[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0554855B2 - - Google Patents

Info

Publication number
JPH0554855B2
JPH0554855B2 JP60255682A JP25568285A JPH0554855B2 JP H0554855 B2 JPH0554855 B2 JP H0554855B2 JP 60255682 A JP60255682 A JP 60255682A JP 25568285 A JP25568285 A JP 25568285A JP H0554855 B2 JPH0554855 B2 JP H0554855B2
Authority
JP
Japan
Prior art keywords
ethylene
polypropylene resin
parts
resin particles
acrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60255682A
Other languages
Japanese (ja)
Other versions
JPS62115042A (en
Inventor
Kyoichi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP25568285A priority Critical patent/JPS62115042A/en
Publication of JPS62115042A publication Critical patent/JPS62115042A/en
Publication of JPH0554855B2 publication Critical patent/JPH0554855B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ポリプロピレン系樹脂予備発泡粒子
およびその製造方法に関する。さらに詳しくは、
型内発泡成形性に優れたポリプロピレン系樹脂予
備発泡粒子およびその製造方法に関する。 [従来の技術] 型内発泡成形に用いられるポリプロピレン系樹
脂予備発泡粒子の気泡径は、200μm以下のばあ
い、型内発泡成形後の成形品の収縮率が大きくな
りやすく、また成形品の形状が歪む(当業界にお
いては通常ヒケやソリなどといわれている)など
の欠点があり、成形体の商品価値の低下や成形体
の生産技術の悪化をもたらしている。 [発明が解決しようとする問題点] そこで本発明者は、前記従来技術に鑑みて鋭意
研究を重ねた結果、ポリプロピレン系樹脂に特定
のポリマーを含有せしめ、予備発泡粒子の気泡径
を200〜500μmに調整したばあい、前記のごとき
型内発泡形成後の問題点が解消されうることを見
出し、本発明を完成するにいたつた。 [問題点を解決するための手段] すなわち、本発明はポリプロピレン系樹脂100
重量部に対してエチレン−アクリル酸−無水マレ
イン酸ターポリマー、エチレン−メタクリル酸コ
ポリマーの分子間を金属イオンで架橋させてなる
アイオイマー、エチレン−アクリル酸コポリマー
およびエチレン−メタクリル酸コポリマーから選
ばれたカルボキシル基を含有するポリマー0.1〜
10重量部を混合してなる基材樹脂からなり、気泡
系が200〜500μmであることを特徴とするポリプ
ロピレン系樹脂予備発泡粒子、ならびに耐圧容器
中で揮発性発泡材剤を含有する熱可塑性樹脂粒子
を攪拌しながら水中に分散させ、加圧下で加熱し
た後、水分散物を低圧域に放出して熱可塑性樹脂
粒子を予備発泡させる製造方法において、熱可塑
性樹脂としてポリプロピレン系樹脂100重量部に
対してエチレン−アクリル酸−無水マレイン酸タ
ーポリマー、エチレン−メタクリル酸の分子間を
金属イオンで架橋させてなるアイオノマー、エチ
レン−アクリル酸コポリマーおよびエチレン−メ
タクリル酸コポリマーから選ばれたカルボキシル
基を含有するポリマー0.1〜10重量部を混合して
なる基材樹脂を用いることを特徴とするポリプロ
ピレン系樹脂予備発泡粒子の製造方法に関する。 [作用および実施例] 本発明のポリプロピレン系樹脂予備発泡粒子
は、前記したように、ポリプロピレン系樹脂100
部(重量部、以下同様)に対して特定のカルボキ
シル基を含有するポリマー0.1〜10部を混合した
基材樹脂からなり、気泡径200〜500μmを有する
ものである。かかるポリプロピレン系樹脂予備発
泡粒子を型内発泡成形に用いたばあい、型内発泡
成形後の前記のごとき問題点が解消される。 本発明に用いられるポリプロピレン系樹脂とし
ては、たとえばエチレン−プロピレンランダムコ
ポリマー、エチレン−プロピレン−ブテンランダ
ムターポリマー、エチレン−プロピレンブロツク
ポリマー、ホモポリプロピレンなどがあげられる
が、これらのポリマーは通常どおり単独で用いて
もよく、2種以上併用してもよい。また該ポリプ
ロピレン系樹脂は無架橋の状態で用いてもよい
が、パーオキサイドや放射線などにより架橋させ
て用いてもよい。 本発明に用いられるカルボキシル基を含有する
ポリマーは、エチレン−アクリル酸−無水マレイ
ン酸−ポリマー、エチレン−メタクリル酸コポリ
マーの分子間を金属イオンで架橋させてなるアイ
オノマー、エチレン−アクリル酸コポリマー、エ
チレン−メタクリル酸コポリマーがあげられ、こ
れらのポリマーは通常は単独で用いられるが、2
種以上併用してもよい。これらのカルボキシル基
を含有するポリマーのなかでもとくにエチレン−
アルリル酸−無水マレイン酸ターポリマーおよび
アイオノマーが好適に使用しうる。 前記カルボキシル基を含有するポリマーの使用
量はポリプロピレン系樹脂100部に対して0.1〜10
部である。かかるカルボキシル基を含有するポリ
マーの使用量は0.1部未満ではえられるポリプロ
ピレン系樹脂予備発泡粒子の気泡系が200μm以
上になりにくく、また10部をこえると該気泡径は
500μm程度からそれほど大きくならないほか、
ポリプロピレン系樹脂の性質が損われるため好ま
しくない。とくにカルボキシル基を含有するポリ
マーの使用量が0.3〜5部のばあい、気泡径を大
きくする効果と経済性面で好ましいが、さらに好
ましくは0.5〜3部である。 ポリプロピレン系樹脂とカルボキシル基を含有
するポリマーは通常、押出機、ニーダー、バンバ
リーミキサー、ロールなどを用いて溶融混合し、
ついで、円柱状、楕円注状、球状、立方体状、直
方体状など予備発泡に利用しやすい所望の粒子形
状に成形される。 従来より揮発性発泡剤を含有する熱可塑性樹脂
粒子をオートクレーブなどの耐圧容器中にて攪拌
しながら水に分散させ、これを高温、高圧下で低
圧域に放出することにより熱可塑性樹脂粒子を予
備発泡させる方法が知られており、たとえば西独
公開特許公報第2107683号、特公昭56−1344号公
報に記載されている方法などがあげられる。しか
しながら、これらの方法によつて予備発泡をおこ
なつたばあい、えられる予備発泡粒子の気泡径は
きわめて不均一で、予備発泡粒子の気泡径が
200μm以上のものがえられにくく、こうした予
備発泡粒子を用いて型内発泡成形を行なつたばあ
い、外観の劣つた商品価値の小さい成形体しかえ
られない。 しかしながら、耐圧容器中で揮発性発泡剤を含
有する熱可塑性樹脂粒子を攪拌しながら水中に分
散させ、加圧下で加熱後、水分散物を低圧域に放
出させる熱可塑性樹脂粒子の予備発泡技術におい
て、熱可塑性樹脂粒子としてポリプロピレン系樹
脂100部に対してカルボキシル基を含有するポリ
マー0.1〜10部を混合した基材樹脂を用いたばあ
い、気泡径が200〜500μmの均一な気泡を有する
ポリオレフイン系樹脂予備発泡粒子が容易にえら
れる。 かかるカルボキシル基を含有するポリマーの使
用量は0.1部未満のばあい、気泡径が200μm以上
にならにくく、また10部をこえると気泡径は
200μm以上になるが、成形品の寸法収縮率、成
形品の形状の歪などが大きくなるので好ましくな
い。 本発明において使用される揮発性発泡剤として
は、たとえばプロパン、ブタン、ペンタン、ヘキ
サンなどの脂肪族炭化水素類;シクロペンタン、
シクロブンタンなどの脂環式炭化水素類;トリク
ロロモノフルオロメタン、ジルロロジフルオロメ
タン、ジクロロテトラフルオロエタン、トリクロ
ロトリフルオロエタン、メチルクロライド、メチ
レンクロライド、エチルクロライドなどのハロゲ
ン化炭化水素類などがあげられるが、これらの発
泡剤は単独で用いてもよく、また2種以上併用し
てもよい。これらの発泡剤の使用量は、とくに限
定がなく、所望のポリオレフイン系樹脂予備発泡
粒子の発泡度に応じて適宜調整される。通常その
使用量は、基材樹脂(ポリプロピレン系樹脂100
部に対してカルボキシル基を含有するポリマーを
0.1〜10部含有せしめたもの)100部に対して5〜
50部である。 本発明において、耐圧容器中でポリプロピレン
系樹脂粒子に揮発性発泡剤を含有させ、ついで攪
拌しながら水中に分散させるが、このとき分散剤
として、第三リン酸カルシウム、塩基性炭酸マグ
ネシウム、塩基性炭酸亜鉛、炭酸カルシウムなど
や、少量の界面活性剤、たとえばドデシルベンゼ
ンスルホン酸ソーダ、n−パラフインスルホン酸
ソーダ、α−オレフインスルホン酸ソーダなどを
使用しうる。 その他の本発明の予備発泡粒子を製造する方法
としては、ポリプロピレン系樹脂粒子に揮発性発
泡剤を含浸させたのち、水蒸気などで加熱する方
法(たとえば、特公昭48−34391号、特開昭58−
65734号に開示された方法)を用いてもよい。 本発明の製造方法によつてえられるポリプロピ
レン系樹脂予備発泡粒子は通常80%以上の独立気
泡率を有するが、さらに要すればこの予備発泡粒
子を耐圧容器中で過熱加圧下、一定時間処理する
ことによつて空気含浸を行なつた後に、この予備
発泡粒子を成形用金型に充填し、蒸気加熱によ
り、加熱発泡成形して金型どおりの発泡成形体を
製造してもよい。 かくしてえられた発泡成形体は、寸法収縮率が
小さく、形状変形が小さいので、きわめて商品価
値の高いものとなる。 つぎに本発明を実施例および比較例に基づいて
説明するが、本発明はかかる実施例のみに限定さ
れるものではない。 実施例1〜7および比較例1〜4 エチレン−プロプレンランダムコポリマー(住
友化学工業(株)製ノーブレン、エチレン含有4.5重
量%)100部に第1表に示す量のエチレン−アク
リル酸−無水マレイン酸ターポリマーを混合して
なる基材樹脂のペレツト100部、ジクロロジフル
オロメタン30部、分散剤としてパウダー状塩基製
性三リン酸カルシウム0.5部およびn−パラフイ
ンスルホン酸ソーダ0.006部を水300部とともに耐
圧容器に仕込み、136℃まで加熱した。このとき
の圧力は約26Kg/cm2Gであつた。その後、容器内
の圧力を、ジクロロジフルオロメタンを圧入しな
がら26〜26.5Kg/cm2Gに保持しつつ、耐圧容器下
部のバルブを開いて水分散物を大気圧下に放出し
て予備発泡を行なつたところ、それぞれともに発
泡倍率が約30倍の予備発泡粒子がえられた えられた予備発泡粒子は80℃×8.5Kg/cm2G(空
気中)の条件で2.0時間かけて空気含浸処理をお
こなつて粒子内圧を約2.0〜2.5atmに調整後、290
mm×270mm×50mmのブロツク金型に充填し、約2.0
Kg/cm2Gの水蒸気圧で加熱して成形品をえた。 えられた成形品の物性として、以下の方法によ
り、平均気泡径、気泡径の均一性、寸法収縮率お
よび成形品の形状の歪みを測定した。その結果を
第1表に示す。 (平均気泡径) えられた予備発泡粒子の中から任意に30個の予
備発泡粒子を取り出し、JIS K 6402に準拠して
気泡径を測定し、平均気泡径(d)を算出する。 (気泡の均一性) 平均気泡径(d)と気泡径のバラツキを表わす標準
偏差(σ)との比(以下、Uという): U=(σ/d)×100(%) で評価する。 Uが小さいほど気泡が均一であることを示す。 ○:Uの値が35%未満 △:Uの値が35〜45% ×:Uの値が45%をこえる (寸法収縮率) 成形品寸法および金型寸法を測定して成形品の
寸法収縮率を求める。 ○:3%以下 △:3〜5% ×:5%をこえる (成形品の形状の歪み) 成形品の断面形状(第1図)に沿つた厚さを測
定し、最大厚さLと最大厚さL′との比: S=(1−L′/L)×100 から評価する。 ○:Sが3%以下 △:Sが3〜5% ×:Sが5%をこえる
[Industrial Field of Application] The present invention relates to pre-expanded polypropylene resin particles and a method for producing the same. For more details,
The present invention relates to pre-expanded polypropylene resin particles having excellent in-mold foamability and a method for producing the same. [Prior art] If the cell diameter of the polypropylene resin pre-expanded particles used for in-mold foam molding is 200 μm or less, the shrinkage rate of the molded product after in-mold foam molding tends to be large, and the shape of the molded product There are disadvantages such as distortion (commonly referred to as sink marks or warpage in the industry), leading to a decrease in the commercial value of the molded product and deterioration of the production technology of the molded product. [Problems to be Solved by the Invention] Therefore, as a result of intensive research in view of the above-mentioned prior art, the present inventors incorporated a specific polymer into a polypropylene resin, and created a cell diameter of 200 to 500 μm in the pre-expanded particles. The inventors have found that the above-mentioned problems after in-mold foaming can be solved by adjusting the temperature, and have completed the present invention. [Means for solving the problems] That is, the present invention provides polypropylene resin 100
carboxyl selected from ethylene-acrylic acid-maleic anhydride terpolymer, iomer formed by cross-linking the molecules of ethylene-methacrylic acid copolymer with metal ions, ethylene-acrylic acid copolymer and ethylene-methacrylic acid copolymer based on the weight part Polymers containing groups from 0.1 to
Pre-expanded polypropylene resin particles consisting of a base resin mixed with 10 parts by weight and characterized by having bubbles of 200 to 500 μm, and a thermoplastic resin containing a volatile foaming agent in a pressure-resistant container. In a production method in which particles are dispersed in water while stirring, heated under pressure, and then the aqueous dispersion is discharged into a low pressure area to pre-foam thermoplastic resin particles, 100 parts by weight of polypropylene resin as a thermoplastic resin is used. On the other hand, it contains carboxyl groups selected from ethylene-acrylic acid-maleic anhydride terpolymer, ionomer formed by cross-linking ethylene-methacrylic acid molecules with metal ions, ethylene-acrylic acid copolymer, and ethylene-methacrylic acid copolymer. The present invention relates to a method for producing pre-expanded polypropylene resin particles, which uses a base resin mixed with 0.1 to 10 parts by weight of a polymer. [Function and Examples] As described above, the polypropylene resin pre-expanded particles of the present invention have a polypropylene resin of 100%
It is made of a base resin mixed with 0.1 to 10 parts of a specific carboxyl group-containing polymer per part (by weight, same hereinafter), and has a cell diameter of 200 to 500 μm. When such pre-expanded polypropylene resin particles are used for in-mold foam molding, the above-mentioned problems after in-mold foam molding can be solved. Examples of the polypropylene resin used in the present invention include ethylene-propylene random copolymer, ethylene-propylene-butene random terpolymer, ethylene-propylene block polymer, and homopolypropylene, but these polymers can be used alone as usual. or two or more types may be used in combination. Further, the polypropylene resin may be used in a non-crosslinked state, but it may also be used after being crosslinked with peroxide, radiation, or the like. The carboxyl group-containing polymer used in the present invention is an ethylene-acrylic acid-maleic anhydride polymer, an ionomer obtained by crosslinking the molecules of an ethylene-methacrylic acid copolymer with metal ions, an ethylene-acrylic acid copolymer, an ethylene- methacrylic acid copolymers, these polymers are usually used alone, but
More than one species may be used in combination. Among these carboxyl group-containing polymers, ethylene-
Alrylic acid-maleic anhydride terpolymers and ionomers can be suitably used. The amount of the carboxyl group-containing polymer used is 0.1 to 10 parts per 100 parts of the polypropylene resin.
Department. When the amount of the carboxyl group-containing polymer used is less than 0.1 part, the cell size of the pre-expanded polypropylene resin particles is unlikely to exceed 200 μm, and when the amount exceeds 10 parts, the cell diameter will decrease.
In addition to not becoming very large from around 500 μm,
This is not preferred because the properties of the polypropylene resin are impaired. In particular, when the amount of the carboxyl group-containing polymer used is 0.3 to 5 parts, it is preferable from the viewpoint of the effect of increasing the cell diameter and economic efficiency, but the amount is more preferably 0.5 to 3 parts. Polypropylene resin and a polymer containing carboxyl groups are usually melt-mixed using an extruder, kneader, Banbury mixer, roll, etc.
Then, it is formed into a desired particle shape that is easy to use for pre-foaming, such as a columnar shape, an elliptical shape, a spherical shape, a cubic shape, and a rectangular parallelepiped shape. Traditionally, thermoplastic resin particles containing a volatile blowing agent are dispersed in water while stirring in a pressure-resistant container such as an autoclave, and then released into a low-pressure area at high temperature and high pressure to prepare thermoplastic resin particles. Foaming methods are known, such as those described in West German Published Patent Application No. 2107683 and Japanese Patent Publication No. 56-1344. However, when pre-foaming is carried out by these methods, the cell diameters of the resulting pre-foamed particles are extremely non-uniform;
It is difficult to obtain particles with a diameter of 200 μm or more, and when in-mold foam molding is performed using such pre-expanded particles, only molded products with poor appearance and low commercial value can be obtained. However, in a pre-foaming technique for thermoplastic resin particles, thermoplastic resin particles containing a volatile blowing agent are dispersed in water while stirring in a pressure-resistant container, and after heating under pressure, the aqueous dispersion is released into a low pressure region. , when using a base resin in which 0.1 to 10 parts of a carboxyl group-containing polymer is mixed with 100 parts of a polypropylene resin as thermoplastic resin particles, a polyolefin-based resin having uniform bubbles with a cell diameter of 200 to 500 μm is used. Pre-expanded resin particles can be easily obtained. If the amount of the polymer containing a carboxyl group is less than 0.1 part, it will be difficult for the bubble diameter to exceed 200 μm, and if it exceeds 10 parts, the bubble diameter will decrease.
Although it is 200 μm or more, it is not preferable because it increases the dimensional shrinkage rate of the molded product and the distortion of the shape of the molded product. Volatile blowing agents used in the present invention include, for example, aliphatic hydrocarbons such as propane, butane, pentane, and hexane; cyclopentane,
Alicyclic hydrocarbons such as cyclobuntane; halogenated hydrocarbons such as trichloromonofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethane, trichlorotrifluoroethane, methyl chloride, methylene chloride, and ethyl chloride. However, these blowing agents may be used alone or in combination of two or more. The amount of these blowing agents to be used is not particularly limited, and is appropriately adjusted depending on the degree of foaming of the desired polyolefin resin pre-expanded particles. Normally, the amount used is the base resin (polypropylene resin 100%
Polymer containing carboxyl group per part
Contains 0.1 to 10 parts) 5 to 100 parts
There are 50 copies. In the present invention, polypropylene resin particles are made to contain a volatile blowing agent in a pressure-resistant container, and then dispersed in water while being stirred. , calcium carbonate, etc., and small amounts of surfactants such as sodium dodecylbenzenesulfonate, sodium n-paraffinsulfonate, sodium α-olefinsulfonate, etc. may be used. Other methods for producing the pre-expanded particles of the present invention include a method in which polypropylene resin particles are impregnated with a volatile blowing agent and then heated with steam or the like (for example, Japanese Patent Publication No. 48-34391, Japanese Patent Publication No. 58 −
65734) may be used. The pre-expanded polypropylene resin particles obtained by the production method of the present invention usually have a closed cell ratio of 80% or more, but if necessary, the pre-expanded particles are treated in a pressure-resistant container under superheating and pressure for a certain period of time. Possibly after air impregnation, the pre-expanded particles may be filled into a mold and heat-foamed by steam heating to produce a foam molded article as per the mold. The foamed molded product thus obtained has a small dimensional shrinkage rate and small shape deformation, so it has extremely high commercial value. Next, the present invention will be explained based on Examples and Comparative Examples, but the present invention is not limited only to these Examples. Examples 1 to 7 and Comparative Examples 1 to 4 100 parts of ethylene-propylene random copolymer (Noblen, manufactured by Sumitomo Chemical Co., Ltd., ethylene content: 4.5% by weight) was mixed with ethylene-acrylic acid-maleic anhydride in the amount shown in Table 1. 100 parts of base resin pellets prepared by mixing an acid terpolymer, 30 parts of dichlorodifluoromethane, 0.5 part of powdered basic calcium triphosphate as a dispersant, and 0.006 part of sodium n-paraffin sulfonate in a pressure-resistant container with 300 parts of water. and heated to 136℃. The pressure at this time was approximately 26 kg/cm 2 G. Thereafter, while maintaining the pressure inside the container at 26 to 26.5 Kg/cm 2 G while pressurizing dichlorodifluoromethane, the valve at the bottom of the pressure container was opened to release the aqueous dispersion to atmospheric pressure to perform pre-foaming. As a result, pre-expanded particles with an expansion ratio of about 30 times were obtained in each case.The obtained pre-expanded particles were impregnated with air for 2.0 hours at 80℃ x 8.5Kg/cm 2 G (in air). After processing and adjusting the particle internal pressure to approximately 2.0 to 2.5 atm, 290
Fill a block mold of mm x 270 mm x 50 mm, approx.
A molded product was obtained by heating at a water vapor pressure of Kg/cm 2 G. As for the physical properties of the obtained molded article, the average cell diameter, uniformity of cell diameter, dimensional shrinkage rate, and shape distortion of the molded article were measured by the following methods. The results are shown in Table 1. (Average cell diameter) Thirty pre-expanded particles are arbitrarily taken out of the obtained pre-expanded particles, the cell diameter is measured in accordance with JIS K 6402, and the average cell diameter (d) is calculated. (Bubble uniformity) The ratio of the average bubble diameter (d) to the standard deviation (σ) representing the variation in bubble diameter (hereinafter referred to as U) is evaluated as follows: U=(σ/d)×100(%). The smaller U is, the more uniform the bubbles are. ○: U value is less than 35% △: U value is 35 to 45% ×: U value is more than 45% (dimensional shrinkage rate) Measure the molded product dimensions and mold dimensions to determine the dimensional shrinkage of the molded product Find the rate. ○: 3% or less △: 3-5% ×: More than 5% (distortion of the shape of the molded product) Measure the thickness along the cross-sectional shape of the molded product (Figure 1), and calculate the maximum thickness L and the maximum thickness. Ratio to thickness L': Evaluate from S = (1-L'/L) x 100. ○: S is 3% or less △: S is 3-5% ×: S is over 5%

【表】 実施例1〜7でえられた成形品は、いずれも寸
法収縮率が小さく、かつ成形品の形状の歪みがな
いものであつた。比較例1でえられた成形品は、
エチレン−アクリル酸−無水マレイン酸ターポリ
マーを混合しなかつたもので、予備発泡粒子の気
泡の均一性に劣り、しかも平均気泡径が200μm
以下であるため、えられた成形品は寸法収縮率が
大きく、形状の歪みが大きなものであつた。 比較例3および4でえられた成形品は、予備発
泡粒子の気泡径が大きく気泡の均一性を有する
が、エチレン−アクリル酸−無水マレイン酸ター
ポリマーの使用量が多いにもかかわらず、気泡径
は実施例4〜7でえれらた成形品と同程度であ
り、エチレン−アクリル酸−無水マレイン酸ター
ポリマーの添加によるそれ以上の効果が現れてい
ないばかり、えられた成形品の寸法収縮率および
成形品の歪みがいずれも劣つたものであつた。 実施例8〜14および比較例5〜7 実施例1で用いたエチレン−アクリル酸−無水
マレイン酸ターポリマー0.1部のかわりに、エチ
レン−メタクリル酸コポリマーの分子間を金属イ
オンで架橋させてなるアイオノマー(三井ポリケ
ミカル(株)ハイミラン1706)を第2表に示す量だけ
用いたほかは実施例1と同様にして予備発泡粒子
を作成し、ついで実施例1と同様にして成形品を
作製した。えられた成形品の物性を実施例1と同
様にして測定した。その結果を第2表に示す。
[Table] All of the molded products obtained in Examples 1 to 7 had small dimensional shrinkage rates and no distortion in the shape of the molded products. The molded product obtained in Comparative Example 1 was
It does not contain ethylene-acrylic acid-maleic anhydride terpolymer, and the uniformity of the cells in the pre-expanded particles is poor, and the average cell diameter is 200μm.
Because of the following, the obtained molded product had a large dimensional shrinkage rate and a large shape distortion. The molded products obtained in Comparative Examples 3 and 4 have large cell diameters in the pre-expanded particles and uniformity of the cells, but despite the large amount of ethylene-acrylic acid-maleic anhydride terpolymer used, The diameter was comparable to that of the molded products obtained in Examples 4 to 7, and the addition of the ethylene-acrylic acid-maleic anhydride terpolymer did not show any further effect, and the resulting molded products showed no dimensional shrinkage. Both the molding rate and the distortion of the molded product were poor. Examples 8 to 14 and Comparative Examples 5 to 7 Ionomers made by crosslinking the molecules of an ethylene-methacrylic acid copolymer with metal ions instead of 0.1 part of the ethylene-acrylic acid-maleic anhydride terpolymer used in Example 1 Pre-expanded particles were prepared in the same manner as in Example 1, except that Hymilan 1706 (Mitsui Polychemical Co., Ltd.) was used in the amount shown in Table 2, and then molded articles were prepared in the same manner as in Example 1. The physical properties of the obtained molded article were measured in the same manner as in Example 1. The results are shown in Table 2.

【表】 実施例8〜14でえられた成形品は、いずれも寸
法収縮率が小さく、かつ成形品の形状の歪みがな
いものであつた。比較例5でえられた成形品は、
アイオノマーの使用量が少なく、平均気泡径が
200μm以下になり、成形体の評価に劣るもので
あつた。さらに比較例6および7でえられた成形
品は、アイオノマーの使用量が多いにもかかわら
ず、平均気泡径が実施例12〜14でえられた成形品
と比べて大きくなつておらず、えられた成形品の
評価も好ましいものではなかつた。 比較例2〜7の結果から、カルボキシル基を含
有するポリマーの使用量には上限、下限値があ
り、とくにその使用量が10部をこえたばあい、ポ
リプロピレン系樹脂の性質が失われるので、平均
泡径、気泡の均一性の面で好ましいが、成形品の
評価がわるくなる。 [発明の効果] 本発明によれば、気泡径が均一な200〜500μm
のポリプロピレン系樹脂予備発泡粒子がえられる
が、該予備発泡粒子を用いた型内発泡成形後の成
形品の収縮率は小さく、また成形品の歪みも小さ
いので、みばえなどの外観面に優れ、しかも成形
品の生産収率が向上する。したがつて、寸法精度
が要求される車輌用衝撃吸収体などの構造部材、
断熱建材などに好適に使用しうるものであり、ま
た緩衝包装材などの用途にも有用なものである。
[Table] All of the molded products obtained in Examples 8 to 14 had small dimensional shrinkage rates and no distortion in the shape of the molded products. The molded product obtained in Comparative Example 5 was
The amount of ionomer used is small, and the average cell size is
The diameter was 200 μm or less, and the evaluation of the molded product was poor. Furthermore, although the molded products obtained in Comparative Examples 6 and 7 used a large amount of ionomer, the average cell diameter was not larger than that of the molded products obtained in Examples 12 to 14. The evaluation of the molded product was also not favorable. From the results of Comparative Examples 2 to 7, there are upper and lower limits to the amount of polymer containing a carboxyl group, and especially if the amount exceeds 10 parts, the properties of the polypropylene resin will be lost. This is preferable in terms of average bubble diameter and bubble uniformity, but the evaluation of molded products becomes poor. [Effect of the invention] According to the invention, the bubble diameter is uniform between 200 and 500 μm.
The pre-expanded particles of polypropylene resin can be obtained, but the shrinkage rate of the molded product after in-mold foam molding using the pre-expanded particles is small, and the distortion of the molded product is also small, so there is no problem with the appearance such as surface appearance. Excellent, and the production yield of molded products is improved. Therefore, structural members such as vehicle shock absorbers that require dimensional accuracy,
It can be suitably used as a heat insulating building material, and is also useful as a cushioning packaging material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は成形品の形状の歪みを測定するために
用いた成形品の断面形状を示す。 L:成形品の最大厚さ、L′:成形品の最小厚
さ。
FIG. 1 shows the cross-sectional shape of a molded article used to measure the distortion of the shape of the molded article. L: Maximum thickness of molded product, L′: Minimum thickness of molded product.

Claims (1)

【特許請求の範囲】 1 ポリプロピレン系樹脂100重量部に対してエ
チレン−アクリル酸−無水マレイン酸ターポリマ
ー、エチレン−メタクリル酸コポリマーの分子間
を金属イオンで架橋させてなるアイオノマー、エ
チレン−アクリル酸コポリマーおよびエチレン−
メタクリル酸コポリマーから選ばれたカルボキシ
ル基を含有するポリマー0.1〜10重量部を混合し
てなる基材樹脂からなり、気泡径が200〜500μm
であることを特徴とするポリプロピレン系樹脂予
備発泡粒子。 2 ポリプロピレン系樹脂がエチレン−プロピレ
ンランダムコポリマーである特許請求の範囲第1
項記載のポリプロピレン系樹脂予備発泡粒子。 3 耐圧容器中で揮発性発泡剤を含有する熱可塑
性樹脂粒子を攪拌しながら水中に分散させ、加圧
下で加熱した後、水分散物を低圧域に放出して熱
可塑性樹脂粒子を備発泡させる製造方法におい
て、熱可塑性樹脂としてポリプロピレン系樹脂
100重量部に対してエチレン−アクリル酸−無水
マレイン酸ターポリマー、エチレン−メタクリル
酸の分子間を金属イオンで架橋させてなるアイオ
ノマー、エチレン−アクリル酸コポリマーおよび
エチレン−メタクリル酸コポリマーから選ばれた
カルボキシル基を含有するポリマー0.1〜10重量
部を混合してなる基材樹脂を用いることを特徴と
するポリプロピレン系樹脂予備発泡粒子の製造方
法。
[Claims] 1. Ionomer, ethylene-acrylic acid copolymer made by cross-linking the molecules of ethylene-acrylic acid-maleic anhydride terpolymer or ethylene-methacrylic acid copolymer with metal ions based on 100 parts by weight of polypropylene resin. and ethylene-
Consists of a base resin made by mixing 0.1 to 10 parts by weight of a carboxyl group-containing polymer selected from methacrylic acid copolymers, and has a cell diameter of 200 to 500 μm.
Pre-expanded polypropylene resin particles characterized by: 2 Claim 1 in which the polypropylene resin is an ethylene-propylene random copolymer
Pre-expanded polypropylene resin particles as described in . 3 Disperse thermoplastic resin particles containing a volatile foaming agent in water in a pressure-resistant container while stirring, heat under pressure, and then release the aqueous dispersion into a low pressure area to foam the thermoplastic resin particles. In the manufacturing method, polypropylene resin is used as the thermoplastic resin.
Carboxyl selected from ethylene-acrylic acid-maleic anhydride terpolymer, ionomer formed by cross-linking ethylene-methacrylic acid molecules with metal ions, ethylene-acrylic acid copolymer, and ethylene-methacrylic acid copolymer per 100 parts by weight. 1. A method for producing pre-expanded polypropylene resin particles, which comprises using a base resin prepared by mixing 0.1 to 10 parts by weight of a group-containing polymer.
JP25568285A 1985-11-14 1985-11-14 Pre-expanded polyolefin resin particle and production thereof Granted JPS62115042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25568285A JPS62115042A (en) 1985-11-14 1985-11-14 Pre-expanded polyolefin resin particle and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25568285A JPS62115042A (en) 1985-11-14 1985-11-14 Pre-expanded polyolefin resin particle and production thereof

Publications (2)

Publication Number Publication Date
JPS62115042A JPS62115042A (en) 1987-05-26
JPH0554855B2 true JPH0554855B2 (en) 1993-08-13

Family

ID=17282158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25568285A Granted JPS62115042A (en) 1985-11-14 1985-11-14 Pre-expanded polyolefin resin particle and production thereof

Country Status (1)

Country Link
JP (1) JPS62115042A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596782B1 (en) * 1996-04-05 2003-07-22 Kaneka Corporation Hydrous polyolefin resin composition, preexpanded particles produced therefrom, process for producing the same, and expanded molding
JP3950557B2 (en) 1998-07-30 2007-08-01 株式会社カネカ Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JP5296279B2 (en) 1999-12-28 2013-09-25 株式会社カネカ Expandable polystyrene resin particles and foam using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988963A (en) * 1972-12-27 1974-08-26
JPS5876233A (en) * 1981-11-02 1983-05-09 Japan Styrene Paper Co Ltd Manufacture of ethylene/propylene copolymer prefoamed particle
JPS59133233A (en) * 1983-01-20 1984-07-31 Japan Styrene Paper Co Ltd Production of pre-expanded particle of polypropylene resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988963A (en) * 1972-12-27 1974-08-26
JPS5876233A (en) * 1981-11-02 1983-05-09 Japan Styrene Paper Co Ltd Manufacture of ethylene/propylene copolymer prefoamed particle
JPS59133233A (en) * 1983-01-20 1984-07-31 Japan Styrene Paper Co Ltd Production of pre-expanded particle of polypropylene resin

Also Published As

Publication number Publication date
JPS62115042A (en) 1987-05-26

Similar Documents

Publication Publication Date Title
US4436840A (en) Process for producing pre-foamed particles of polyolefin resin
US6596782B1 (en) Hydrous polyolefin resin composition, preexpanded particles produced therefrom, process for producing the same, and expanded molding
US4720509A (en) Pre-expanded particles of propylene resin
JPS6215239A (en) Uncrosslinked straight chain low-density polyethylene preexpanded partifle and molding thereof
EP0256489B1 (en) Process for preparing pre-expanded particles of thermoplastic resin
JPS60168632A (en) Expanded molding of bridged polypropylene resin
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
EP0933389B1 (en) Polypropylene resin pre-expanded particles
EP1262513B1 (en) Process for preparing polyolefin pre-expanded particles
US4810440A (en) Process for pre-expanding thermoplastic resin particles
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JPH0554855B2 (en)
JPS6259642A (en) Pre-expanded particle of modified polyethylene resin and production thereof
JP4747472B2 (en) Method for producing polyolefin resin pre-expanded particles
JPH0561300B2 (en)
US4748191A (en) Process for preparing pre-expanded particles of thermoplastic resin
JPS59147029A (en) Preparation of expanded particles of polyethylene having uniform and fine bubbles
KR940010349B1 (en) Preexpanded polyolefin resin particles and process for their preparation
JPH05255531A (en) Production of molded polymer foam
JPH06136172A (en) Preparation of cross-linked polyolefin resin foam
CA1290094C (en) Pre-expanded particles of polyolefin resin and process for preparing the same
JPH05179050A (en) Polyolefin-based resin foam particle
JPS62252437A (en) Pre-expanded particle of olefin resin composition
JPS5833435A (en) Preparation of pre-foamed particles
JP3599600B2 (en) Expandable polyolefin-based resin particles, expanded particles and expanded molded articles obtained therefrom, and method for producing expanded particles