JPH0552036B2 - - Google Patents
Info
- Publication number
- JPH0552036B2 JPH0552036B2 JP59114391A JP11439184A JPH0552036B2 JP H0552036 B2 JPH0552036 B2 JP H0552036B2 JP 59114391 A JP59114391 A JP 59114391A JP 11439184 A JP11439184 A JP 11439184A JP H0552036 B2 JPH0552036 B2 JP H0552036B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- fuel cell
- air
- preheater
- solid oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 claims description 307
- 239000007787 solid Substances 0.000 claims description 52
- 238000010248 power generation Methods 0.000 claims description 37
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 33
- 239000007784 solid electrolyte Substances 0.000 claims description 17
- 150000003839 salts Chemical class 0.000 claims description 15
- 238000003487 electrochemical reaction Methods 0.000 claims description 12
- 230000003197 catalytic effect Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 238000011084 recovery Methods 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims 1
- 239000007800 oxidant agent Substances 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 131
- 239000007789 gas Substances 0.000 description 33
- 239000001301 oxygen Substances 0.000 description 21
- 229910052760 oxygen Inorganic materials 0.000 description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 19
- 229910052739 hydrogen Inorganic materials 0.000 description 17
- 239000001257 hydrogen Substances 0.000 description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 14
- 239000003792 electrolyte Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 229910001868 water Inorganic materials 0.000 description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 description 10
- 239000001569 carbon dioxide Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- -1 LaCoO 3 Inorganic materials 0.000 description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 6
- 238000006057 reforming reaction Methods 0.000 description 6
- 230000005611 electricity Effects 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002407 reforming Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910003310 Ni-Al Inorganic materials 0.000 description 1
- 229910003266 NiCo Inorganic materials 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0048—Molten electrolytes used at high temperature
- H01M2300/0051—Carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
- H01M2300/0074—Ion conductive at high temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/249—Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
- H01M8/2495—Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies of fuel cells of different types
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は燃料電池を用いた発電装置に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a power generation device using a fuel cell.
燃料電池はエネルギの変換効率が高く、環境問
題が少なく、モジユール構成により出力規模を自
由に選択可能である等の特徴を有しており、水
力、火力、原子力に次ぐ発電方式として有望視さ
れている。
Fuel cells have the characteristics of high energy conversion efficiency, few environmental problems, and the ability to freely select the output scale due to the modular configuration, and are seen as a promising power generation method next to hydropower, thermal power, and nuclear power. There is.
固体電解質型燃料電池はリン酸型、溶融炭酸塩
型に次ぐ第3世代の燃料電池として我が国ではム
ーンライト計画において開発が推進されており、
米国ではウエスチングハウス社が開発を行なつて
いる。これらの状況については例えば、〓電気学
会技術報告(部)K1号(燃料電池の展望)〓、
電気学会(昭和57年12月)等に詳細に記述されて
いる。 Solid electrolyte fuel cells are the third generation fuel cells following the phosphoric acid type and molten carbonate type, and development is being promoted in Japan under the Moonlight Project.
It is being developed in the United States by Westinghouse. Regarding these situations, for example, IEEJ Technical Report (Department) No. K1 (Prospects of Fuel Cells)
It is described in detail in the Institute of Electrical Engineers of Japan (December 1982).
固体電解質型燃料電池の発電原理については、
例えば、〓高温固体電解質燃料電池の試作および
発電試験〓、高温学会誌(第7巻、第5号)、
(1981年9月)等に詳細に記述されている。 Regarding the power generation principle of solid oxide fuel cells,
For example, Prototype production and power generation test of high-temperature solid electrolyte fuel cells, Journal of the Society of High Temperature Studies (Volume 7, No. 5),
(September 1981) and others.
上記の固体電解質型燃料電池の原理について、
第1図を参照しつつ次に説明する。固体電解質型
燃料電池は燃料電極1、空気電極2、固体電解質
3より構成される。燃料電極1は電子導電性が大
きく、還元雰囲気中で安定で、かつ、電解質と反
応しないものとしてNiO、Co等が用いられてい
る。一方、空気電極2は電子導電性と共にイオン
導電性が大きく、酸化雰囲気中で化学的に安定で
あり、電解質の熱膨脹の整合がとれるものとして
Ni−Al、LaCoO3、SnO2ドープのIn2O3等が考え
られている。また固体電解質3としてはイオン輸
率が1に近く、物理化学的に安定であり、ガスを
通さない等の条件を満たすものとしてZrO2、
ThO2、CeO2等の安定化物質が利用可能である
が、現在では酸化イツトリウム(Y2O3)で安定
化したジルコニア(ZrO2)が多く用いられてい
る。この安定化ジルコニアは蛍石型結晶構造をも
ち、酸素原子の格子欠陥により酸素分圧に比例し
た酸素イオン導電性を持つ。この酸素イオン導電
性は1000℃程度で顕著になる。 Regarding the principle of the solid oxide fuel cell mentioned above,
This will be explained next with reference to FIG. A solid electrolyte fuel cell is composed of a fuel electrode 1, an air electrode 2, and a solid electrolyte 3. For the fuel electrode 1, NiO, Co, or the like is used because it has high electronic conductivity, is stable in a reducing atmosphere, and does not react with the electrolyte. On the other hand, the air electrode 2 has high ionic conductivity as well as electronic conductivity, is chemically stable in an oxidizing atmosphere, and can match the thermal expansion of the electrolyte.
Ni-Al, LaCoO 3 , SnO 2 doped In 2 O 3 and the like are considered. In addition, the solid electrolyte 3 has an ionic transfer number close to 1, is physicochemically stable, and satisfies the conditions of not allowing gas to pass through, such as ZrO 2 ,
Stabilizing substances such as ThO 2 and CeO 2 are available, but currently zirconia (ZrO 2 ) stabilized with yttrium oxide (Y 2 O 3 ) is often used. This stabilized zirconia has a fluorite crystal structure and has oxygen ion conductivity proportional to the oxygen partial pressure due to lattice defects in oxygen atoms. This oxygen ion conductivity becomes noticeable at about 1000°C.
電池を作動させるためには、燃料側に水素、一
酸化炭素等の燃料5を流し、空気側に空気7を流
し、両電極を負荷4で結ぶ。燃料側では燃料5と
電解質3中の酸素イオン8が次のような反応を生
ずる。 In order to operate the battery, a fuel 5 such as hydrogen or carbon monoxide is flowed on the fuel side, air 7 is flowed on the air side, and both electrodes are connected with a load 4. On the fuel side, the fuel 5 and oxygen ions 8 in the electrolyte 3 undergo the following reaction.
CO+O2-→CO+2e-
H2+O2-→H2O+2e-
酸素イオン8は電解質3中を導電し、電気側で
は酸素イオン8の不足が生じ、空気7中の酸素は
O2+4e-→DO2-
となり、この反応により電子の移動が生じ、空気
電極2から燃料電極1へと電流9が流れる。 CO+O 2- →CO+2e - H 2 +O 2- →H 2 O+2e - Oxygen ions 8 conduct electricity in the electrolyte 3, and a shortage of oxygen ions 8 occurs on the electrical side, and the oxygen in the air 7 becomes O 2 +4e - →DO 2- , and this reaction causes the movement of electrons, causing a current 9 to flow from the air electrode 2 to the fuel electrode 1.
なお、固体電解質型燃料電池はリン酸型、溶融
炭酸塩型等のように燃料成分に対する制限がな
く、例えば天然ガス等を直接燃料として用いるこ
とが可能である。即ち、燃料電池内が高温で内部
リフオーミング反応が生じ、出口燃料排ガスH2、
COが生ずる。しかし、他の燃料電池と同様に供
給した燃料および酸素を完全に消費する事は電流
密度、電池の大きさ等の制限により困難であり、
燃料側の排燃料6中には水と未反応燃料が残り、
空気側の排気中には未反応酸素が残ることにな
る。また、分極7aによる電池効率の低下分は反
応に伴う熱となり、特別な冷却機構、媒体を用い
ない限り、燃料側及び空気側の気体両方もしくは
一方の温度を上昇させる結果となる。 Note that unlike the phosphoric acid type, molten carbonate type, etc., the solid oxide type fuel cell has no restrictions on fuel components, and for example, natural gas or the like can be directly used as the fuel. That is, the temperature inside the fuel cell causes an internal rehoming reaction, and the exit fuel exhaust gas H 2 ,
CO is produced. However, like other fuel cells, it is difficult to completely consume the supplied fuel and oxygen due to limitations such as current density and cell size.
Water and unreacted fuel remain in the exhaust fuel 6 on the fuel side,
Unreacted oxygen will remain in the exhaust gas on the air side. Further, the decrease in cell efficiency due to polarization 7a becomes heat accompanying the reaction, which results in an increase in the temperature of both or one of the gases on the fuel side and the air side, unless a special cooling mechanism or medium is used.
理論的な起電力である開路電圧Eは、ネルンス
トの式により燃料側および空気側の酸素分圧PO2
の比として次式のように表わされる。 The open circuit voltage E, which is the theoretical electromotive force, is determined by the Nernst equation based on the oxygen partial pressure P O2 on the fuel side and air side.
It is expressed as the ratio of
E=RT/4FlnPO2(空気側)/PO2(燃料側)
ここでRはガス定数、Tは動作温度、Fはフア
ラデイ定数である。 E=RT/4FlnP O2 (air side)/P O2 (fuel side) where R is the gas constant, T is the operating temperature, and F is the Faraday constant.
固体電解質燃料電池の動作温度がイオン導電性
を良くするために必然的に高くならざるを得な
く、その排熱温度が高い事を利用し、発電プラン
トに利用する考えは、例えばパワーソースのジヤ
ーナル(Journal of Power Source)10(1983)
89−102高温溶融塩燃料電池の技術的問題(High
−Temperature Solid Oxide Fuell Cell−
Technical Status)等において論じられている。 The operating temperature of solid electrolyte fuel cells must necessarily be high in order to improve ionic conductivity, and the idea of utilizing the high exhaust heat temperature for power generation plants has been proposed, for example, in the Power Source Journal. (Journal of Power Source) 10 (1983)
89−102 Technical problems of high temperature molten salt fuel cells (High
−Temperature Solid Oxide Fuel Cell−
Technical Status) etc.
第2図は前記文献中で検討されている例を引用
したもので、以下第2図により説明する。 FIG. 2 cites an example discussed in the above-mentioned literature, and will be explained below with reference to FIG.
燃料25は、燃料予熱器10を通り、固体電解
質燃料電池本体11に入る。一方、空気26はフ
アン22から空気予熱器13を通り、固体電解質
燃料電池本体11に入る。固体電解質燃料電池1
1で発電31を行なつた非燃料および排空気28
はアフターバーナー12内で燃焼され、一部は燃
料予熱器10へ導入されて燃料を予熱した後に煙
突24より外部へ放出される。残りの燃料排ガス
28は廃熱ボイラ15を通り給水加熱器16を通
り、空気予熱器13を通つた後に煙突24より外
部へ放出される。給水加熱器16は給水29を加
熱し、加熱された給水は廃熱ボイラ15で過熱蒸
気30となり蒸気タービン19を駆動する。蒸気
タービン19は発電機21を駆動し発電を行な
い、蒸気タービン19を駆動した蒸気30はコン
デンサ20で復水され脱気器17に入り、脱気さ
れた後に給水ポンプ18へ入る。 Fuel 25 passes through fuel preheater 10 and enters solid electrolyte fuel cell main body 11 . On the other hand, air 26 passes through the air preheater 13 from the fan 22 and enters the solid electrolyte fuel cell main body 11. Solid electrolyte fuel cell 1
Non-fuel and exhaust air 28 that generated electricity 31 in 1
is burned in the afterburner 12, and a portion is introduced into the fuel preheater 10 to preheat the fuel and then discharged to the outside from the chimney 24. The remaining fuel exhaust gas 28 passes through the waste heat boiler 15, the feed water heater 16, and the air preheater 13 before being discharged to the outside from the chimney 24. The feed water heater 16 heats the feed water 29, and the heated feed water becomes superheated steam 30 in the waste heat boiler 15 and drives the steam turbine 19. The steam turbine 19 drives a generator 21 to generate electricity, and the steam 30 that drove the steam turbine 19 is condensed in a condenser 20, enters a deaerator 17, and after being deaerated, enters a water supply pump 18.
補助燃焼器14は、起動時に弁23aを開いて
燃料25を供給するとともに、フアン22を作動
させ空気26を供給し、弁23bを開き燃焼ガス
を燃料予備器10に導入し、供給燃料の余熱源と
して用いる。 At startup, the auxiliary combustor 14 opens a valve 23a to supply fuel 25, operates a fan 22 to supply air 26, opens a valve 23b to introduce combustion gas into the fuel reserver 10, and drains the remaining fuel. Use as a heat source.
このような固体電解質燃料電池発電システムで
は、固体電解質燃料電池における電気化学反応に
よる発熱および固体電解質燃料電池における未反
応燃料は、熱に変換され、熱の形態のみで蒸気の
発生、蒸気タービンの駆動等に利用されるため固
体電解質燃料電池の作動温度が高く排熱の質が良
好である特徴を充分に生かすことができていない
のが大きな欠点である。 In such a solid oxide fuel cell power generation system, the heat generated by the electrochemical reaction in the solid oxide fuel cell and the unreacted fuel in the solid oxide fuel cell are converted into heat, and only in the form of heat is used to generate steam and drive a steam turbine. A major drawback is that solid electrolyte fuel cells cannot take full advantage of their high operating temperature and good exhaust heat quality.
次に溶融炭酸塩型燃料電池に関しては〓電気学
会技術報告(部)141号(燃料電池の展望)〓、
電気学会(昭和57年12月)等に詳細に記述されて
いる。そこで、まず溶融炭酸塩型燃料電池の原理
を第3図により説明する。溶融炭酸塩型燃料電池
は燃料電極41、電気電極42、電解質43より
構成される。燃料電極41はNiCo、Niのような
Ni合金の多孔質体が使われており、還元雰囲気
中で焼結された電極板である。またNiやSUS製
の網や細線を埋設して電極板を補強している。一
方、空気電極42はNiOが用いられており、この
導電性を高めるためLiが添加されている。また燃
料電極41と同様、金属網を埋設して補強してい
る。 Next, regarding molten carbonate fuel cells, see IEEJ Technical Report (Department) No. 141 (Fuel Cell Prospects),
It is described in detail in the Institute of Electrical Engineers of Japan (December 1982). First, the principle of a molten carbonate fuel cell will be explained with reference to FIG. The molten carbonate fuel cell is composed of a fuel electrode 41, an electric electrode 42, and an electrolyte 43. The fuel electrode 41 is made of NiCo, Ni, etc.
The electrode plate uses a porous Ni alloy and is sintered in a reducing atmosphere. Additionally, the electrode plates are reinforced by embedding Ni or SUS nets and thin wires. On the other hand, the air electrode 42 is made of NiO, and Li is added to improve its conductivity. Also, similar to the fuel electrode 41, a metal net is embedded and reinforced.
電解質は、その一般的特性として2種類以上の
アルカリ炭酸塩を混合すると融点が低下するので
電解質43は混合炭酸塩が用いられ、一般に
(Li2CO3)0.62(K2CO3)0.38が用いられている。こ
の電解質43は動作温度600〜700℃で液体となる
ので電極気孔内へのしみ込みや電池外部への流出
が起こり、この電解質流動性防止としてマトリク
ス式あるいはペイスト式が用いられている。 As a general characteristic of an electrolyte, when two or more types of alkali carbonates are mixed, the melting point decreases, so a mixed carbonate is used as the electrolyte 43, and generally (Li 2 CO 3 ) 0.62 (K 2 CO 3 ) 0.38 is used. It is being Since this electrolyte 43 becomes liquid at an operating temperature of 600 to 700 DEG C., it may seep into the electrode pores or flow out to the outside of the battery, and a matrix type or paste type is used to prevent electrolyte fluidity.
上記の構成の燃料電池は、起動・停止に伴う温
度変化で電解質板に亀裂を生ずるなどの欠点もあ
る。 The fuel cell configured as described above also has drawbacks such as cracking in the electrolyte plate due to temperature changes during startup and shutdown.
次に燃料電池の発電原理を説明する。燃料極4
1へ水素45を供給し、空気極42へ空気と炭酸
ガスとの混合ガス47を供給し、両電極を負荷4
4で結ぶ。空気極42では空気中の酸素と炭酸ガ
ス47とが外部回路から電子を受け取つて炭酸イ
オン48となり、電解質43中を燃料極41へ移
動し、水素45と反応して炭酸ガスと水46を生
成する。この時の反応式は
空気極:O2+2CO2+4e-→2CO3 2-
燃料極:2H2+2CO3 2-→2CO2+2H2O+4e-
となり、両式から全体の反応は次のようになる。 Next, the power generation principle of fuel cells will be explained. Fuel electrode 4
Hydrogen 45 is supplied to the air electrode 42, a mixed gas 47 of air and carbon dioxide is supplied to the air electrode 42, and both electrodes are placed under a load 4.
Tie with 4. At the air electrode 42, oxygen and carbon dioxide gas 47 in the air receive electrons from an external circuit to become carbonate ions 48, which move through the electrolyte 43 to the fuel electrode 41 and react with hydrogen 45 to produce carbon dioxide gas and water 46. do. The reaction formula at this time is Air electrode: O 2 +2CO 2 +4e - →2CO 3 2- Fuel electrode: 2H 2 +2CO 3 2- →2CO 2 +2H 2 O+4e - , and from both equations, the overall reaction is as follows. .
2H2+O2→2H2O
以上の反応により、電子の移動が生じ空気電極
42から燃料電極41へ電流49が流れる。 2H 2 +O 2 →2H 2 O Due to the above reaction, electrons move, and a current 49 flows from the air electrode 42 to the fuel electrode 41.
次に、溶融炭酸塩型燃料電池のシステムについ
て第4図により説明する。天然ガスの化石燃料6
3はフアン61を通して熱交換器62で予熱され
て燃料改質器50へ供給される。この時、燃料6
3中にイオウ分が含まれる際は改質触媒が被毒を
受けやすく、さらに燃料極53はイオウ不純物の
影響を受けやすいので、改質器50と燃料電池5
2本体との間に脱硫装置51を設け、イオウ成分
を1ppm以下まで除去する必要がある。 Next, a molten carbonate fuel cell system will be explained with reference to FIG. Natural gas fossil fuel 6
3 is preheated by a heat exchanger 62 through a fan 61 and then supplied to the fuel reformer 50. At this time, fuel 6
3 contains sulfur, the reforming catalyst is easily poisoned, and the fuel electrode 53 is also easily affected by sulfur impurities, so the reformer 50 and fuel cell 5
It is necessary to install a desulfurization device 51 between the two bodies to remove the sulfur component to 1 ppm or less.
一方、空気極54へは空気にあらかじめ燃料極
排ガスを混合し、触媒燃焼器56を通すことによ
つて残存する水素と一酸化炭素を水と炭酸ガスに
し、空気と炭酸ガスの混合ガス67として供給さ
れる。燃料電池52から排出される高温ガスは蒸
気タービン59駆動用の熱源として使われ、すな
わち複合発電システムのボトミングサイクルとな
る。電池本体、及びボトミングサイクルを合わせ
た発電効率は約50〜60%が期待される。この際、
燃料電池発電システムの総合効率を向上させるた
め、燃料電池本体の改善と共に、これらのサブシ
ステムについて見直しが図られているが、質の高
いエネルギーを有効に利用できていないのが現状
である。 On the other hand, air is mixed with fuel electrode exhaust gas in advance and passed through a catalytic combustor 56 to convert remaining hydrogen and carbon monoxide into water and carbon dioxide gas, and a mixed gas 67 of air and carbon dioxide is supplied to the air electrode 54. Supplied. The high-temperature gas discharged from the fuel cell 52 is used as a heat source for driving the steam turbine 59, that is, serves as the bottoming cycle of the combined power generation system. The power generation efficiency of the battery itself and the bottoming cycle is expected to be approximately 50-60%. On this occasion,
In order to improve the overall efficiency of fuel cell power generation systems, efforts are being made to improve the fuel cell itself and review these subsystems, but the current situation is that high-quality energy cannot be used effectively.
総合効率の目標値を80%とした場合、改質器5
0と燃料電池52セル、あるいは燃料極53とが
熱的に近接されていないので、改質器50の運転
に必要な熱源を燃料電池52から効率良く得るこ
とができないという事も問題点となる。 If the target value of overall efficiency is 80%, reformer 5
Another problem is that the heat source necessary for operating the reformer 50 cannot be efficiently obtained from the fuel cell 52 because the fuel cell 52 and the fuel electrode 53 are not thermally adjacent to each other. .
また、蒸気タービン、及び各種の周辺装置から
排出される比較的低温の熱源が有効に熱回収され
ていない等の問題もある。 There are also other problems, such as the relatively low temperature heat sources discharged from the steam turbine and various peripheral devices that are not effectively recovered.
本発明は上述の事情に鑑みて為されたもので、
燃料改質器まわりの補機系が省かれ、しかも効率
の高い燃料電池発電装置を提供することを目的と
する。
The present invention was made in view of the above circumstances, and
The purpose of the present invention is to provide a highly efficient fuel cell power generation device in which an auxiliary system around a fuel reformer is omitted.
上記の目的を達成するために創作した本発明の
基本的な原理を次に述べる。
The basic principle of the present invention created to achieve the above object will be described below.
本発明は従来の溶融炭酸塩型燃料電池発電シス
テムにおける燃料改質器に代えて約1000℃の高温
度を利用した固体電解質型燃料電池を組み合わせ
て、質の高い熱エネルギーを有効に利用すると同
時に、燃料改質器まわりの補機(例えば脱硫器、
改質器、一酸化炭素変成器など)を省くことによ
りシステムの簡略化が図れる高効率な燃料電池発
電システムである。つまり、燃料改質器と固体電
解質型燃料電池の動作温度がほぼ等しいことに注
目すると、燃料成分の純度はあまり厳しくなく、
しかも内部リフオーミング反応を伴う固体電解質
型燃料電池から生ずる電力をも利用することによ
り、従来の燃料改質器の熱回収によるエネルギ利
用率に比して格段に効率の高い燃料電池発電装置
が構成できる。 The present invention replaces the fuel reformer in the conventional molten carbonate fuel cell power generation system with a solid oxide fuel cell that utilizes a high temperature of approximately 1000°C, thereby effectively utilizing high quality thermal energy. , auxiliary equipment around the fuel reformer (e.g. desulfurizer,
This is a highly efficient fuel cell power generation system that can simplify the system by eliminating the need for a reformer, carbon monoxide shift converter, etc. In other words, if we pay attention to the fact that the operating temperatures of the fuel reformer and solid oxide fuel cell are almost the same, the purity of the fuel components is not very strict.
Moreover, by using the electric power generated from a solid oxide fuel cell that involves an internal reforming reaction, it is possible to construct a fuel cell power generation system that is much more efficient than the energy utilization rate of conventional fuel reformer heat recovery. .
上記の原理に基づいて前述の目的を達成するた
め、本発明の燃料電池発電装置は、燃料予熱器と
空気予熱器とを設け、上記の燃料予熱器で予熱さ
れた燃料と空気予熱器で予熱された空気とによつ
て電気化学反応を行う固体電解質型燃料電池を設
けると共に、上記と別体に溶融塩型燃料電池を設
け、かつ、前記固体電解質型燃料電池から排気さ
れる燃料を前記溶融塩型燃料電池の燃料電極側に
供給するとともに、前記固体電解質型燃料電池か
ら排気される空気によつて溶融塩型燃料電池の燃
料電極側から排出された燃料を燃焼させた排ガス
を前記の溶融塩型燃料電池の空気電極側に供給し
て電気化学反応を行わせるように構成したことを
特徴とする。 In order to achieve the above object based on the above principle, the fuel cell power generation device of the present invention is provided with a fuel preheater and an air preheater, and the fuel preheated by the above fuel preheater and the air preheated by the air preheater. A solid oxide fuel cell is provided which performs an electrochemical reaction using the molten air, and a molten salt fuel cell is provided separately from the above, and the fuel exhausted from the solid oxide fuel cell is transferred to the molten salt fuel cell. In addition to supplying the fuel to the fuel electrode side of the salt fuel cell, the exhaust gas produced by burning the fuel discharged from the fuel electrode side of the molten salt fuel cell by the air exhausted from the solid oxide fuel cell is fused into the molten salt fuel cell. It is characterized in that it is configured to be supplied to the air electrode side of a salt-type fuel cell to cause an electrochemical reaction.
本発明の一実施例を第5図により説明する。ま
ず、燃料電池システムの構成を概略的に示す。燃
料80の流れにしたがい、燃料予熱器71、固体
電解質型燃料電池72、コンプレツサ(a)76、溶
融炭酸塩型燃料電池75が設置されている。一
方、空気81の流れにしたがい、コンプレツサ(b)
77、空気予熱器73、固体電解質型燃料電池7
2、触媒燃焼器74、溶融炭酸塩型燃料電池7
5、及びタービン78が設置されている。なお、
コンプレツサ(a)76、及び(b)77とタービン78
は同軸で回転されるように構成されている。
An embodiment of the present invention will be described with reference to FIG. First, the configuration of the fuel cell system will be schematically shown. A fuel preheater 71, a solid oxide fuel cell 72, a compressor (a) 76, and a molten carbonate fuel cell 75 are installed according to the flow of the fuel 80. Meanwhile, according to the flow of air 81, the compressor (b)
77, air preheater 73, solid electrolyte fuel cell 7
2. Catalytic combustor 74, molten carbonate fuel cell 7
5, and a turbine 78 are installed. In addition,
Compressor (a) 76 and (b) 77 and turbine 78
are configured to rotate coaxially.
次に、本システムの動作原理について説明す
る。まず、フアン86を通つて天然ガス等の燃料
80は固体電解質型燃料電池72の燃料極へ供給
される。 Next, the operating principle of this system will be explained. First, a fuel 80 such as natural gas is supplied to the fuel electrode of the solid oxide fuel cell 72 through the fan 86 .
定常運転状態において、燃料80はフアン86
と当該燃料電池72との間に設置された燃料予熱
器71内で反応前の燃料80aと反応後の燃料8
0bとのガス−ガス熱交換を行い、固体電解質型
燃料電池72の動作温度である800〜1000℃に昇
温されて燃料入口マニホールド72aから供給さ
れる。一方、空気81はコンプレツサ(a)77によ
り昇圧され、固体電解質型燃料電池72内へ供給
される。空気81の場合も燃料80と同様、反応
前後の空気81a,81bと空気予熱器73内で
ガス−ガス熱交換を行い、同様に当該燃料電池7
2へ800〜1000℃に昇温されて電気入口マニホー
ルド72cから供給される。この時、固体電解質
型燃料電池72内で燃料80は内部リフオーミン
グ反応を伴いながら水素を発生し、この水素と空
気81中の酸素とが電気化学反応を行い、酸素イ
オン(O2-)の移動により直流電流が流れ、電気
出力83aを生ずる。そこで、固体電解質型燃料
電池72から排出された燃料80bは水素を若干
消費した状態で燃料予熱器71で熱交換の後、コ
ンプレツサ(d)76で昇圧されて溶融炭酸塩型燃料
電池75へ供給される。一方、固体電解質型燃料
電池72から排出された空気81bは酸素をある
量を消費した状態で空気予熱器73で熱交換の
後、上記溶融炭酸塩型燃料電池75の燃料極75
aから排出された燃料とともに触媒燃焼器74内
で燃焼し、空気と炭酸ガスとを生成して上記燃料
電池75の空気極75bへ供給される。この時、
溶融炭酸塩型燃料電池75内において燃料80中
の水素と混合ガス中の酸素と炭酸ガスが電気化学
反応を行い、炭酸イオンCO3 2-の移動により電流
が流れて直流の電気出力83bを生ずる。この
際、固体電解質型燃料電池72、及び溶融炭酸塩
型燃料電池75において生じた直流電圧はともに
インバータを介して交流に変換される。ここで、
溶融炭酸塩型燃料電池75の空気極75bから排
出された高温ガスはタービン78へ導かれて発電
する。この際、コンプレツサ(a)76、コンプレツ
サ(b)77、及びタービン78の駆動軸は同軸であ
る。 In the steady state of operation, the fuel 80 is supplied to the fan 86.
In the fuel preheater 71 installed between the fuel cell 72 and the fuel cell 72, the fuel 80a before reaction and the fuel 8 after reaction are heated.
Gas-to-gas heat exchange is performed with the solid oxide fuel cell 72, and the temperature is raised to 800 to 1000° C., which is the operating temperature of the solid oxide fuel cell 72, and the fuel is supplied from the fuel inlet manifold 72a. On the other hand, air 81 is pressurized by compressor (a) 77 and supplied into solid oxide fuel cell 72 . In the case of air 81, as in the case of fuel 80, gas-gas heat exchange is performed with the air 81a, 81b before and after the reaction in the air preheater 73, and similarly, the fuel cell 7
2 is heated to 800 to 1000°C and supplied from the electric inlet manifold 72c. At this time, the fuel 80 generates hydrogen in the solid oxide fuel cell 72 while undergoing an internal reforming reaction, and this hydrogen and oxygen in the air 81 undergo an electrochemical reaction, resulting in the movement of oxygen ions (O 2- ). A direct current flows, producing an electrical output 83a. Therefore, the fuel 80b discharged from the solid oxide fuel cell 72 undergoes heat exchange in the fuel preheater 71 in a state in which some hydrogen has been consumed, and is then pressurized by the compressor (d) 76 and supplied to the molten carbonate fuel cell 75. be done. On the other hand, the air 81b discharged from the solid oxide fuel cell 72 consumes a certain amount of oxygen and undergoes heat exchange in the air preheater 73.
It is combusted in the catalytic combustor 74 together with the fuel discharged from a, producing air and carbon dioxide, which are supplied to the air electrode 75b of the fuel cell 75. At this time,
In the molten carbonate fuel cell 75, the hydrogen in the fuel 80 and the oxygen and carbon dioxide in the mixed gas undergo an electrochemical reaction, and a current flows due to the movement of carbonate ions CO 3 2- , producing a DC electrical output 83b. . At this time, the DC voltages generated in the solid oxide fuel cell 72 and the molten carbonate fuel cell 75 are both converted to AC via an inverter. here,
High-temperature gas discharged from the air electrode 75b of the molten carbonate fuel cell 75 is guided to the turbine 78 to generate electricity. At this time, the drive shafts of compressor (a) 76, compressor (b) 77, and turbine 78 are coaxial.
上記実施例の発電装置は、従来の燃料改質器及
び補器系が省かれて、その代り固体電解質型燃料
電池72と燃料予熱器71、空気予熱器73が設
置された簡潔な構成である。本実施例では各予熱
器71,73と固体電解質型燃料電池72本体と
は別構造として示しているが、本発明を実施する
場合、これらの構成部材はそれぞれ別体の機器に
限定されるものではなく、双方の予熱器71,7
3を固体電解質型燃料電池72本体内へ納めた一
体構造も考えられる。この際、固体電解質型燃料
電池72本体は燃料80、及び空気81の予熱を
行うと同時に、燃料側で内部リフオーミング反応
を生じることにより、当該燃料電池72本体内で
燃料80は電気化学反応に必要な水素を発生する
など、シンプルな構造でありながら燃料電池の反
応に必要な各状態を容易に達成することができる
点で非常に重要なシステムである。従来は燃料改
質器を設けて水素を生成する方法、あるいは溶融
炭酸塩型燃料電池75本体の燃料極側の通路内へ
活性触媒を内蔵して内部リフオーミング反応を生
ずる方向などがあるが、前者の水素を生成する方
法は熱回収用のリサイクルの為に構成が複雑とな
る。また、後者の内部リフオーミング反応を生ぜ
しめる方法は通路内のガスの流れに関する信頼性
に欠ける等の欠点がある。 The power generation device of the above embodiment has a simple configuration in which the conventional fuel reformer and auxiliary system are omitted and a solid oxide fuel cell 72, a fuel preheater 71, and an air preheater 73 are installed instead. . In this embodiment, each preheater 71, 73 and the solid oxide fuel cell 72 main body are shown as separate structures, but when the present invention is implemented, these constituent members are limited to separate devices. Instead, both preheaters 71, 7
An integral structure in which 3 is housed within the solid oxide fuel cell 72 body is also conceivable. At this time, the solid oxide fuel cell 72 main body preheats the fuel 80 and air 81, and at the same time causes an internal re-forming reaction on the fuel side, so that the fuel 80 is necessary for the electrochemical reaction within the fuel cell 72 main body. Although it has a simple structure, it is an extremely important system because it can easily achieve the various conditions necessary for fuel cell reactions, such as generating hydrogen. Conventionally, there have been methods to generate hydrogen by installing a fuel reformer, or to create an internal reforming reaction by incorporating an active catalyst into the passage on the fuel electrode side of the main body of the molten carbonate fuel cell 75, but the former method The method for producing hydrogen requires a complicated structure because of the recycling for heat recovery. Furthermore, the latter method of causing an internal reforming reaction has drawbacks such as a lack of reliability regarding the flow of gas within the passage.
これらの従来技術に比し、前述の固体電解質型
燃料電池72を設置した場合、従来のリフオーマ
構造の内部を固体電解質型燃料電池に置き換えた
として考えれば、リフオーマでの高温度の熱エネ
ルギーを別の熱回収系へリサイクルする必要がな
く、しかも本体それ自身で直接電気出力を生ずる
ため、燃料改質系まわりは極めてシステムが簡略
化され、その上燃料電池発電システムの総合効率
は極めて高いものとなる。なおこの際、燃料80
は純度の高いものを用いる必要はなく、天然ガ
ス、あるいは石灰ガス化ガスなど、ほとんどの気
体燃料を用い得る。 Compared to these conventional technologies, when the solid oxide fuel cell 72 described above is installed, assuming that the inside of the conventional refohmer structure is replaced with a solid oxide fuel cell, the high-temperature thermal energy in the refohmer is separately generated. There is no need to recycle the heat to the heat recovery system, and the main unit itself directly generates electrical output, so the system surrounding the fuel reforming system is extremely simplified, and the overall efficiency of the fuel cell power generation system is extremely high. Become. At this time, fuel 80
It is not necessary to use a highly pure fuel, and most gaseous fuels such as natural gas or lime gasified gas can be used.
一方、固体電解質型燃料電池72へ供給する空
気81は電気化学反応の酸素を供給すると同時
に、固体電解質型燃料電池72本体内において電
気化学反応により生ずる反応生成熱の冷却をも兼
ねている。この時、コンプレツサ(b)77の圧力比
を10と仮定すれば、高温高圧化された空気81a
は約300〜400℃であり、固体電解質型燃料電池7
2本体へ供給される前に、空気予熱器73で上記
の生成熱除去用の燃料電池出口空気81bの熱交
換して約700℃の空気81aとして供給されるの
で、固体電解質型燃料電池72本体の冷却により
当該燃料電池72本体構造物の熱応力低減、及び
本体からの回収熱を有効に利用できるなどの利点
がある。 On the other hand, the air 81 supplied to the solid oxide fuel cell 72 supplies oxygen for the electrochemical reaction and also serves to cool the reaction generated heat generated by the electrochemical reaction within the solid oxide fuel cell 72 body. At this time, assuming that the pressure ratio of the compressor (b) 77 is 10, the high temperature and high pressure air 81a
is approximately 300 to 400℃, and solid oxide fuel cell 7
Before being supplied to the solid oxide fuel cell 72 main body, the air preheater 73 exchanges heat with the fuel cell outlet air 81b for removing generated heat and supplies the air 81a at approximately 700°C. This cooling has the advantage of reducing thermal stress on the main body structure of the fuel cell 72 and making effective use of the heat recovered from the main body.
ここで、燃料80中の水素、及び空気81中の
酸素はともに固体電解質型燃料電池72内で一定
量消費されて溶融炭酸塩型燃料電池75へ供給さ
れる。ところが、燃料80は固体電解質型燃料電
池72で内部リフオーミング反応を伴うため燃料
利用率はそれ程高くない。即ち残存水素量が多い
状態で溶融炭酸塩型燃料電池75の燃料極75a
へ供給される。また同様に、空気81は固体電解
質型燃料電池72内で電気化学反応として供給さ
れるばかりではなく、冷却用空気としても作用す
るので、空気利用率もそれ程高くない、即ち酸素
残存量の高い状態で触媒燃焼器74を経て溶融炭
酸塩型燃料電池75の空気極75bへ供給され
る。したがつて、固体電解質型燃料電池72内に
おいて、燃料利用率、及び空気利用率は約50%以
下と考えられ、ともに未反応燃料(例えば水素、
あるいは酸素)は溶融炭酸塩型燃料電池75内へ
供給されて消費し、最終的に燃料利用率及び空気
利用率は約90%に到達すると考えられる。以上の
点から、本実施例の燃料電池発電装置は燃料中の
水素、及び空気中の酸素を有効に利用し、さらに
燃料電池本体内での電気化学反応に必要な熱エネ
ルギ、及び本体内で生ずる生成熱等の熱エネルギ
を無駄にリサイクルすることなく、熱回収できる
など非常に高高率な発電装置である。なお、溶融
炭酸塩型燃料電池75の空気極75bから排出さ
れた低質の熱エネルギは、タービン78で発電す
ることにより回収する。この場合、固体電解質型
燃料電池(1000℃)、溶融炭酸塩型燃料電池(650
℃)、リン酸型燃料電池(200℃)と動作温度が降
下するのを利用して、タービンの代りにリン酸型
燃料電池を設け、溶融炭酸塩型燃料電池から排出
される排燃料、及び排空気をリン酸用の燃料、及
び空気として3フエイズタイプの燃料電池発電シ
ステムを構成することも可能である。この際、タ
ービン駆動で得られる発電量よりは高効率な発電
装置となるように考えられる。この場合、リン酸
型燃料電池での燃料および空気利用率を向上せし
めることが重要な技術的課題となる。 Here, both the hydrogen in the fuel 80 and the oxygen in the air 81 are consumed in fixed amounts within the solid oxide fuel cell 72 and supplied to the molten carbonate fuel cell 75. However, since the fuel 80 is accompanied by an internal reforming reaction in the solid oxide fuel cell 72, the fuel utilization rate is not so high. That is, the fuel electrode 75a of the molten carbonate fuel cell 75 is
supplied to Similarly, the air 81 is not only supplied as an electrochemical reaction within the solid electrolyte fuel cell 72, but also acts as cooling air, so the air utilization rate is not so high, that is, a state where the residual amount of oxygen is high. Then, it is supplied to the air electrode 75b of the molten carbonate fuel cell 75 via the catalytic combustor 74. Therefore, in the solid oxide fuel cell 72, the fuel utilization rate and the air utilization rate are considered to be about 50% or less, and both contain unreacted fuel (for example, hydrogen,
or oxygen) is supplied into the molten carbonate fuel cell 75 and consumed, and it is thought that the fuel utilization rate and air utilization rate will eventually reach approximately 90%. From the above points, the fuel cell power generation device of this example effectively utilizes hydrogen in the fuel and oxygen in the air, and also uses the thermal energy necessary for the electrochemical reaction within the fuel cell body, and the It is an extremely high-efficiency power generation device that can recover heat without wastefully recycling generated heat and other thermal energy. Note that the low-quality thermal energy discharged from the air electrode 75b of the molten carbonate fuel cell 75 is recovered by generating electricity with the turbine 78. In this case, solid oxide fuel cells (1000℃), molten carbonate fuel cells (650℃
℃), a phosphoric acid fuel cell (200℃) and taking advantage of the lower operating temperature, a phosphoric acid fuel cell is installed in place of a turbine, and the waste fuel discharged from the molten carbonate fuel cell, It is also possible to configure a three phase type fuel cell power generation system using exhaust air as fuel for phosphoric acid and air. At this time, it is thought that the power generation device will be more efficient than the amount of power generated by turbine drive. In this case, an important technical challenge is to improve the fuel and air utilization efficiency in phosphoric acid fuel cells.
第6図は前記と異なる実施例を示し、前例(第
5図)と同一の図面参照番号を付したものは前例
におけると同様の構成部分である。 FIG. 6 shows a different embodiment from the above, and the same drawing reference numbers as in the previous example (FIG. 5) indicate the same components as in the previous example.
本実施例は、タービン78の排気側に燃料予熱
器84を設置し、本来の燃料予熱器71へ流入す
る前に、タービン78から排気される低質の熱エ
ネルギを燃料予熱器84で熱回収し、本発電装置
における熱回収の効率を向上させるように構成し
てある。 In this embodiment, a fuel preheater 84 is installed on the exhaust side of the turbine 78, and the low-quality thermal energy exhausted from the turbine 78 is recovered by the fuel preheater 84 before flowing into the original fuel preheater 71. , is configured to improve the efficiency of heat recovery in this power generation device.
また、本発明の他の実施例を第7図により説明
する。本例は、固体電解質型燃料電池72へ供給
される空気81が空気予熱器73へ流入する前
に、溶融炭酸塩型燃料電池75内を通り、当該燃
料電池75を冷却すると同時に、冷却熱により空
気を予熱することにより、溶融炭酸塩型燃料電池
75内で生成された熱を回収し、本発電装置にお
ける熱回収の効率を向上させるように構成してあ
る。 Further, another embodiment of the present invention will be explained with reference to FIG. In this example, before the air 81 supplied to the solid oxide fuel cell 72 flows into the air preheater 73, it passes through the molten carbonate fuel cell 75, cools the fuel cell 75, and at the same time uses cooling heat to cool the fuel cell 75. By preheating the air, the heat generated within the molten carbonate fuel cell 75 is recovered, thereby improving the efficiency of heat recovery in the power generating apparatus.
第8図は更に異なる実施例を示す。本例におい
ては、固体電解質型燃料電池72に供給される燃
料の経路および空気の経路に、それぞれ燃料予熱
器71、及び空気予熱器73が設置されている。
燃料予熱器71では反応前後の燃料80a,80
bがガス−ガス熱交換を行うので、チユーブによ
る間接熱交換をとりはらい、燃料予熱器71内で
反応前と後のガス組成の異なる燃料80a,80
bの直接熱交換を行う。ここで、直接熱交換方式
とは、従来の多管式熱交換器のように胴体内に多
数の伝熱管を配置した間接式熱交換器ではなく、
これら伝熱管を全て取り除いて高温流体と低温流
体とが胴体内で直接混合する直接ガス−ガス接触
式熱交換器である。このタイプは、熱交換する二
流体が同一成分の場合、成分の分離が容易な上に
伝熱管がないため熱交換性能が高く、しかもコン
パクトになる長所がある。この場合、固体電解質
型燃料電池72内で内部リフオーミング反応によ
り生成された水素が、未反応の燃料80中へ拡散
するので若干燃料のリフオーミング性能が低下す
るため、燃料予熱器71とコンプレツサ(d)76と
の間に補助燃料改質器87を設置する必要があ
る。同様に、空気予熱器73も反応前後のガス−
ガス直接熱交換を行うように間接式のチユーブを
取除いた直接式熱交換器にする。この場合、熱交
換する反応前後の空気81a,81bの組成は同
一であり、燃料予熱器71に比してガス組成の変
化が厳しくないという利点が有る。以上のよう
に、燃料予熱器71、及び空気予熱器73をガス
−ガスの直接接触式熱交換器として、当該熱交換
器内に直接二流体であるガスとガスを混合及び熱
交換することにより、供給する燃料、及び空気の
組成を反応前後でほゞ均一化することができると
同時に、各予熱器71,73が極めてコンパクト
な構造となる。 FIG. 8 shows a further different embodiment. In this example, a fuel preheater 71 and an air preheater 73 are installed in a fuel path and an air path that are supplied to the solid oxide fuel cell 72, respectively.
In the fuel preheater 71, the fuels 80a and 80 before and after the reaction are
Since b performs gas-gas heat exchange, indirect heat exchange by the tube is removed, and fuels 80a and 80 with different gas compositions before and after reaction are generated in the fuel preheater 71.
Perform direct heat exchange of b. Here, the direct heat exchange method is not an indirect heat exchanger in which a large number of heat transfer tubes are arranged in the body like the conventional multi-tube heat exchanger,
It is a direct gas-gas contact heat exchanger in which all these heat transfer tubes are removed and high temperature fluid and low temperature fluid are directly mixed within the body. This type has the advantage that when the two fluids to be heat exchanged have the same components, it is easy to separate the components, and since there is no heat exchanger tube, the heat exchange performance is high and it is compact. In this case, the hydrogen generated by the internal reforming reaction within the solid oxide fuel cell 72 diffuses into the unreacted fuel 80, resulting in a slight decrease in fuel reforming performance. It is necessary to install an auxiliary fuel reformer 87 between the fuel and the fuel cell 76. Similarly, the air preheater 73 also uses gas before and after the reaction.
Create a direct heat exchanger by removing the indirect tube to perform direct gas heat exchange. In this case, the compositions of the air 81a and 81b before and after the reaction for heat exchange are the same, and there is an advantage that the change in gas composition is less severe than in the fuel preheater 71. As described above, by using the fuel preheater 71 and the air preheater 73 as gas-gas direct contact type heat exchangers, by mixing and heat-exchanging the two fluids, gas and gas, directly in the heat exchangers. The compositions of the fuel and air to be supplied can be made almost uniform before and after the reaction, and at the same time, each of the preheaters 71 and 73 has an extremely compact structure.
以上詳述したように、本発明の燃料電池発電装
置は、従来装置に比して燃料改質器まわりの補機
系が著しく簡略化され、しかも効率が高いという
優れた実用的効果を奏する。
As described in detail above, the fuel cell power generation device of the present invention has excellent practical effects in that the auxiliary system around the fuel reformer is significantly simplified and the efficiency is high compared to conventional devices.
第1図は従来の固体電解質型燃料電池の原理
図、第2図は従来の固体電解質型燃料電池発電装
置を示す系統図、第3図は従来の溶融炭酸塩型燃
料電池の原理図、第4図は従来の溶融炭酸塩型燃
料電池発電装置を示す系統図、第5図は本発明の
1実施例である燃料電池発電装置を示す系統図、
第6図は本発明の他の実施例である燃料電池発電
装置を示す系統図、第7図は本発明の更に異なる
実施例である燃料電池発電装置を示す系統図、第
8図は本発明の更に異なる実施例である燃料電池
発電装置を示す系統図である。
1……燃料電池、2……空気電極、3……固体
電解質、4……負荷、5……燃料、6……水、7
……空気、8……酸素イオン、9……電流、10
……燃料予熱器、11……固体電解質燃料電池、
12……アフタバーナ、13……空気予熱器、1
4……補助燃焼器、15……廃熱ボイラ、16…
…給水加熱器、17……脱気器、18……給水ポ
ンプ、19……蒸気タービン、20……コンデン
サ、21……発電機、22……強制通風フアン、
23……バルブ、24……煙突、25……燃料、
26……空気、27……予熱燃料ガス、28……
排ガス、29……給水、30……過熱蒸気、31
……電気出力、41……燃料電極、42……空気
電極、43……電解質、44……負荷、45……
水素、46……水素、二酸化炭素、及び水、47
……空気と炭酸ガスの混合ガス、48……炭酸イ
オン、49……電流、50……燃料改質器、51
……脱硫装置、52……溶融炭酸塩型燃料電池、
53……燃料電極、54……空気電極、55……
電解質、56……触媒燃焼器、57……気液分離
器、58……コンプレツサ、59……タービン、
60……発電機、61……フアン、62……熱交
換器、63……燃料、64……空気、65……
水、66……水蒸気、67……空気と炭酸ガスの
混合ガス、68……インバータ、69……電気出
力、71……燃料予熱器、72……固体電解質型
燃料電池、72a……燃料入口マニホールド、7
2b……燃料出口マニホールド、72c……空気
入口マニホールド、72d……空気出口マニホー
ルド、73……空気予熱器、74……触媒燃焼
器、75……溶融炭酸塩型燃料電池、75a……
燃料電極、75b……空気電極、75c……電解
質、75d……燃料空間、75e……空気空間、
76……コンプレツサ(a)、77……コンプレツサ
(b)、78……タービン、79……発電機、80…
…燃料、81……空気、82……排気ガス、83
……電気出力、84……燃料予熱器、85……空
気予熱器兼冷却器、86……フアン、87……補
助燃料改質器。
Figure 1 is a diagram of the principle of a conventional solid oxide fuel cell, Figure 2 is a system diagram showing a conventional solid oxide fuel cell power generation device, Figure 3 is a diagram of the principle of a conventional molten carbonate fuel cell, and Figure 3 is a diagram of the principle of a conventional solid oxide fuel cell. FIG. 4 is a system diagram showing a conventional molten carbonate fuel cell power generation device, and FIG. 5 is a system diagram showing a fuel cell power generation device which is an embodiment of the present invention.
FIG. 6 is a system diagram showing a fuel cell power generation device which is another embodiment of the present invention, FIG. 7 is a system diagram showing a fuel cell power generation device which is still another embodiment of the present invention, and FIG. 8 is a system diagram showing a fuel cell power generation device which is another embodiment of the present invention. FIG. 2 is a system diagram showing a fuel cell power generation device which is a further different embodiment of the invention. 1...Fuel cell, 2...Air electrode, 3...Solid electrolyte, 4...Load, 5...Fuel, 6...Water, 7
...Air, 8...Oxygen ion, 9...Current, 10
... Fuel preheater, 11 ... Solid electrolyte fuel cell,
12...Afterburner, 13...Air preheater, 1
4... Auxiliary combustor, 15... Waste heat boiler, 16...
... Feed water heater, 17 ... Deaerator, 18 ... Water pump, 19 ... Steam turbine, 20 ... Condenser, 21 ... Generator, 22 ... Forced draft fan,
23...Valve, 24...Chimney, 25...Fuel,
26...Air, 27...Preheated fuel gas, 28...
Exhaust gas, 29...Water supply, 30...Superheated steam, 31
... Electric output, 41 ... Fuel electrode, 42 ... Air electrode, 43 ... Electrolyte, 44 ... Load, 45 ...
Hydrogen, 46...Hydrogen, carbon dioxide, and water, 47
... Mixed gas of air and carbon dioxide, 48 ... Carbonate ions, 49 ... Electric current, 50 ... Fuel reformer, 51
... Desulfurization equipment, 52 ... Molten carbonate fuel cell,
53... Fuel electrode, 54... Air electrode, 55...
Electrolyte, 56... Catalytic combustor, 57... Gas-liquid separator, 58... Compressor, 59... Turbine,
60... Generator, 61... Fan, 62... Heat exchanger, 63... Fuel, 64... Air, 65...
Water, 66...Steam, 67...Mixed gas of air and carbon dioxide, 68...Inverter, 69...Electric output, 71...Fuel preheater, 72...Solid oxide fuel cell, 72a...Fuel inlet Manifold, 7
2b... Fuel outlet manifold, 72c... Air inlet manifold, 72d... Air outlet manifold, 73... Air preheater, 74... Catalytic combustor, 75... Molten carbonate fuel cell, 75a...
Fuel electrode, 75b...air electrode, 75c...electrolyte, 75d...fuel space, 75e...air space,
76……Compressusa (a), 77……Compressusa
(b), 78...turbine, 79...generator, 80...
...Fuel, 81...Air, 82...Exhaust gas, 83
... Electric output, 84 ... Fuel preheater, 85 ... Air preheater and cooler, 86 ... Fan, 87 ... Auxiliary fuel reformer.
Claims (1)
料予熱器で予熱された燃料と空気予熱器で予熱さ
れた空気とによつて電気化学反応を行う固体電解
質型燃料電池を設けると共に、上記と別体に溶融
塩型燃料電池を設け、かつ、前記固体電解質型燃
料電池から排気される燃料を前記溶融塩型燃料電
池の燃料電極側に供給するとともに、前記固体電
解質型燃料電池から排気される空気によつて溶融
塩型燃料電池の燃料電極側から排出された燃料を
燃焼させた排ガスを前記の溶融塩型燃料電池の空
気電極側に供給して電気化学反応を行わせるよう
に構成したことを特徴とする燃料電池発電装置。 2 前記の固体電解質型燃料電池に供給する空気
を加圧する圧縮機と、該固体電解質型燃料電池か
ら排気されて溶融塩型燃料電池に供給される燃料
を加圧する圧縮機と、該溶融塩型燃料電池の空気
電極側から排出される酸化剤排ガスで駆動される
膨張機とを設け、かつ、前記双方の圧縮機を前記
の膨張機によつて回転駆動するように構成したこ
とを特徴とする特許請求の範囲第1項に記載の燃
料電池発電装置。 3 前記の固体電解質型燃料電池から排気された
空気によつて燃料を燃焼させてその排ガスを溶融
塩型燃料電池に供給する手段は、溶融塩型燃料電
池の燃料電極側から排出される排ガス中の未反応
燃料を触媒燃焼器により、固体電解質型燃料電池
の排気空気で燃焼せしめる構造であることを特徴
とする特許請求の範囲第1項若しくは同第2項に
記載の燃料電池発電装置。 4 前記の膨張機は、固体電解質型燃料電池へ供
給される燃料を予熱するために設置された燃料予
熱器と別に、その排気側に膨張機から排出される
低質の熱エネルギを回収するための燃料予熱器を
設けたものであることを特徴とする特許請求の範
囲第2項に記載の燃料電池発電装置。 5 前記の溶融塩型燃料電池はこれを溶融炭酸塩
型燃料電池とし、かつ、前記の空気圧縮機の出口
空気を固体電解質型燃料電池の空気電極側へ供給
される空気が空気予熱器へ流入される前に、前記
溶融炭酸塩型電池内に送入して該燃料電池本体の
冷却と空気の予熱とを行い、熱回収効率を向上さ
せるように構成したことを特徴とする特許請求の
範囲第2項に記載の燃料電池発電装置。 6 前記の空気予熱器は圧縮機から供給される空
気と固体電解質型燃料電池の空気電極側から排出
される空気とをガス−ガス直接熱交換するため、
熱交換器内の間接式チユーブを取り除いた予熱器
であることを特徴とする特許請求の範囲第2項に
記載の燃料電池発電装置。 7 前記の燃料予熱器は、フアンから供給される
燃料と固体電解質型燃料電池の燃料電極側から排
出される燃料とをガス−ガス直接熱交換するた
め、熱交換器内の間接式チユーブを取り除いた予
熱器とし、かつ、溶融炭酸塩型燃料電池の燃料電
極側にガスを送入する予熱器の出口側に補助燃料
改質器を設けたものとすることを特徴とする特許
請求の範囲第6項に記載の燃料電池発電装置。[Scope of Claims] 1. A solid electrolyte fuel that is provided with a fuel preheater and an air preheater and performs an electrochemical reaction with the fuel preheated by the fuel preheater and the air preheated by the air preheater. A battery is provided, and a molten salt fuel cell is provided separately from the above, and the fuel exhausted from the solid electrolyte fuel cell is supplied to the fuel electrode side of the molten salt fuel cell, and the solid electrolyte The exhaust gas obtained by burning the fuel discharged from the fuel electrode side of the molten salt fuel cell by the air exhausted from the molten salt fuel cell is supplied to the air electrode side of the molten salt fuel cell to cause an electrochemical reaction. 1. A fuel cell power generation device characterized in that it is configured to perform. 2. A compressor that pressurizes the air supplied to the solid oxide fuel cell, a compressor that pressurizes the fuel exhausted from the solid oxide fuel cell and supplied to the molten salt fuel cell, and and an expander driven by oxidant exhaust gas discharged from the air electrode side of the fuel cell, and both compressors are configured to be rotationally driven by the expander. A fuel cell power generation device according to claim 1. 3. The means for burning fuel using the air exhausted from the solid oxide fuel cell and supplying the exhaust gas to the molten salt fuel cell is a method for burning fuel using the air exhausted from the solid oxide fuel cell and supplying the exhaust gas to the molten salt fuel cell. The fuel cell power generation device according to claim 1 or 2, characterized in that the unreacted fuel is combusted by the exhaust air of the solid oxide fuel cell in a catalytic combustor. 4. The above-mentioned expander has, in addition to a fuel preheater installed to preheat the fuel supplied to the solid oxide fuel cell, a fuel preheater installed on the exhaust side to recover low-quality thermal energy discharged from the expander. The fuel cell power generation device according to claim 2, characterized in that it is equipped with a fuel preheater. 5 The molten salt fuel cell is a molten carbonate fuel cell, and the air that is supplied from the air compressor to the air electrode side of the solid oxide fuel cell flows into the air preheater. The claim is characterized in that the fuel cell is fed into the molten carbonate cell to cool the main body of the fuel cell and preheat the air, thereby improving heat recovery efficiency. The fuel cell power generation device according to item 2. 6. The air preheater performs gas-to-gas direct heat exchange between the air supplied from the compressor and the air discharged from the air electrode side of the solid oxide fuel cell.
3. The fuel cell power generation device according to claim 2, which is a preheater in which an indirect tube in a heat exchanger is removed. 7 The fuel preheater described above performs gas-to-gas direct heat exchange between the fuel supplied from the fan and the fuel discharged from the fuel electrode side of the solid oxide fuel cell, so the indirect tube in the heat exchanger is removed. Claim 1, characterized in that the preheater is a preheater, and an auxiliary fuel reformer is provided on the outlet side of the preheater that feeds gas to the fuel electrode side of the molten carbonate fuel cell. The fuel cell power generation device according to item 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59114391A JPS60258862A (en) | 1984-06-06 | 1984-06-06 | Fuel cell generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59114391A JPS60258862A (en) | 1984-06-06 | 1984-06-06 | Fuel cell generation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60258862A JPS60258862A (en) | 1985-12-20 |
JPH0552036B2 true JPH0552036B2 (en) | 1993-08-04 |
Family
ID=14636500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59114391A Granted JPS60258862A (en) | 1984-06-06 | 1984-06-06 | Fuel cell generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60258862A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6083636A (en) * | 1994-08-08 | 2000-07-04 | Ztek Corporation | Fuel cell stacks for ultra-high efficiency power systems |
US5541014A (en) * | 1995-10-23 | 1996-07-30 | The United States Of America As Represented By The United States Department Of Energy | Indirect-fired gas turbine dual fuel cell power cycle |
DE19611591A1 (en) * | 1996-03-23 | 1997-09-25 | Dornier Gmbh | High temperature fuel cell system |
JP2005056666A (en) * | 2003-08-04 | 2005-03-03 | Nippon Telegr & Teleph Corp <Ntt> | Fuel cell power generation system |
JP2005056735A (en) * | 2003-08-06 | 2005-03-03 | Nippon Telegr & Teleph Corp <Ntt> | Fuel cell power generation system |
JP2005056777A (en) * | 2003-08-07 | 2005-03-03 | Nippon Telegr & Teleph Corp <Ntt> | Fuel cell power generation system |
JP2005056775A (en) * | 2003-08-07 | 2005-03-03 | Nippon Telegr & Teleph Corp <Ntt> | Fuel cell power generation system |
JP2005317232A (en) * | 2004-04-27 | 2005-11-10 | Tokyo Gas Co Ltd | Power generator |
CN113175686B (en) * | 2021-05-08 | 2022-12-27 | 中煤科工集团重庆研究院有限公司 | Preheating method of molten salt heat storage system based on gas heat storage oxidation |
-
1984
- 1984-06-06 JP JP59114391A patent/JPS60258862A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60258862A (en) | 1985-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6356728B2 (en) | Solid oxide fuel cell high efficiency reforming recirculation system | |
EP1804322B1 (en) | Combined power generation equipment | |
JP5331819B2 (en) | MCFC power generation system | |
Lanzini et al. | Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells | |
JP5004156B2 (en) | Power generation equipment | |
KR100651270B1 (en) | Apparatus for molten carbonate fuel cell | |
US9819038B2 (en) | Fuel cell reforming system with carbon dioxide removal | |
JP2003123818A (en) | Fuel cell system and complex power generating system | |
JP2002319428A (en) | Molten carbonate fuel cell power generating device | |
JPS60195880A (en) | Power generation system using solid electrolyte fuel cell | |
JPH0552036B2 (en) | ||
JPH07230816A (en) | Internally modified solid electrolyte fuel cell system | |
JPH0845523A (en) | Fuel cell/gas turbine combined generation system | |
JPH06103629B2 (en) | Combined fuel cell power generation facility | |
JP2000331697A (en) | Fuel cell generating device injecting vapor into anode exhaust gas line | |
EP2963722B1 (en) | Power generation systems and methods utilizing cascaded fuel cells | |
JP3928675B2 (en) | Combined generator of fuel cell and gas turbine | |
JPH065298A (en) | Fuel cell power generating apparatus | |
JPH0358154B2 (en) | ||
JP2004247247A (en) | Solid oxide fuel cell system | |
JP5964082B2 (en) | Power generation system and fuel cell cooling method | |
JP2006156015A (en) | Fuel cell system and fuel gas supply method | |
JPS63239777A (en) | Operation method for fuel cell power generating plant | |
JP3969976B2 (en) | Fuel reforming system and fuel cell system | |
RU2475899C1 (en) | Method for using carbon-containing fuel in system containing high-temperature fuel element |