[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0552366B2 - - Google Patents

Info

Publication number
JPH0552366B2
JPH0552366B2 JP10315886A JP10315886A JPH0552366B2 JP H0552366 B2 JPH0552366 B2 JP H0552366B2 JP 10315886 A JP10315886 A JP 10315886A JP 10315886 A JP10315886 A JP 10315886A JP H0552366 B2 JPH0552366 B2 JP H0552366B2
Authority
JP
Japan
Prior art keywords
reinforcing
piles
ground
drainage
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10315886A
Other languages
Japanese (ja)
Other versions
JPS62260919A (en
Inventor
Kenzo Ochi
Masahiro Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Construction Co Ltd
Original Assignee
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Construction Co Ltd filed Critical Tokyu Construction Co Ltd
Priority to JP10315886A priority Critical patent/JPS62260919A/en
Publication of JPS62260919A publication Critical patent/JPS62260919A/en
Publication of JPH0552366B2 publication Critical patent/JPH0552366B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ボツクス・掘割道路等の半地下構造
物や浄化槽・下水管等の中空埋設物などの土木構
造物あるいは地上の建築構造物を地下水位の比較
的高い砂質地盤に安全に構築するための基礎地盤
の耐震補強方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is applicable to civil engineering structures such as semi-underground structures such as boxes and excavated roads, hollow buried structures such as septic tanks and sewer pipes, or above-ground architectural structures. This article concerns a seismic reinforcement method for foundations for safe construction on relatively high sandy ground.

従来の技術 一般に、砂・砂れき・埋立地・しゆんせつ地盤
等で地下水位が比較的高い砂質地盤では、地震時
に液状化現象が生じ易くて地盤が破壊する恐れが
あり、震災時の交通輸送路を確保する必要から、
このような砂質地盤に主要幹線掘割道路を構築す
る場合には、第12図に示すように、例えば道路
幅が15〜40mで深さが5〜10m程度の鉄筋コンク
リート製の道路2では、そのコンクリート路床2
aの厚みを1.5m程度にすると共に、側壁から外
方に相当突出せしめるように耐震設計することが
義務づけられている。
Conventional technology In general, sandy ground with a relatively high groundwater level, such as sand, gravel, reclaimed land, or drenched ground, is susceptible to liquefaction during an earthquake and may cause the ground to collapse. Due to the need to secure transportation routes,
When constructing a main trunk excavated road on such sandy ground, as shown in Fig. 12, for example, a reinforced concrete road 2 with a road width of 15 to 40 m and a depth of 5 to 10 m is required. Concrete roadbed 2
It is required that the thickness of a be approximately 1.5m and that it be seismically designed so that it protrudes considerably outward from the side wall.

しかし、このような構造では路床厚や突出幅が
大きくて大量の鉄筋やコンクリート資材を必要と
するだけでなく、工期が長くて施工費が高くなる
等の問題点があり、その改善が要請されていた。
However, this type of structure not only requires a large amount of reinforcing bars and concrete materials due to the large thickness of the subgrade and protrusion width, but also has problems such as a long construction period and high construction costs, and improvements are needed. It had been.

この要請に応えるため、第13図に示すように
道床下方の砂質土中に液剤やセメント10を混入
して固化したり、第14図に示すように道路2の
両外側に連続壁11を設ける等の固化方法による
改善案があつた。
In order to meet this demand, as shown in Fig. 13, a liquid agent or cement 10 is mixed into the sandy soil below the road bed and solidified, and continuous walls 10 are installed on both sides of the road 2 as shown in Fig. 14. An improvement proposal was made by using a solidification method such as installing a

また、第15図に示すように道路2の下側及び
両側部の地盤1を締固める方法や、さらに第16
図に示すように砂やれき等から成る排水杭12を
打設する工法があつた。
In addition, as shown in Fig. 15, there is a method of compacting the ground 1 below and on both sides of the road 2, and
As shown in the figure, there is a method of driving drainage piles 12 made of sand, gravel, etc.

発明が解決しようとする問題点 しかしながら、上記固化方法では、例えばソイ
ルモルタル小杭等には引張強度がなくて地震によ
り容易にせん断されてしまつたり、連続壁11で
は路床2aの中央部に沈下が生じ易い等の問題点
があり、また上記締固め方法では、施工範囲が広
くて工事が大型になり、工期が長くなつたり施工
費が高くつく等の問題点があり、さらに排水杭方
法では水平水頭差がない部分での排水は行われ
ず、しかも道路2の浮上りは防止できても排水に
よる沈下が生じてしまう等の問題点があつた。
Problems to be Solved by the Invention However, in the above-mentioned solidification method, for example, soil mortar small piles do not have tensile strength and are easily sheared by an earthquake, and the continuous wall 11 has problems in the center of the subgrade 2a. There are problems such as easy settlement, and the above compaction method has problems such as the construction area is wide and the construction work is large, the construction period is long, and the construction cost is high.Furthermore, the drainage pile method In this case, drainage is not carried out in areas where there is no difference in horizontal water head, and even if it is possible to prevent the road 2 from floating up, there are problems such as subsidence due to drainage.

発明の目的 本発明は、上記従来の問題点を解決するために
なされたもので、その目的とするところは、安価
で短期間に施工することが出来るだけでなく、補
強効果の高い基礎地盤の耐震補強方法を提供する
ことにある。
Purpose of the Invention The present invention was made to solve the above-mentioned conventional problems, and its purpose is to create a foundation ground that not only can be constructed at low cost and in a short period of time, but also has a high reinforcement effect. The object of the present invention is to provide a seismic reinforcement method.

問題点を解決するための手段 本発明の基礎地盤の耐震補強方法は、剛性が高
い芯材の周囲に摩擦材を付着せしめた補強小杭を
土木構造物あるいは建築構造物の下方または側方
の基礎地盤中に群打設することを特徴とするもの
であり、該補強小杭の杭頭を構造物から離間せし
めることを特徴とするものである。
Means for Solving the Problems The method of seismically reinforcing foundation ground according to the present invention is to install small reinforcing piles with a friction material attached around a highly rigid core material under or on the side of a civil engineering structure or building structure. The reinforcing small piles are characterized by being driven in groups into the foundation ground, and the pile heads of the small reinforcing piles are separated from the structure.

また、本願の第2の発明の耐震補強方法は、剛
性が高い芯材の周囲に地盤中の過剰間〓水圧を消
散させる排水摩擦材を定着せしめた排水補強小杭
を土木構造物あるいは建築構造物の下方または側
方の基礎地盤中に群打設することを特徴とするも
のである。
In addition, the seismic reinforcement method of the second invention of the present application is to install drainage reinforcement small piles in which a drainage friction material for dissipating excess water pressure in the ground is fixed around a core material having high rigidity to a civil engineering structure or an architectural structure. It is characterized by being poured in groups into the foundation ground below or to the side of the object.

実施例 以下、本発明の実施例について図面を参照しな
がら説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図において、1は地下水位WLの比較的高
い砂質地盤であつて、その中に鉄筋コンクリート
製の掘割道路2が構築されている。
In Fig. 1, reference numeral 1 indicates sandy ground with a relatively high groundwater level WL, in which a dug road 2 made of reinforced concrete is constructed.

該掘割道路2の下側および外側近傍の砂質地盤
1中には多数の補強小杭3がほぼ均等間隔で群打
設されている。各補強小杭3の太さ・打設本数・
間隔等は、後述するように本発明者の実験による
と、nEA/As(kgf/cm2)[ただし、nは補強小杭
の本数、Eはヤング率、Aは1本の補強小杭の断
面積、Asは施工地盤の底面積である。]というパ
ラメーターで決定されることが解ると共に、その
置換率(A×n/As)×100は7%程度が効果的
であり、それ以下では沈下して構造物が破壊する
おそれがあり、それ以上でも効果は変わらず無意
味であることが解つた。
A large number of reinforcing small piles 3 are driven in groups at approximately equal intervals in the sandy ground 1 near the bottom and outside of the cut road 2. Thickness and number of reinforced small piles 3
According to the inventor's experiments as described later, the spacing etc. is nEA/As (kgf/cm 2 ) [where n is the number of reinforcing small piles, E is Young's modulus, and A is the number of reinforcing small piles. The cross-sectional area, As, is the base area of the construction ground. It is understood that the substitution rate (A x n/As) x 100 is determined by the parameter of 7% is effective, and if it is less than that, there is a risk of subsidence and destruction of the structure. Even with the above, the effect remained unchanged and was found to be meaningless.

該補強小杭3は、第2図に示すように芯材3a
とその外表面に付着された摩擦材3bから構成さ
れている。
The reinforcing small pile 3 has a core material 3a as shown in FIG.
and a friction material 3b attached to its outer surface.

該芯材3aは、例えばPC棒・鉄筋棒・アルミ
合金棒・鉄筋かご等の金属材料あるいは合成樹脂
等の非金属材料で引張り・圧縮・曲げ・座屈等に
強い剛性を有する材質であつて、ヤング率E≧
104kgf/cm2のものあれば、いずれでもよく、その
直径は5〜100mm程度のものが好ましい。
The core material 3a is made of a metal material such as a PC bar, a reinforcing bar, an aluminum alloy bar, a reinforcing bar cage, or a non-metallic material such as a synthetic resin, which has high rigidity against tension, compression, bending, buckling, etc. , Young's modulus E≧
Any material with a diameter of 10 4 kgf/cm 2 may be used, and a diameter of about 5 to 100 mm is preferable.

また、上記摩擦材3bは、直径5〜20mm程度の
荒目砂等の粒状体であつて、例えばエポキシ系接
着剤等の合成樹脂系接着剤により上記芯材3aの
外表面に強固に接着され、周囲の砂との間で摩擦
係合できるようになつている。この砂との摩擦力
は砂の内部摩擦力よりも大きくなつている。尚、
芯材3aの外表面に凹凸加工または多数の棒状、
板状等の小突出物を形成または固着して、上記摩
擦材3bとしてもよい。
The friction material 3b is a granular material such as coarse sand with a diameter of about 5 to 20 mm, and is firmly adhered to the outer surface of the core material 3a with a synthetic resin adhesive such as an epoxy adhesive. , which allows for frictional engagement with the surrounding sand. This frictional force with the sand is larger than the internal frictional force of the sand. still,
The outer surface of the core material 3a is textured or has many rod shapes.
The friction material 3b may be formed by forming or fixing a small protrusion such as a plate shape.

再び第1図において、上記補強小杭3は砂質地
盤1の下方の支持層4にわずかに(例えば10cm程
度)差込んだり根固めしてもよく、あるいは支持
層4の表面上に単に置いた状態にしてもよく、さ
らに支持層4の表面から多少離して浮かせた状態
に設置してもよい。
Referring again to FIG. 1, the reinforcing small piles 3 may be inserted slightly (for example, about 10 cm) into the support layer 4 below the sandy ground 1, or may be hardened, or simply placed on the surface of the support layer 4. The support layer 4 may be placed in a floating state, or may be placed in a floating state with some distance from the surface of the support layer 4.

一方、補強小杭3の杭頭部は掘割道路2の路床
2aの下面に固定することなく、これから離間し
ておく。尚、路床2aの下面にグラベルマツトを
敷設し、この中に上記杭頭を自由に挿入してもよ
い。
On the other hand, the pile heads of the reinforcing small piles 3 are not fixed to the lower surface of the roadbed 2a of the excavated road 2, but are kept apart therefrom. Incidentally, a gravel mat may be laid on the lower surface of the roadbed 2a, and the pile heads may be freely inserted into this.

本実施例は以上のように構成されているので、
例えば第3図Aに示すように上記地盤1に地震に
よるせん断力τが発生して、第3図Bに示すよう
にせん断変形を生じてもこれと同一の挙動をする
補強小杭3は相当高い引張剛性を有するので、上
記変形に伴つて該補強小杭3内には材力Tが生
じ、その反力として補強小杭3の周囲の砂質土に
は、第3図Cに示すような、拘束力T′が生じて
地盤1を締固めることが理解される。
Since this embodiment is configured as described above,
For example, even if shear force τ is generated in the ground 1 due to an earthquake as shown in Fig. 3A, and shear deformation occurs as shown in Fig. 3B, the reinforcing small piles 3 that behave in the same manner are Since it has high tensile rigidity, a material force T is generated inside the reinforcing small pile 3 due to the above deformation, and as a reaction force, the sandy soil around the reinforcing small pile 3 has a force T as shown in Fig. 3C. It is understood that a restraining force T' is generated to compact the ground 1.

また、第4図Aに示すように、地盤1に掘割道
路2等の荷重による圧縮力Pが働くと、補強小杭
3にも圧縮応力Rが生ずるが、該補強小杭3は相
当高い圧縮剛性を示すので、その反力として補強
小杭3の周囲の砂質土に第4図Bに示すような拘
束力R′が生じ、上記圧縮力Pに抵抗して地盤1
の沈下が抑制することがで理解される。
Furthermore, as shown in Fig. 4A, when a compressive force P due to the load of the excavated road 2 etc. acts on the ground 1, a compressive stress R is also generated on the reinforcing small piles 3, but the reinforcing small piles 3 have a considerably high compression stress. Since it exhibits rigidity, a restraining force R' as shown in Fig. 4B is generated in the sandy soil around the reinforcing small piles 3 as a reaction force, and the ground 1 resists the compressive force P.
This can be understood as suppressing the subsidence of

第5図は本願第2の発明の実施例を示すもの
で、掘割道路2の下側および外側の地盤1中には
20〜30cm程度の直径を有する多数の排水補強小杭
5がほぼ均等に群打設されている。
FIG. 5 shows an embodiment of the second invention of the present application, in which the ground 1 below and outside the cut road 2 is
A large number of drainage reinforcing small piles 5 having a diameter of about 20 to 30 cm are driven in groups almost evenly.

上記排水補強小杭5は、第6図に示すように芯
材5aとその外周部に定着された排水摩擦材5b
から構成されている。該芯材5aは上記実施例の
芯材3aとほぼ同じ剛性と外径寸法を有すると共
に、その外周部には排水摩擦材5bの定着効果を
高めるための表面加工・処理が施されている。
As shown in FIG. 6, the drainage reinforcing small pile 5 includes a core material 5a and a drainage friction material 5b fixed to the outer periphery of the core material 5a.
It consists of The core material 5a has substantially the same rigidity and outer diameter as the core material 3a of the above-mentioned embodiment, and its outer periphery has been subjected to surface processing and treatment to enhance the fixing effect of the drainage friction material 5b.

また、上記排水摩擦材5bは、例えば、れきや
砂利等をセメントで固めたものであるが、多数の
連通した空隙を有すると共に、周囲の砂と摩擦係
合することが出来、上記芯材5aに確実に定着で
きるものであればいずれの材料でもよい。
Further, the drainage friction material 5b is, for example, made of rubble, gravel, etc. hardened with cement, and has a large number of communicating voids and can frictionally engage with the surrounding sand. Any material may be used as long as it can be reliably fixed to the surface.

再び第5図において、上記排水補強小杭5の下
端部は支持層4に根固めしてもしなくてもよく、
またその杭頭は地表面および掘削道路2の外周部
に敷設されたグラベルマツト6内に自由に差込ま
れている。該グラベルマツト6は、例えば砂利ま
たはポーラスコンクリート等により50〜100cm程
度の厚さに構成されている。
Again in FIG. 5, the lower end of the drainage reinforcing small pile 5 may or may not be hardened to the support layer 4.
Further, the pile head is freely inserted into a gravel mat 6 laid on the ground surface and the outer periphery of the excavated road 2. The gravel mat 6 is made of, for example, gravel or porous concrete, and has a thickness of about 50 to 100 cm.

従つて、本実施例では地震が生じた場合、上記
第3図および第4図で説明した補強小杭3と同様
の挙動を示して地盤1を強化すると共に、排水摩
擦材5bを通じて杭周辺の地盤1内に生じた過剰
間隙水を吸収して上昇せしめ、上記グラベルマツ
ト6を通じて排水することも出来る。しかし、本
発明の排水補強小杭5は、単に杭周辺での過剰間
隙水圧を消散させる程度のものであつて、地盤沈
下の原因になる排水効果は積極的に期待していな
い。
Therefore, in this embodiment, when an earthquake occurs, the reinforcing small piles 3 behave in the same way as the reinforcing small piles 3 explained in FIGS. Excess pore water generated in the ground 1 can also be absorbed and raised, and drained through the gravel mat 6. However, the drainage reinforcing small pile 5 of the present invention is merely intended to dissipate excess pore water pressure around the pile, and is not actively expected to have a drainage effect that causes ground subsidence.

次に、上記排水補強小杭5の打設方法について
説明する。
Next, a method for driving the drainage reinforcing small pile 5 will be explained.

まず、第7A図に示すようにケーシング7内で
アースオーガー8を回転させて土砂を掘削しなが
ら排出し、ケーシング7を地盤1中に打込む。
First, as shown in FIG. 7A, the earth auger 8 is rotated within the casing 7 to excavate and discharge earth and sand, and the casing 7 is driven into the ground 1.

例えば、nEA/As=5000とすると、掘削径30
cm、杭中心の打設間隔1.5〜2.0mとなる。
For example, if nEA/As=5000, the drilling diameter is 30
cm, and the driving distance between the centers of the piles is 1.5 to 2.0 m.

次に、アースオーガー8を引抜いて、第7B図
に示すように排水摩擦材5bをケーシング7内に
投入する。この排水摩擦材5bは、図示のように
細粒分を取り除いて粒径を均一にした砂利または
砕石とセメントとを混合して、からねりしたもの
である。
Next, the earth auger 8 is pulled out and the drainage friction material 5b is put into the casing 7 as shown in FIG. 7B. As shown in the figure, this drainage friction material 5b is made by mixing and twisting gravel or crushed stone, which has a uniform particle size by removing fine particles, and cement.

続いて、第7C図に示すように芯材5aをバイ
ブロ又は打込みで挿入し、その後、第7D図に示
すように上記ケーシング7を引抜き、最後に、第
7E図に示すように排水補強小杭5の上部に水平
に砂利9を敷き均す。このとき、上記排水補強小
杭5の杭頭を20cm程度砂利9中に挿入する。この
ように、芯材5aの周囲にポーラスな排水摩擦材
5bが形成され、しかも砂利がセメントにより芯
材5aに定着されている。
Next, as shown in Fig. 7C, the core material 5a is inserted by vibro or driving, then the casing 7 is pulled out as shown in Fig. 7D, and finally, the drainage reinforcing small pile is inserted as shown in Fig. 7E. Spread gravel 9 horizontally on top of 5. At this time, insert the pile head of the drainage reinforcement small pile 5 into the gravel 9 by about 20 cm. In this way, the porous drainage friction material 5b is formed around the core material 5a, and the gravel is fixed to the core material 5a by cement.

第8図は、前述のパラメーターnEA/As値と
地盤の地震せん断強度の増加率との関係を示すグ
ラフであり、これによりnEA/As値が地震せん
断強度のパラメータとなることが理解できる。
FIG. 8 is a graph showing the relationship between the aforementioned parameter nEA/As value and the rate of increase in the seismic shear strength of the ground, and it can be understood from this that the nEA/As value is a parameter of the seismic shear strength.

第9図は、地震時のせん断応力比と鉛直方向の
変形量を示すグラフであり、パラメーター
nEA/Asが増加するにしたがつて変形しにくい
ことが解る。
Figure 9 is a graph showing the shear stress ratio and the amount of vertical deformation during an earthquake, and the parameters
It can be seen that as nEA/As increases, deformation becomes more difficult.

第10図および第11図は、地震力と過剰間隙
水圧比とを示すグラフであり、地震力が大きくな
つても過剰間隙水圧がそれほど大きくならないこ
とが解る。
FIGS. 10 and 11 are graphs showing seismic force and excess pore water pressure ratio, and it can be seen that even if the seismic force becomes large, the excess pore water pressure does not become so large.

発明の効果 (1) 地震時のせん断ひずみに伴つて、小杭が地盤
と同一の単純せん断変形して、その摩擦材によ
り周囲の砂質土が締固められるので、地盤が補
強され、制震および砂液状化抵抗等の効果があ
る。
Effects of the invention (1) As the small pile undergoes the same simple shear deformation as the ground due to shear strain during an earthquake, the surrounding sandy soil is compacted by the friction material, so the ground is reinforced and damped. It also has effects such as sand liquefaction resistance.

(2) 施工が簡単で材料費や施工費が安く、工期が
短縮できる等の効果がある。
(2) It is easy to construct, has low material and construction costs, and has the advantage of shortening the construction period.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願第1発明方法の一実施例を示す説
明図、第2図Aは補強小杭の一部拡大斜視図、B
はその平断面図、第3図A〜Cおよび第4図A,
Bはそれぞれ補強小杭の作用の説明図、第5図は
本願第2発明の一実施例を示す説明図、第6図の
Aは排水補強小杭の一部拡大斜視図、Bはその平
断面図、第7A図〜第7E図は排水補強小杭の施
工作業を順次示す説明図、第8図はパラメーター
nEA/As値と地盤の地震せん断強度の増加率と
の関係を示すグラフ、第9図は地震時のせん断応
力比と鉛直方向の変形量を示すグラフ、第10図
および第11図は地震力と過剰間隙水圧比とを示
すグラフ、第12図〜第16図は従来の耐震施工
例を示す図である。 1……砂質地盤、2……掘割道路、3……補強
小杭、3a……芯材、3b……摩擦材、4……支
持層、5……排水補強小杭、5a……芯材、5b
……排水摩擦材、6……グラベルマツト。
Fig. 1 is an explanatory diagram showing an embodiment of the first invention method of the present application, Fig. 2 A is a partially enlarged perspective view of a reinforcing small pile, and B
are its plan sectional views, Figures 3 A to C and Figure 4 A,
B is an explanatory diagram of the action of the reinforcing small pile, FIG. 5 is an explanatory diagram showing an embodiment of the second invention of the present application, A in FIG. 6 is a partially enlarged perspective view of the drainage reinforcing small pile, and B is a flat view thereof. Cross-sectional views, Figures 7A to 7E are explanatory diagrams showing the construction work of drainage reinforcement small piles, and Figure 8 is a parameter diagram.
A graph showing the relationship between the nEA/As value and the rate of increase in the seismic shear strength of the ground. Figure 9 is a graph showing the shear stress ratio and vertical deformation during an earthquake. Figures 10 and 11 are earthquake forces. 12 to 16 are graphs showing examples of conventional seismic construction. 1...Sandy ground, 2...Dug road, 3...Reinforcement small pile, 3a...Core material, 3b...Friction material, 4...Support layer, 5...Drainage reinforcement small pile, 5a...Core Material, 5b
...Drainage friction material, 6...Gravel pine.

Claims (1)

【特許請求の範囲】 1 剛性が高い芯材の周囲に摩擦材を付着せしめ
た補強小杭を土木構造物あるいは建築構造物の下
方または側方の基礎地盤中に群打設することを特
徴とする基礎地盤の耐震補強方法。 2 上記補強小杭の杭頭を構造物から離間せしめ
ることを特徴とする前記特許請求の範囲第1項に
記載の基礎地盤の耐震補強方法。 3 剛性が高い芯材の周囲に地盤中の過剰間〓水
圧を消散させる排水摩擦材を定着せしめた排水補
強小杭を土木構造物あるいは建築構造物の下方ま
たは側方の基礎地盤中に群打設することを特徴と
する基礎地盤の耐震補強方法。 4 上記補強小杭の杭頭を構造物から離間せしめ
ることを特徴とする前記特許請求の範囲第3項に
記載の基礎地盤の耐震補強方法。
[Scope of Claims] 1. A method characterized by driving small reinforcing piles with a friction material attached around a core material having high rigidity into the foundation ground below or on the side of a civil engineering structure or a building structure. Earthquake reinforcement method for foundation ground. 2. The seismic reinforcement method for foundation ground according to claim 1, which comprises separating the pile heads of the small reinforcing piles from the structure. 3. Drive drainage reinforcing small piles with drainage friction material anchored around a highly rigid core material to dissipate excess water pressure in the ground into the foundation ground below or to the side of a civil engineering structure or building structure. A method for seismically reinforcing foundation ground, which is characterized by: 4. The seismic reinforcement method for foundation ground according to claim 3, characterized in that the pile heads of the reinforcing small piles are separated from the structure.
JP10315886A 1986-05-07 1986-05-07 Small pile for reinforcing foundation ground to earthquake Granted JPS62260919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10315886A JPS62260919A (en) 1986-05-07 1986-05-07 Small pile for reinforcing foundation ground to earthquake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10315886A JPS62260919A (en) 1986-05-07 1986-05-07 Small pile for reinforcing foundation ground to earthquake

Publications (2)

Publication Number Publication Date
JPS62260919A JPS62260919A (en) 1987-11-13
JPH0552366B2 true JPH0552366B2 (en) 1993-08-05

Family

ID=14346694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10315886A Granted JPS62260919A (en) 1986-05-07 1986-05-07 Small pile for reinforcing foundation ground to earthquake

Country Status (1)

Country Link
JP (1) JPS62260919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103321217A (en) * 2013-06-19 2013-09-25 潘建杰 Composite foundation pile for lava regions

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2612763B2 (en) * 1989-05-31 1997-05-21 清水建設株式会社 Basic structure of structure
KR100257630B1 (en) * 1995-12-04 2000-06-01 고사카 요시노부 An improvement-method of a soft-ground
JP6151092B2 (en) * 2013-05-31 2017-06-21 大成建設株式会社 Sand sand countermeasure structure
CN103590391B (en) * 2013-11-27 2016-05-25 温州宏源水电建设有限公司 A kind of CFG foundation stabilization construction method
CN104480958A (en) * 2014-12-12 2015-04-01 中交公路规划设计院有限公司 Bridge prefabricated bearing platform and bridge construction method
CN106049410A (en) * 2016-06-16 2016-10-26 苏州杰姆斯特机械有限公司 Underground soil layer reinforcing method of building construction
CN106884427A (en) * 2017-03-30 2017-06-23 中交第四航务工程勘察设计院有限公司 Immersed tube tunnel and immersed tube tunnel changeover portion soft soil foundation reinforcing method under water
JP6359148B2 (en) * 2017-05-16 2018-07-18 大成建設株式会社 Sand sand countermeasure structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103321217A (en) * 2013-06-19 2013-09-25 潘建杰 Composite foundation pile for lava regions

Also Published As

Publication number Publication date
JPS62260919A (en) 1987-11-13

Similar Documents

Publication Publication Date Title
CA1335757C (en) Unit comprising mesh combined with geotextile
CA2443759C (en) Foam pile system
US5746544A (en) Process and structure for reducing roadway construction period
JPH0552366B2 (en)
JP2006225926A (en) Banking construction method utilizing backfilling material such as fluidized soil, pit sand, local soil and crushed stone
KR100603888B1 (en) Construction method of reinforced earth abutment in post tensioning system
JP3804943B2 (en) Reinforced earth structure and wall block
US7993079B2 (en) Device and method for a tower reinforcing foundation
JP2018091047A (en) Artificial ground and method for constructing the same
JP5975726B2 (en) Ground structure and ground improvement method
JP2597116B2 (en) Embankment foundation and its construction method
JP2003268771A (en) Dry block, its molding form, its molding method and reinforcing earth structure using the dry block
JP4189078B2 (en) Construction method of underground structure in liquefied ground
JPH0694657B2 (en) Small pile for seismic reinforcement of foundation ground
JP4332651B2 (en) Foundation reinforcement device and foundation construction method
KR101020217B1 (en) rock construction structure of using anchor and method thereof
JPS58127822A (en) Liquefaction preventive structure of foundation ground
JPH0617414A (en) Drainage reinforcement pile
JP2547946B2 (en) Reinforced soil structure
JPH0765315B2 (en) Embankment structure
JP2008308889A (en) Method of placing lightweight filler and method of constructing banking using the same
JPS62156416A (en) Reinforcing work for ground by drainage reinforcing pile
JP3787536B2 (en) Foundation construction method
JP3431905B2 (en) Improved soil structure of sandy soil layer and improvement method
Öser et al. Cantilever piles or well foundations in supporting temporary deep excavations: comparison of performance, safety and cost

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term