication fiber uniformly coated with the cured product of this coating material was obtained. On the other hand, the tensile peeling force of the cured film of this coating material was measured in the same manner as in Example 1. Results first
Shown in the table. Comparative example 4 Instead of tetramethyldecynediol (product name: Surfynol 104) (Product name: Surf Inol manufactured by Nissin Chemical Industry Co., Ltd.)
A coating material having a viscosity of 6260 cp at 25° C. was prepared in the same manner as in Example 1 except that 0.5 g of 485) was added. When this coating material was applied to a glass fiber in the same manner as in Example 1 and the coating film was cured by ultraviolet irradiation, an optical communication fiber uniformly coated with the cured product of this coating material was obtained. . Next, the tensile peeling force of the cured film of this coating material was measured in the same manner as in Example 1. The results are shown in Table 1. Example 2 Polymer 70 in which the molecular chain end of polytetramethylene glycol with an average molecular weight of 3000 was modified with acrylic
g, as a reactive diluent q≒4 (trade name: Aronix M-113 manufactured by Toagosei Chemical Industry Co., Ltd.) 30g, γ-aminopropyltriethoxysilane 2.0g as an adhesion aid, (Product name: Surf Inol manufactured by Nissin Chemical Industry Co., Ltd.)
465) and 3 g of 2-hydroxy-2-methylpropiophenone (product name: Darokyuur 1173, manufactured by Merck & Co., Ltd.) as a polymerization initiator were mixed to obtain a coating material having a viscosity of 4550 cp at 25°C. When this coating material was applied to a glass fiber in the same manner as in Example 1 and the coating film was cured by ultraviolet irradiation, an optical communication fiber uniformly coated with the cured product of this coating material was obtained. . On the other hand, the tensile peeling force of the cured film of this coating material was measured in the same manner as in Example 1. The results are shown in Table 1. Example 3 60 g of polyε-caprolactone with an average molecular weight of 3000, acrylic-modified polymer at the molecular chain end, as a reactive diluent (Product name: R-629 manufactured by Nippon Kayaku Co., Ltd.) 40g, γ-aminopropyltrimethoxysilane 1.0g as an adhesion aid, polyoxyethylenetetramethyldecynediol diether (structural formula: Manufactured by Nissin Chemical Industry Co., Ltd. Product name: Surf Inol 440)
2.0g, 2-hydroxy-2- as polymerization initiator
3 g of methylpropiophenone (trade name: Darokyure 1173, manufactured by Merck & Co., Ltd.) was mixed to obtain a coating material having a viscosity of 7320 cp at 25°C. When this coating material was applied to a glass fiber in the same manner as in Example 1 and the coating film was cured by irradiation with ultraviolet rays, an optical communication fiber uniformly coated with the cured product of this coating material was obtained. . On the other hand, the tensile peeling force of the cured film of this coating material was measured in the same manner as in Example 1. The results are shown in Table 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A) 分子内に重合性炭素・炭素二重結合を1
個以上有する光重合化合物、 (B) アミノアルキルシラン、 (C) 下記一般式(1) (但し、式中m及びnは0又は正の数を示
し、0≦m+n≦10である) で示されるアセチレンアルコール又は上記式(1)
中の炭素原子に結合した水素原子の一部又は全
部をハロゲン原子と置換したもの、及び (D) 光重合開始剤 を含有することを特徴とする光通信フアイバー用
被覆剤。 2 請求項1記載の被覆剤の硬化体で被覆された
ことを特徴とする光通信フアイバー。
[Claims] 1 (A) One polymerizable carbon-carbon double bond in the molecule
(B) aminoalkylsilane, (C) the following general formula (1) (However, in the formula, m and n represent 0 or a positive number, and 0≦m+n≦10) or the above formula (1)
1. A coating material for optical communication fibers, comprising: (D) a photopolymerization initiator in which some or all of the hydrogen atoms bonded to carbon atoms in the fiber are replaced with halogen atoms; and (D) a photopolymerization initiator. 2. An optical communication fiber coated with a cured product of the coating material according to claim 1.
JP63041020A 1988-02-24 1988-02-24 Coating agent for optical communication fiber and optical communication fiber Granted JPH01215744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63041020A JPH01215744A (en) 1988-02-24 1988-02-24 Coating agent for optical communication fiber and optical communication fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63041020A JPH01215744A (en) 1988-02-24 1988-02-24 Coating agent for optical communication fiber and optical communication fiber

Publications (2)

Publication Number Publication Date
JPH01215744A JPH01215744A (en) 1989-08-29
JPH055775B2 true JPH055775B2 (en) 1993-01-25

Family

ID=12596711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63041020A Granted JPH01215744A (en) 1988-02-24 1988-02-24 Coating agent for optical communication fiber and optical communication fiber

Country Status (1)

Country Link
JP (1) JPH01215744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004481A (en) * 2002-04-05 2004-01-08 Furukawa Electric Co Ltd:The Glass optical fiber strand for fiber grating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004481A (en) * 2002-04-05 2004-01-08 Furukawa Electric Co Ltd:The Glass optical fiber strand for fiber grating

Also Published As

Publication number Publication date
JPH01215744A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
US4389432A (en) Method of improving adhesion and adhesion improvers used therefor
JPS581756A (en) Uv-curable composition, coated product and manufacture
JPS61232A (en) Novel acrylated polymer
JP6916444B2 (en) Photocurable compositions for nails or artificial nails, base coating agents containing them, cured products thereof, methods for producing these cured products, peeling methods for these cured products, coating methods using these, and their use. Method
CN108276932A (en) A kind of dual cure UV glue stick for low-surface-energy material bonding
JPH08301954A (en) Curable release agent composition
JP3839660B2 (en) Hard coat agent composition and hard coat material
JPS63221120A (en) Hardenable composition
US5520767A (en) Compositions for bonding organosiloxane elastomers to organic polymers
US5424357A (en) Compositions for bonding organosiloxane elastomers to organic polymers
JPS62240363A (en) Silicone composition for release film
JPH08269293A (en) Curable release agent composition
US4697877A (en) Surface-coated optical fiber
JPH10140078A (en) Solventless type curable silicone composition for coating
JPH055775B2 (en)
EP3562903A1 (en) Photo-curable adhesive composition, cured product and use thereof
JP3361593B2 (en) Coating composition
EP4303283A2 (en) Pressure sensitive adhesives and articles with hyperbranched silsesquioxane core and methods of making the same
JPH07286117A (en) Photo-setting moistureproof insulating coating and production of moistureproof insulated electronic part
JPH08239437A (en) Alicyclic-epoxy-contianing silicone-grafted vinyl polymer and its production
JPH0949926A (en) Adhesive composition for protecting polarizing plate
WO1999018155A1 (en) Release compositions
JPS6158085B2 (en)
CN106398561A (en) Optical adhesive tape product, touch display device and laminating method thereof
JP2003105043A (en) Photocurable composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees