[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0554179B2 - - Google Patents

Info

Publication number
JPH0554179B2
JPH0554179B2 JP58191280A JP19128083A JPH0554179B2 JP H0554179 B2 JPH0554179 B2 JP H0554179B2 JP 58191280 A JP58191280 A JP 58191280A JP 19128083 A JP19128083 A JP 19128083A JP H0554179 B2 JPH0554179 B2 JP H0554179B2
Authority
JP
Japan
Prior art keywords
reflected light
objective lens
recording medium
photodetector
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP58191280A
Other languages
Japanese (ja)
Other versions
JPS6083229A (en
Inventor
Kazuo Okada
Shinsuke Shikama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58191280A priority Critical patent/JPS6083229A/en
Priority to DE8484110194T priority patent/DE3484723D1/en
Priority to EP19840110194 priority patent/EP0137272B1/en
Publication of JPS6083229A publication Critical patent/JPS6083229A/en
Publication of JPH0554179B2 publication Critical patent/JPH0554179B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • G11B7/0909Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only by astigmatic methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/094Methods and circuits for servo offset compensation

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、デジタルオーデイオデイスク、ビ
デオデイスク、コンピユータの光デイスク等の情
報記録媒体から情報を読出し或は書き込む光デイ
スクヘツドの自動焦点調節装置特に非点収差光学
系を用いた自動焦点調節装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to an automatic focusing device for an optical disk head that reads or writes information from an information recording medium such as a digital audio disk, a video disk, or a computer optical disk. The present invention relates to an automatic focusing device using a point aberration optical system.

〔従来技術〕[Prior art]

近年情報記録盤上に光学的に記録された情報を
レーザ光を用いたヘツドで再生したり、逆に情報
を記録する。光ビデオデイスク装置、光オーデイ
オデイスク装置等の開発が盛んである。この種光
デイスク装置のヘツド(以下光デイスクヘツドと
称す)では、情報の正確な記録再生の為に、集束
レーザ光を情報記録媒体であるデイスクの情報記
録トラツク上に常に正しく焦点合わせをして照射
する為の自動焦点調節装置が必要である。このよ
うな自動焦点装置として、非点収差光学系を用い
て情報検出及び焦点位置検出を行なう方式が知ら
れている。第1図はこの従来の非点収差光学系を
使用した光デイスクヘツドの自動焦点調節装置を
概略的に示す光路図、第2図はその光検知器以下
のサーボ機構を示す概略図である。図において1
は半導体レーザ等の光源、2は光源1より出射さ
れた出射光束、3は対物レンズ、4は対物レンズ
の合焦点位置付近に置かれたデイジタルオーデイ
オ信号、ビデオ信号等の情報がトラツク状に記録
されている情報記録媒体である光デイスク、5は
デイスク4上の集光スポツトから対物レンズ3を
へての反射光束、6は出射光束を分離するビーム
スプリツタ、7は反射光束5に非点収差を与える
光学素子である円筒レンズでその円筒軸方向をx
(紙面に直角)、これにレンズ面内で直交する方向
をyとする。8はx、y方向と45°の角度をもつ
分割線で8a,8b,8c,8dに4分割された
光検知器、9はそれへ投射される反射光束5によ
る合焦時の反射光スポツト、9xはデイスク4が
合焦点位置より近ずいた時の、9yは遠ざかつた
時の反射光スポツト、10は加算器11,12及
び差動増幅器13よりなる焦点位置検出回路、1
4は加算器からなる情報検出回路、15は対物レ
ンズを光軸方向に移動させるフオーカスアクチエ
ータ、16はフオーカスアクチエータ15を附勢
し対物レンズを駆動するレンズ駆動回路、17は
図示されていない情報再生回路である。
In recent years, information optically recorded on an information recording disk is reproduced by a head using a laser beam, or conversely, information is recorded. Optical video disc devices, optical audio disc devices, etc. are being actively developed. In the head of this type of optical disk device (hereinafter referred to as an optical disk head), in order to accurately record and reproduce information, a focused laser beam is always correctly focused onto the information recording track of the disk, which is the information recording medium. An automatic focusing device is required for illumination. As such an automatic focusing device, a method is known in which information detection and focus position detection are performed using an astigmatism optical system. FIG. 1 is an optical path diagram schematically showing an automatic focusing device for an optical disk head using this conventional astigmatism optical system, and FIG. 2 is a schematic diagram showing a servo mechanism below the photodetector. In the figure 1
is a light source such as a semiconductor laser, 2 is an emitted light beam emitted from the light source 1, 3 is an objective lens, and 4 is a digital audio signal, video signal, etc. placed near the focal point position of the objective lens, and information such as a track is recorded therein. 5 is a reflected light beam that passes through the objective lens 3 from a condensing spot on the disk 4, 6 is a beam splitter that separates the emitted light beam, and 7 is an astigmatism for the reflected light beam 5. A cylindrical lens is an optical element that gives an aberration, and its cylindrical axis direction is
(perpendicular to the plane of the paper), and the direction perpendicular to this within the lens plane is y. 8 is a photodetector divided into four parts 8a, 8b, 8c, and 8d by a dividing line having an angle of 45 degrees with the x and y directions, and 9 is a reflected light spot when focused by the reflected light beam 5 projected thereon. , 9x is the reflected light spot when the disk 4 approaches the in-focus position, 9y is the reflected light spot when the disk 4 is moving away from the focused position, 10 is a focal position detection circuit consisting of adders 11, 12 and a differential amplifier 13, 1
4 is an information detection circuit consisting of an adder; 15 is a focus actuator that moves the objective lens in the optical axis direction; 16 is a lens drive circuit that energizes the focus actuator 15 to drive the objective lens; 17 is not shown; There is no information reproducing circuit.

次にその動作を説明する。光源1より出射した
レーザ出射光束2は対物レンズ3により収束さ
れ、デイスク4のトラツク上に集光スポツトを形
成する。この集光スポツトからのデイスク4上の
情報トラツクから読出された情報を含む反射光束
5はビームスプリツタ6で出射光束2と分離さ
れ、円筒レンズ7によつて一方向だけより収束さ
れる非点収差光束に変換される。即ち円筒レンズ
7の円筒軸x方向と光軸を含む面内ではレンズ作
用はなく、対物レンズ3による収束作用で点Pに
集光し、xと直交するy方向と光軸を含む平面
(紙面)内では円筒レンズ7の収束作用により点
Qに集光する。従つて非点収差を受けた反射光束
の光分布形状は、点Qにおいてx方向に長い線
状、P点においてy方向に長い線状、その間では
x、yの何れかの方向を長径とする長円形か円形
となる。デイスク4が対物レンズ3の合焦点位置
にある時(以下合焦時と称す)に非点収差を受け
た反射光束の光分布形状が円形となる位置に4分
割光検知器8が置かれている。従つて、光検知器
8に、合焦時には円形の反射光スポツト9が、光
デイスク4が合焦時より対物レンズ3に近ずく方
向に変位するとx方向に細長い長円形の反射光ス
ポツト9xが合焦時より遠ざかる方向に変位する
とy方向に細長い長円形の反射光スポツト9yが
入射される。そして円形反射光スポツト9の時の
各受光領域8a,8b,8c,8dによる受光面
積は等しく、長径がx方向の反射光スポツト9x
の時は受光領域8a,8cが、長径がy方向の反
射光スポツト9yの時は、受光領域8b,8d
が、他の領域より受光面積が大となる。よつて受
光領域8a,8cの受光出力和をとる加算器11
の出力と、受光領域8b,8dの受光出力和をと
る加算器12の出力との差を差動増幅器13より
取出せば、その出力信号、即ち焦点位置検出回路
10の出力信号Efは、合焦時で円形の反射光スポ
ツト9の時は零、光デイスク4が合焦時より近ず
きx方向に細長い反射光スポツト9xになると
正、光デイスク4が合焦時より等ざかりy方向に
細長い反射光スポツト9yになると負になり、そ
の合焦点位置からのずれに略比例した大きさの出
力となる。従つてこの焦点位置検出回路10の出
力Efによりレンズ駆動回路16を制御し、フオー
カスアクチエータ15を付勢させ、対物レンズ3
を光軸方向に動かすことによつて自動的に焦点合
わせが行なわれる。又、反射光束5に含まれる光
デイスク4からの読出し情報は各受光領域による
受光出力和をとる情報検出回路14により取出さ
れる再生回路17に導かれる。
Next, its operation will be explained. A laser beam 2 emitted from a light source 1 is converged by an objective lens 3 to form a condensing spot on a track of a disk 4. The reflected light beam 5 containing information read from the information track on the disk 4 from this condensing spot is separated from the output light beam 2 by a beam splitter 6, and is converged in one direction by a cylindrical lens 7 to an astigmatic point. It is converted into an aberrational beam. In other words, the cylindrical lens 7 has no lens action in the plane that includes the cylindrical axis x direction and the optical axis, and the objective lens 3 converges the light to a point P in the y direction perpendicular to x and the plane that includes the optical axis (the plane of the paper). ), the light is focused on a point Q by the convergence effect of the cylindrical lens 7. Therefore, the light distribution shape of the reflected light beam subjected to astigmatism is a long line in the x direction at point Q, a long line in the y direction at point P, and the major axis is in either the x or y direction between them. It can be oval or circular. A 4-split photodetector 8 is placed at a position where the light distribution shape of the reflected light beam subjected to astigmatism becomes circular when the disk 4 is at the focused position of the objective lens 3 (hereinafter referred to as "in-focus"). There is. Therefore, when the photodetector 8 is in focus, a circular reflected light spot 9 appears, and when the optical disk 4 is displaced in a direction closer to the objective lens 3 than when it is focused, an elongated oval reflected light spot 9x in the x direction appears. When the light is displaced in a direction away from the focused state, a reflected light spot 9y having an elongated oval shape in the y direction is incident. When the circular reflected light spot 9 is formed, the light receiving areas 8a, 8b, 8c, and 8d have the same light receiving area, and the reflected light spot 9x has the major axis in the x direction.
When the reflected light spot 9y has a long axis in the y direction, the light receiving areas 8a and 8c are the light receiving areas 8b and 8d.
However, the light receiving area is larger than other areas. Therefore, the adder 11 calculates the sum of the light receiving outputs of the light receiving areas 8a and 8c.
, and the output of the adder 12 which calculates the sum of the light receiving outputs of the light receiving areas 8b and 8d, from the differential amplifier 13, the output signal, that is, the output signal Ef of the focal position detection circuit 10, When the reflected light spot 9 is circular, it is zero, and when the optical disc 4 is closer than when in focus, and the reflected light spot 9x is elongated in the x direction, it is positive, and when the optical disc 4 is equidistant than when it is in focus, it is elongated in the y direction. At the reflected light spot 9y, the output becomes negative, and the output is approximately proportional to the deviation from the focused position. Therefore, the lens drive circuit 16 is controlled by the output E f of the focus position detection circuit 10, and the focus actuator 15 is energized, so that the objective lens 3
Focusing is performed automatically by moving the lens in the direction of the optical axis. Further, the read information from the optical disk 4 included in the reflected light beam 5 is guided to a reproducing circuit 17 where it is extracted by an information detecting circuit 14 that calculates the sum of the light receiving outputs of each light receiving area.

しかし上述の従来装置では実用にあたつて次の
ような問題点があつた。即ち、合焦時の差動増幅
器13の出力、Efは零であるが、光検知器8への
反射光強度が零というわけではない。受光領域8
aと8cへの入射光強度の和と8bと8dへの入
射光強度の和がバランスしているため出力が零と
なつているにすぎない。この時光検知器8面上の
反射光束の分布が何等かの原因で変化すると、上
記のバランスがくずれて、合焦点位置が変つてい
ないのにかかわらずあたかも焦点位置が変化した
かのように差動増幅器13に出力が生ずる。これ
の原因としては、光源1の発光分布変動がある。
光源1が半導体レーザの場合は励起電流の変化
や、経年的な劣化によつて発光分布が変化する。
光束分布は中心が最大強度の単峰の山型強度分布
であり、かつ4分割の中心が光束中心と一致して
いるため、わずかな分布の変動もバランスに大き
く影響する。また他の要因として、アドオンデイ
スク(記録可能デイスク)におけるプリグループ
(案内トラツク)や記録ピツトからの回折光成分
の影響がある。これらの回折光のパターン分布は
光軸対称とは限らず、トラツクずれの程度や、プ
リグルーブに信号が記録されているかどうかで変
化する。このため合焦時の円形分布が崩れて追跡
点のオフセツトが生ずることになる。
However, the above-mentioned conventional device has the following problems in practical use. That is, although the output of the differential amplifier 13, E f , at the time of focusing is zero, the intensity of the reflected light to the photodetector 8 is not zero. Light receiving area 8
The output is simply zero because the sum of the intensities of incident light to a and 8c and the sum of intensities of incident light to 8b and 8d are balanced. At this time, if the distribution of the reflected light flux on the photodetector 8 surface changes for some reason, the above balance will be disrupted, and it will appear as if the focal point position has changed even though the focal point position has not changed. An output is produced in differential amplifier 13. The cause of this is a variation in the light emission distribution of the light source 1.
When the light source 1 is a semiconductor laser, the emission distribution changes due to changes in excitation current and deterioration over time.
The luminous flux distribution is a single-peaked mountain-shaped intensity distribution with the maximum intensity at the center, and the center of the four divisions coincides with the luminous flux center, so even slight variations in the distribution greatly affect the balance. Another factor is the influence of diffracted light components from pre-groups (guide tracks) and recording pits in add-on disks (recordable disks). The pattern distribution of these diffracted lights is not necessarily symmetrical about the optical axis, but changes depending on the degree of track deviation and whether or not a signal is recorded in the pregroove. As a result, the circular distribution at the time of focus collapses, resulting in an offset of the tracking point.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除
去するためになされたもので、光検知器を、合焦
時のこれへの反射光束を焦点位置検出にはほとん
ど利用しないよう構成することにより、追跡点の
オフセツトの少ない自動焦点調節装置を提供する
ことを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by configuring the photodetector so that the light beam reflected thereon during focusing is hardly used for detecting the focal position, It is an object of the present invention to provide an automatic focusing device with a small offset of a tracking point.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の一実施例を図について説明す
る。第3図はこの発明の一実施例である自動焦点
調節装置において用いる光検知器の構成及びその
接続例を示す概略図で、他の部分は第1図、第2
図と同一構成を有している。図において、第2図
と同一符号は同一或は相当部分を示し、18は5
分割光検知器で、その中央部が円形の分割線によ
り外側部と区切られた中央領域18eと、外側部
がx、y方向と45°の角度をもつ分割線で4分割
された4分割外側領域18a,18b,18c,
18dとにより構成されている。即ち、中央領域
18eが新たに設けられ、その位置及び大きさ
が、合焦時のそれへの反射光スポツト9の位置及
び大きさとほぼ一致するか、僅かに小さい程度に
設定される。そして焦点位置検出回路10には4
分割外側領域18a,18b,18c,18dの
みが接続され、中央領域18eは、情報再生回路
17に接続される。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is a schematic diagram showing the configuration and connection example of a photodetector used in an automatic focus adjustment device that is an embodiment of the present invention; other parts are shown in FIGS. 1 and 2.
It has the same configuration as the figure. In the figure, the same symbols as in Figure 2 indicate the same or corresponding parts, and 18 is 5.
It is a split photodetector, with a central region 18e whose central part is separated from the outer part by a circular dividing line, and an outer quadrant where the outer part is divided into four by dividing lines having an angle of 45 degrees with the x and y directions. areas 18a, 18b, 18c,
18d. That is, the central region 18e is newly provided, and its position and size are set to be approximately equal to, or slightly smaller than, the position and size of the reflected light spot 9 upon focusing. The focus position detection circuit 10 has four
Only the divided outer regions 18a, 18b, 18c, and 18d are connected, and the central region 18e is connected to the information reproducing circuit 17.

次に、その動作を説明する、今、光デイスク4
が対物レンズ3に近ずき過ぎると、光検知器18
への反射光スポツトは9xのようになり、差動増
幅器13の出力Efは正となり、対物レンズ3は光
デイスク4から遠ざかるよう制御される。逆に光
デイスク4が合焦点位置より遠ざかり過ぎると、
反射光スポツトは9yのようになり、差動増幅器
13の出力Efは負となり、対物レンズ3は光デイ
スク4に近ずくよう制御される。光デイスク4が
合焦点位置にある時は、反射光スポツト9の大部
分は中央領域18e上に入射し、外側領域18
a,18b,18c,18d上には殆ど入射しな
い。従つて合焦状態では、焦点位置検出回路10
の入力も出力も零に近い。もちろん合焦時は、反
射光スポツト9は円形であるから、所定量の僅か
な光束が光検知器20の外側領域18a,18
b,18c,18dに入射しても、加算器11,
12の出力はバランスしており、差動増幅器13
の出力Efは零である。再生高周波信号は中央領域
18eから得られる。
Next, we will explain the operation of optical disk 4.
comes too close to the objective lens 3, the photodetector 18
The reflected light spot becomes 9x, the output E f of the differential amplifier 13 becomes positive, and the objective lens 3 is controlled to move away from the optical disk 4. Conversely, if the optical disk 4 moves too far away from the focal point position,
The reflected light spot becomes 9y, the output E f of the differential amplifier 13 becomes negative, and the objective lens 3 is controlled to approach the optical disk 4. When the optical disk 4 is at the focused position, most of the reflected light spot 9 is incident on the central region 18e, and the outer region 18
Almost no light is incident on a, 18b, 18c, and 18d. Therefore, in the focused state, the focus position detection circuit 10
Both the input and output of are close to zero. Of course, at the time of focusing, since the reflected light spot 9 is circular, a small predetermined amount of light flux is transmitted to the outer areas 18a, 18 of the photodetector 20.
b, 18c, 18d, the adder 11,
The output of 12 is balanced, and the output of differential amplifier 13
The output E f is zero. A reproduced high frequency signal is obtained from the central region 18e.

このように、第3図に示す光検知器18は、合
焦時に焦点位置検出用の外側領域18a,18
b,18c,18dには反射光が入射しないか、
入射しても僅かな光しか入射しない構成となつて
いるので、反射レーザ光束の分布が変動しても、
零点のドリフトが生じない。即ち、第1図の従来
例では、合焦時には受光領域8a,8cに入射す
る強い光に、受光領域8b,8dに入射する強い
光がバランスして例の信号Efを生じていたわけで
あるから、光束分布の変化はまともに零点ドリフ
トに結びつく。これに対しこの発明では、上述の
ように合焦時には焦点位置検出用の光検知器外側
領域に反射光束が殆ど入射しないので、反射光束
分布が変わつても零点ドリフトが原理的に発生し
ようがないわけである。
In this way, the photodetector 18 shown in FIG.
Is no reflected light incident on b, 18c, 18d?
The structure is such that only a small amount of light enters even if it enters, so even if the distribution of the reflected laser beam changes,
Zero point drift does not occur. That is, in the conventional example shown in FIG. 1, when focusing, the strong light incident on the light receiving areas 8a and 8c and the strong light incident on the light receiving areas 8b and 8d are balanced to produce the signal E f in the example. Therefore, changes in the luminous flux distribution are directly linked to zero point drift. On the other hand, in this invention, as mentioned above, during focusing, almost no reflected light flux enters the outer area of the photodetector for detecting the focus position, so there is no way in principle that zero point drift will occur even if the reflected light flux distribution changes. That's why.

従つて、半導体レーザ光束の分布変化などに強
く、また記録可能デイスクや記録消去可能デイス
クなどのプリグループからの回折による反射光束
分布の変化に影響され難い自動焦点調節装置が構
成できる。
Therefore, it is possible to construct an automatic focus adjustment device that is resistant to changes in the distribution of the semiconductor laser beam and is not easily affected by changes in the distribution of the reflected beam due to diffraction from the pre-group of a recordable disk, a recordable and erasable disk, or the like.

以上の実施例では、再生信号を光検知器中央領
域18eから取出すように構成したが、外側領域
18a,18b,18c,18dの受光出力和か
ら再生信号を取出すようにしてもよい。
In the above embodiment, the reproduced signal is extracted from the central region 18e of the photodetector, but the reproduced signal may be extracted from the sum of the received light outputs of the outer regions 18a, 18b, 18c, and 18d.

〔発明の効果〕〔Effect of the invention〕

以上のように、本願発明では光デイスク上の集
束光が合焦状態の時に、光検知器の4分割外側領
域には殆んど反射光が入射しないから、光検知器
上の光束の分布が変動しても、フオーカス検出信
号の乱れが小さくできる、また光検知器が平面状
の5分割構成されるので、光検知器の各素子間の
隙間が少ないから、光量の損失が少なく、動作が
正確であるという効果を有する。
As described above, in the present invention, when the convergent light on the optical disk is in focus, almost no reflected light enters the outer quadrant of the photodetector, so the distribution of the light flux on the photodetector is Even if the focus changes, the disturbance in the focus detection signal can be minimized.Also, since the photodetector is configured into five planar parts, there is little gap between each element of the photodetector, so there is less loss of light amount and operation is improved. It has the effect of being accurate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の非点収差光学系を使用した光
デイスクヘツドの自動焦点調節装置を示す概略光
路図、第2図はそれの光検知器以下のサーボ機構
を示す概略図、第3図はこの発明の一実施例にお
ける光検知器の構成及びその接続を示す概略図で
ある。 図において、1は光源、3は対物レンズ、4は
情報記録媒体である光デイスク、6はビームスプ
リツタ、7は非点収差光学素子である円筒レン
ズ、8は4分割光検知器、10は焦点位置検出回
路、11,12はその加算器、13差作動増幅
器、14は情報検出回路、15はフオーカスアク
チエータ、16はレンズ駆動回路、18は5分割
光検知器、19eはそれの中央領域、19a,1
9b,19c,19dは外側領域である。図中同
一符号は同一或は相当部分を示している。
Fig. 1 is a schematic optical path diagram showing an automatic focus adjustment device for an optical disk head using a conventional astigmatic optical system, Fig. 2 is a schematic diagram showing the servo mechanism below the photodetector, and Fig. 3 1 is a schematic diagram showing the configuration of a photodetector and its connections in an embodiment of the present invention. In the figure, 1 is a light source, 3 is an objective lens, 4 is an optical disk that is an information recording medium, 6 is a beam splitter, 7 is a cylindrical lens that is an astigmatism optical element, 8 is a 4-split photodetector, and 10 is a cylindrical lens that is an astigmatism optical element. Focus position detection circuit, 11 and 12 are its adders, 13 is a differential differential amplifier, 14 is an information detection circuit, 15 is a focus actuator, 16 is a lens drive circuit, 18 is a 5-split photodetector, and 19e is its center Area, 19a, 1
9b, 19c, and 19d are outer regions. The same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 光源、この光源からの出射光束を情報記録媒
体のトラツク上に集光させる対物レンズ、上記光
源からの出射光束と上記記録媒体上の集光スポツ
トからの上記対物レンズを経ての反射光束を分離
するビームスプリツタ、この分離された反射光束
に非点収差を与える光学素子、この光学素子をへ
ての反射光束を受光し、受光する反射光スポツト
の形状変化によつて異なつた検知出力を取出す光
検知器、及びこの光検知器の出力から上記記録媒
体の上記対物レンズの合焦点位置からのずれに応
じた信号を取出す焦点位置検出回路を備え、この
検出回路の出力により上記対物レンズを光軸方向
に駆動するようにした光デイスクヘツドの自動焦
点調節装置において、上記光検知器は、その中央
部が円形状分割線により外側部と区切られて設置
された中央領域と、上記外側部が、上記光学素子
軸に対してほぼ45°の角度をなす互にほぼ直交す
る分割線により4分割された4分割外側領域との
平面状の5分割構成とされ、情報記録媒体が上記
対物レンズに近づき過ぎると反射光スポツトは、
上記中央領域の一部分と対向する2つの外側領域
の一部分とを占める細長い形状をなし、また情報
記録媒体が上記対物レンズに対して遠すぎると反
射光スポツトは、上記のように情報記録媒体が対
物レンズに近づき過ぎた場合の反射光スポツトと
90°ずれた位置を占め、情報記録媒体が合焦点に
ある時には反射光スポツトは、その直径が上記中
央領域とほぼ等しい円形をなし、そのスポツトの
大部分はその中央領域に入射し外側領域上には殆
んど入射しないようにされ、上記4分割外側領域
のそれぞれ相対向する領域の受光出力和の差を上
記焦点位置検出回路により、上記合焦点位置から
のずれに応じた信号として取出すようにしたこと
を特徴とする光デイスクヘツドの自動焦点調節装
置。
1. A light source, an objective lens that focuses the emitted light beam from the light source onto a track of the information recording medium, and separates the emitted light beam from the light source and the reflected light beam from the condensing spot on the recording medium through the objective lens. A beam splitter that applies astigmatism to this separated reflected light beam, an optical element that receives the reflected light beam that passes through this optical element, and outputs different detection outputs depending on the shape of the received reflected light spot. It is equipped with a photodetector and a focus position detection circuit that extracts a signal corresponding to a deviation from the focal point position of the objective lens of the recording medium from the output of the photodetector, and the output of the detection circuit detects the objective lens. In an automatic focusing device for an optical disk head that is driven in the axial direction, the photodetector has a central region separated from the outer region by a circular dividing line, and a central region separated from the outer region by a circular dividing line. , has a planar five-division configuration with a four-division outer region divided into four by mutually orthogonal dividing lines forming an angle of approximately 45° with respect to the optical element axis, and an information recording medium is attached to the objective lens. If you get too close, the reflected light spot will
It has an elongated shape that occupies a part of the central area and a part of the two opposing outer areas, and if the information recording medium is too far away from the objective lens, the reflected light spot will be reflected when the information recording medium is Reflected light spots when you get too close to the lens
When the information recording medium is in focus, the reflected light spot forms a circle whose diameter is approximately equal to the central area, and most of the spot is incident on the central area and on the outer area. The difference in the sum of the received light outputs of the respective opposing areas of the four-divided outer area is extracted by the focal position detection circuit as a signal corresponding to the deviation from the in-focus position. An automatic focus adjustment device for an optical disk head, characterized in that:
JP58191280A 1983-09-05 1983-10-13 Automatic focus adjusting device for optical disk head Granted JPS6083229A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58191280A JPS6083229A (en) 1983-10-13 1983-10-13 Automatic focus adjusting device for optical disk head
DE8484110194T DE3484723D1 (en) 1983-09-05 1984-08-28 AUTOMATIC FOCUSING PROCESS.
EP19840110194 EP0137272B1 (en) 1983-09-05 1984-08-28 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58191280A JPS6083229A (en) 1983-10-13 1983-10-13 Automatic focus adjusting device for optical disk head

Publications (2)

Publication Number Publication Date
JPS6083229A JPS6083229A (en) 1985-05-11
JPH0554179B2 true JPH0554179B2 (en) 1993-08-11

Family

ID=16271927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58191280A Granted JPS6083229A (en) 1983-09-05 1983-10-13 Automatic focus adjusting device for optical disk head

Country Status (1)

Country Link
JP (1) JPS6083229A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157756A (en) 2000-11-15 2002-05-31 Sharp Corp Method of detecting focal position shift and optical pickup apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104539A (en) * 1974-01-15 1975-08-18
JPS5339123A (en) * 1976-09-22 1978-04-10 Canon Inc Automatic winder of cameras

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104539A (en) * 1974-01-15 1975-08-18
JPS5339123A (en) * 1976-09-22 1978-04-10 Canon Inc Automatic winder of cameras

Also Published As

Publication number Publication date
JPS6083229A (en) 1985-05-11

Similar Documents

Publication Publication Date Title
JPH0626972Y2 (en) Optical pickup device
JPS5821334B2 (en) automatic focus adjustment device
JPH02246030A (en) Optical information recording and reproducing device
JPS649658B2 (en)
JPH1116197A (en) Optical pickup and manufacturing method thereof
JP3123500B2 (en) Optical disk drive
JP2930137B2 (en) Optical scanning device
JPH0534731B2 (en)
JPH0554179B2 (en)
JP2728454B2 (en) Optical recording / reproducing device
KR100568376B1 (en) Optical Pick-Up Apparatus with Focus Error Correcting Function and Focus Error Correcting Method
JPS6223376B2 (en)
JP2550653B2 (en) Optical information reproducing device
JP2654091B2 (en) Light head
JPS6019050B2 (en) optical reproduction device
JP2643287B2 (en) Photo detector
JPH10289473A (en) Optical head and light driving device
JPS59152550A (en) Optical pickup device
JPH01241031A (en) Optical information processor
JPS6145419A (en) Optical pickup
JPS60234238A (en) Focus detector
JPH02278532A (en) Optical information recording and reproducing device
JPH03203036A (en) Optical pickup
JPS63153734A (en) Photodetector
JPH04311821A (en) Optical recording method and optical recording and reproducing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees