[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05507609A - Overvoltage/overcurrent protection circuit with excellent ground balance - Google Patents

Overvoltage/overcurrent protection circuit with excellent ground balance

Info

Publication number
JPH05507609A
JPH05507609A JP91509124A JP50912491A JPH05507609A JP H05507609 A JPH05507609 A JP H05507609A JP 91509124 A JP91509124 A JP 91509124A JP 50912491 A JP50912491 A JP 50912491A JP H05507609 A JPH05507609 A JP H05507609A
Authority
JP
Japan
Prior art keywords
protection circuit
overvoltage
varistor
overcurrent protection
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP91509124A
Other languages
Japanese (ja)
Other versions
JP2934502B2 (en
Inventor
ヤキ,イバン
Original Assignee
テレフオンアクチーボラゲツト エル エム エリクソン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲツト エル エム エリクソン filed Critical テレフオンアクチーボラゲツト エル エム エリクソン
Publication of JPH05507609A publication Critical patent/JPH05507609A/en
Application granted granted Critical
Publication of JP2934502B2 publication Critical patent/JP2934502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/005Emergency protective circuit arrangements for limiting excess current or voltage without disconnection avoiding undesired transient conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • H04Q11/0428Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
    • H04Q11/0435Details
    • H04Q11/0471Terminal access circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1308Power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13166Fault prevention
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13209ISDN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13302Magnetic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13305Transistors, semiconductors in general
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13306Ferro-electric elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1332Logic circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Dc Digital Transmission (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、アナログ信号とディジタル信号を双方向に伝送する二線式線路に接続 されるようになっている交換端末用の過電圧過電流保護回路に関するものである 。端末回路は二線式接続を四線式接続、五線式接続、もしくはそれ以上の高次の 接続形式に変換することができるものであって、主に送受信装置のインピーダン スを線路のインピーダンスと整合させる働きをする。保護回路はl5DN回路網 のUインターフェイスに設けることができるが、この場合にはいわゆる回路網端 末を形成する。過電圧過電流保護回路は、l5DN回路網のRインターフェイス 、Sインターフェイス、Tインターフェイスに設けられる交換端末回路にも実装 することができる。本発明による保護回路は従来の電話回路網の局側または加入 者側の交換端末回路に設けることもできる。[Detailed description of the invention] The present invention connects to a two-wire line that transmits analog and digital signals in both directions. This is related to overvoltage and overcurrent protection circuits for replacement terminals that are now being used. . Terminal circuits can convert two-wire connections to four-wire connections, five-wire connections, or higher-order connections. It is something that can be converted into a connection format, and mainly depends on the impedance of the transmitting/receiving device. It works to match the impedance of the line with the impedance of the line. Protection circuit is l5DN circuit network In this case, the so-called network end form the end. The overvoltage and overcurrent protection circuit is the R interface of the l5DN circuit network. , also implemented in the switching terminal circuit provided at the S interface and T interface. can do. The protection circuit according to the invention can be used on the central office side or on the subscriber side of a conventional telephone network. It can also be provided in the exchange terminal circuit on the user's side.

背景技術 二線式接続から四線式接続に変換することができる回路網端末は本出願人による 米国特許明細書US−A−4゜539.443に開示されている。Background technology A network terminal capable of converting from a two-wire connection to a four-wire connection is provided by the applicant. It is disclosed in US patent specification US-A-4°539.443.

交換端末回路は通常電話交換機の線路端末内に設置され、二線式線路に接続する ために2個の入力端子を持っている。端末回路は多くの要求を完全に満たすこと ができなければならない。例えば、回路の入力端子は基準電位、通常はアースに 対して平衡がとれてなければならない。さもないといわゆる継電流が線路上に生 ずるからである。更に、交換端末回路は高い反射減衰量を示さなければならない 。一般の周波数帯域内では、すなわち音声周波数帯域またはディジタル信号のビ ット周波数帯域では、実効減衰歪と基礎減衰量は小さくなければならない。Switched terminal circuits are usually located within the line terminals of telephone exchanges and connect to two-wire lines. It has two input terminals for this purpose. Terminal circuit must fully meet many requirements must be able to do so. For example, the input terminals of a circuit are connected to a reference potential, usually ground. There must be a balance. Otherwise, so-called relay currents will occur on the line. Because it's cheating. Additionally, the exchange terminal circuit must exhibit high return loss. . Within the general frequency band, i.e. the audio frequency band or the digital signal In the cut frequency band, the effective attenuation distortion and fundamental attenuation must be small.

もうひとつの要求は、加入者側または電話交換機側などにおける送受信機間では 、いわゆるループ減衰量が小さくなければならないということである。Another requirement is that between transmitters and receivers on the subscriber side or telephone exchange side, etc. This means that the so-called loop attenuation must be small.

回路網端末の場合、端末は回路の入力端子も通じて電源に接続することができな ければならない。この電源は線路の他端にある加入者装置に電流を供給する。こ の電流は、電話方法の一部となっており、線路に信号を送る目的に通常使われる 。In the case of a network terminal, the terminal cannot be connected to the power supply through the input terminals of the circuit as well. Must be. This power supply provides current to the subscriber equipment at the other end of the line. child electric current is part of telephone methods and is commonly used for the purpose of transmitting signals on railway lines. .

既知の加入者用回路網端末は約300Hzから約3.5kl(zの周波数範囲で 音声信号を送信するように考えられており、かつ、知られているように直流信号 を送信するように考えられている。しかしながら、加入者線路を音声周波数より もはるかに高い周波数で送られるディジタル信号の送信に使うときに問題か起き る。ディジタル信号は音声信号よりも減衰量かはるかに大きいので、ディジタル 信号を送るには高い電力レベルが必要である。このために、より良好なアース平 衡が要求されることになる。Known subscriber network terminals have a frequency range of about 300 Hz to about 3.5 kl (z). Conceived to transmit audio signals and, as is known, direct current signals is considered to be sent. However, if the subscriber line is lower than the voice frequency Problems may arise when used to transmit digital signals sent at much higher frequencies. Ru. Digital signals have much greater attenuation than audio signals, so High power levels are required to send the signal. For this reason, a better ground plane Balance will be required.

過電圧過電流保護回路の目的は、過電圧や過電流が生した場合に、端末回路また は回路網端末の出力側に接続された高価な装置を保護することである。過電圧過 電流が生ずるのは例えば、加入者線路に雷電圧が乗った場合、IE磁界と干渉し た場合、たとえば交流220Vの電カケーブルと線路とが思わぬ接触をした場合 などである。こうしたことが起こるのは、例えば、火災とか、不注意とか、ある いは線路と電カケーブルとが不適当に近接設置されているために荒天や動物など の影響で両者が電気的に接触するようになったことによるものである。The purpose of the overvoltage/overcurrent protection circuit is to protect the terminal circuit or The purpose is to protect expensive equipment connected to the output side of the network terminal. Overvoltage For example, current is generated when lightning voltage is applied to the subscriber line and interferes with the IE magnetic field. For example, if an AC 220V power cable comes into unexpected contact with the railway line. etc. This can happen, for example, due to fire or carelessness. Or the railroad tracks and power cables are installed inappropriately close to each other, causing problems such as rough weather or animals. This is because the two came into electrical contact due to the influence of

過電圧過電流保護回路は、前述の端末回路の電気的特性に影響してはいけない。The overvoltage and overcurrent protection circuit must not affect the electrical characteristics of the aforementioned terminal circuit.

したがって、線路がアースされる、あるいは短絡されたときに、装置が損傷され ないように、装置に流れる電流を制限することが必要である。線路に接続されて いるディジタル交換機の動作電圧は通常5Vであるから、最大的5Vの電圧でこ われないように設計されている。雪が線路に発生させる過電圧は例えば1500 ボルトにもなりつる。Therefore, the equipment will not be damaged when the line is grounded or shorted. It is necessary to limit the current flowing through the device so that it does not occur. connected to the line The operating voltage of digital exchanges is usually 5V, so the maximum voltage is 5V. It is designed so that it will not be damaged. For example, the overvoltage that snow generates on the railway is 1500 Can also be used as a bolt.

今日のシステムでは、主な保護手段として、大きなグロー放電管、すなわち冷陰 極管が、加入者線路の各線と電話交換機の入力側のアースとの間に接続されてい る。Today's systems use large glow discharge tubes, i.e. cold shades, as the main means of protection. A pole tube is connected between each line of the subscriber line and earth at the input side of the telephone exchange. Ru.

これらの放電管は動作が遅くて、応答時間は約1msかかる。雷パルスの最大電 圧は約107170秒後に現われる。更にグロー放電管がトリガされる瞬間は時 間的に異なるので、線路の二線間を横断する残留電圧が生ずる。These discharge tubes are slow in operation, with a response time of about 1 ms. Maximum electric power of lightning pulse Pressure appears after approximately 107170 seconds. Furthermore, the moment when the glow discharge tube is triggered is Because of the difference between the lines, a residual voltage is created across the two lines of the line.

過電圧過電流保護回路内では決して火災が起きてはならない。第1図に示した既 知の過電圧過電流保護回路の場合、2個の巻線型抵抗器によって過電圧が制限さ れる。Fire must never occur within the overvoltage/overcurrent protection circuit. As shown in Figure 1, In the case of the known overvoltage and overcurrent protection circuit, overvoltage is limited by two wire-wound resistors. It will be done.

もし過電圧が長期間高電圧のものであったならば、これらの抵抗器が真赤になっ て火を吹く危険性が生ずる。これらの巻線抵抗器は、過電圧保護回路が端末回路 のアース平衡に影響を与えないように、お互いに整合する、すなわち対になって いなければならない。高い過電圧に耐えることができるためには、抵抗器のいわ ゆる部品公称電圧、すなわち電圧に対する耐久性が高くなければならない。更に 、高電力に耐えるために、抵抗器は物理的に大きくなければならない。If the overvoltage is of high voltage for a long period of time, these resistors will turn bright red. There is a risk of catching fire. These wire-wound resistors have an overvoltage protection circuit in the terminal circuit. matched to each other, i.e. in pairs, so as not to affect the earth balance of I have to be there. In order to be able to withstand high overvoltages, the resistor must All parts must have high durability against the nominal voltage, that is, voltage. Furthermore , the resistor must be physically large to withstand high power.

従来の保護回路には線路変成器も含まれている。変成器を流れる電流が大きいと 、過電圧過電流保護回路が実装されている回路基板の鋼箔が燃え始めるおそれが ある。Traditional protection circuits also include line transformers. If the current flowing through the transformer is large , the steel foil of the circuit board on which the overvoltage/overcurrent protection circuit is mounted may start to burn. be.

電流制限保護器として温度依存性抵抗器、いわゆるPTC抵抗器を使うことが知 られている。しかし、これらの抵抗器の欠点は、部品の公称電圧が限られている ために、部品に高電圧が加わった場合、部品内に電気的な火花が生じやすいとい うことである。これらのPTC抵抗器の配置にも気をつけなければならない。も しPTC抵抗器を流れる電流が大きければ、抵抗器は溶は始めて、溶解した材料 が下層の鋼箔基板又はカードを発火させやすい。PTC抵抗器が高電流高電圧下 におかれると、抵抗器母体の中に温度勾配が生じる結果、割れ易くなる。It is known that a temperature-dependent resistor, a so-called PTC resistor, can be used as a current-limiting protector. It is being However, the disadvantage of these resistors is that the nominal voltage of the component is limited Therefore, when high voltage is applied to a component, electrical sparks are likely to occur within the component. That is true. Care must also be taken in the placement of these PTC resistors. too If the current flowing through the PTC resistor is large, the resistor will start to melt and the molten material will melt. can easily cause the underlying steel foil board or card to catch fire. PTC resistor under high current and high voltage If the resistor is exposed to a high temperature, a temperature gradient will occur within the resistor matrix, making it susceptible to cracking.

すると、もはや保護機能は存在しな(なる。Then, the protective function no longer exists.

過電圧から保護する手段としてツェナーダイオードを使うことも知られている。It is also known to use Zener diodes as a means of protection against overvoltage.

この種のツェナーダイオードは最も急峻な特性を持ったものでなければならない 。しかしそのために動的な問題が生ずる。というのはS多くの高調波(倍音)、 高調波歪、および混変調歪が発生して、これらが信号伝送の品質に悪影響を与え るがらである。This type of Zener diode must have the steepest characteristics. . However, this poses a dynamic problem. That is, S many harmonics (overtones), Harmonic distortion and cross-modulation distortion occur, which adversely affect the quality of signal transmission. It is rustic.

アース平衡の要求はなかでも重要であり、保護回路内での異常電圧は最大60デ シベルにも達することがある。The requirement for earth balance is particularly important, and abnormal voltages within the protection circuit can exceed up to 60 deg. It can reach as high as Shibel.

線路インピーダンスが約600オームの場合、このことは線路電圧保護回路のア ース対称回路における抵抗値相互の誤差がせいぜいO,1オームしか許容できな いことを意味する。したがって線路の運用がきわどくなる。If the line impedance is approximately 600 ohms, this means that the line voltage protection circuit The error between the resistance values in the base symmetric circuit can only be tolerated by 0.1 ohm at most. It means something. Therefore, the operation of the railway line becomes difficult.

発明の要約 本発明の目的はアース平衡のすぐれた過電圧過電流保護回路を提供することであ り、かっこの保護回路が小さくて安価な部品から構成することができて、交換端 末回路または回路網端末内で効果的に使うことができるところである。Summary of the invention An object of the present invention is to provide an overvoltage/overcurrent protection circuit with excellent ground balance. This allows the bracket protection circuit to be constructed from small and inexpensive components, making it easy to replace the It can be effectively used in a terminal circuit or network terminal.

本発明の他の目的は、既に述べた型の保護回路であって、変成器の一次巻線が直 接加入者線路の入力端子に接続され、巻線型の電流制限抵抗器を中間に直列接続 する必要がないものを提供することである。Another object of the invention is a protection circuit of the type already mentioned, in which the primary winding of the transformer is Connected to the input terminal of the subscriber line, with a wire-wound current limiting resistor connected in series in the middle. It's about providing something that doesn't need to be done.

さらに具体的に述べると、この変成器は端末回路の一部を構成している、すなわ ち端末回路の線路変成器である。More specifically, this transformer forms part of the terminal circuit, i.e. This is the line transformer of the terminal circuit.

線路上で発生した過電圧パルスが線路から保護すべき装置に伝達される際に、変 成器効果によって期間を短くするために、保護回路では端末回路の線路変成器を 積極的に利用すべきである。変成器の二次側に伝達されるパルスエネルギーは変 成器効果によってこのように減衰するので、過電圧過電流保護回路の二次側では 小さい部品を使うことが可能になる。When an overvoltage pulse generated on the line is transmitted from the line to the equipment to be protected, In order to shorten the period due to the transformer effect, the line transformer in the terminal circuit is It should be actively used. The pulse energy transferred to the secondary side of the transformer is Because of this attenuation due to the generator effect, on the secondary side of the overvoltage/overcurrent protection circuit, It becomes possible to use small parts.

反射減衰量、実効減衰歪、基礎減衰量およびループ減衰量は、音声周波数帯域と データビット伝送に使われる周波数帯域の両範囲内で著しく小さくすることかで きる。Return loss, effective attenuation distortion, basic attenuation, and loop attenuation are It can be significantly reduced within both frequency bands used for data bit transmission. Wear.

部品相互の配置関係はきびしくない。保RIM路に含まれるツェナーダイオード はいずれも急峻な特性を示す必要かない。The mutual arrangement of parts is not strict. Zener diode included in the protection RIM path It is not necessary for either of them to exhibit steep characteristics.

過電圧と過電流は保護回路内の異なる部品において段階的に減らされるので、部 品の公称電圧は低くなり、安価な標準部品の使用が可能になる。Overvoltages and overcurrents are reduced step by step in different components within the protection circuit, so The nominal voltage of the product is lower, allowing the use of cheaper standard components.

本発明の特徴は、1個のバリスタと2個のPTC抵抗器とを、線路変成器の一次 巻線と共に、アース平衡回路に使うことにある。A feature of the present invention is that one varistor and two PTC resistors are connected to the primary of the line transformer. It is used in earth balance circuits together with windings.

図面の簡単な説明 以下図面と共に本発明の詳細な説明する。第1図は従来の過電圧過電流保護回路 を示す。第2図は本発明による過電圧過電流保護回路を示す。第3図は第2図に 示した過電圧過電流回路に雷パルスが加わったときの、出力電圧の推移を示す。Brief description of the drawing The present invention will be described in detail below with reference to the drawings. Figure 1 shows a conventional overvoltage/overcurrent protection circuit. shows. FIG. 2 shows an overvoltage and overcurrent protection circuit according to the present invention. Figure 3 is shown in Figure 2. This figure shows the change in output voltage when a lightning pulse is applied to the overvoltage/overcurrent circuit shown.

発明の最適実施例 第1図に従来の過電圧過電流保護回路を示す。この回路は既知の端末回路、また は回路網端末に実装され、端末回路の入力端子a、bで加入者線路の二線に接続 されている。この場合、線路端末回路は4個の出力端子TI。Best embodiment of the invention FIG. 1 shows a conventional overvoltage/overcurrent protection circuit. This circuit is a known terminal circuit or is mounted on the network terminal and connected to the two lines of the subscriber line at input terminals a and b of the terminal circuit. has been done. In this case, the line terminal circuit has four output terminals TI.

T2.T3.T4を有する。送信装置(図示せず)が端子T1とT2の間に接続 され、受信装置(図示せず)が端子T3とT4の間に接続されている。第2図に は本発。T2. T3. It has T4. A transmitting device (not shown) is connected between terminals T1 and T2 A receiving device (not shown) is connected between terminals T3 and T4. In Figure 2 is the original.

引上重要な部品だけを示しである。端末回路としての機能を果たすためには残り の部品が必要であるが、図示してない。Only important parts are shown. In order to function as a terminal circuit, the remaining These parts are required, but are not shown.

線路変成器LTIの一次巻線は2つの巻線部分Ll。The primary winding of the line transformer LTI has two winding parts Ll.

L2から成り、両者の間に中心点コンデンサCが直列接続されている。−次巻線 の一端と入力端子aとの間には電流制限抵抗器Raが、他端と入力端子すとの間 には第2の電流制限抵抗器Rbが直列接続されている。電圧源Eは抵抗器R1と R2を介して中心点コンデンサCをまたいで接続されている。電圧源Eの陰極は アースされている。ツェナーダイオードZl、Z2.Z3.Z4が−48Vの基 準電圧源とアース間に、およびL 1−C−L2の直列結合体の両端との間に、 図示の如く接続されている。電流源Eは加入者装置に直流電流を供給するのに用 いられる。−次側の回路はアースに関して対象である。電流制限抵抗器Ra、R bは大きな巻線型抵抗器から成る。ツェナーダイオード21〜Z4は過電圧をア ースに短絡させる過電圧保護器として働く。変成器LTIは二次巻線L3を存し 、L3と並列にコンデンサCIが接続されている。ツェナーダイオードZ5〜Z 8は送受信装置の過電圧保護器として働く。L2, with a center point capacitor C connected in series between them. −Next winding A current limiting resistor Ra is connected between one end and the input terminal a, and a current limiting resistor Ra is connected between the other end and the input terminal A. A second current limiting resistor Rb is connected in series. Voltage source E is connected to resistor R1 It is connected across the center point capacitor C via R2. The cathode of voltage source E is It is grounded. Zener diode Zl, Z2. Z3. Group where Z4 is -48V between the quasi-voltage source and ground, and between the ends of the series combination of L1-C-L2, They are connected as shown. Current source E is used to supply direct current to subscriber equipment. I can stay. - The downstream circuit is symmetrical with respect to earth. Current limiting resistor Ra, R b consists of a large wire-wound resistor. Zener diodes 21 to Z4 actuate overvoltage. Acts as an overvoltage protector that shorts to the ground. Transformer LTI has a secondary winding L3 , L3 are connected in parallel with a capacitor CI. Zener diode Z5~Z 8 acts as an overvoltage protector for the transmitting/receiving device.

第1図に示した回路は前述のような欠点を存するが、これらの欠点は本質的に抵 抗器RaとRbが存在することに起因している。Although the circuit shown in Figure 1 has the drawbacks mentioned above, these drawbacks are not inherently This is due to the presence of resistors Ra and Rb.

第2図に本発明による過電圧および過電流保護回路を示す。第2図に示した回路 部品で第1図の回路と対応するものには同じ参照符号をつけである。この回路の 線路変成器LT2の一次巻線は2つの巻線部分Ll、L2から成り、二次巻線は 2つの巻線部分L3.L4から成っている。FIG. 2 shows an overvoltage and overcurrent protection circuit according to the present invention. The circuit shown in Figure 2 Components corresponding to those in the circuit of FIG. 1 are given the same reference numerals. of this circuit The primary winding of line transformer LT2 consists of two winding parts Ll, L2, and the secondary winding is Two winding parts L3. It consists of L4.

一次側の回路は第1図と同様に直列結合体Ll−C−L2が直列接続されている 。しかし重要な違いは、この直列結合体の両端が入力端子a、bに直接接続され ていて、第1図で途中に直列接続されていた電流制限抵抗器Ra、Rbがないこ とである。その代わりに、PTC抵抗器PTCI、PTC2を介して中心点コン デンサCと並列に接続されているバリスタVlによって、電流が制限される。一 方のPTC抵抗器はバリスタの一端と中心点コンデンサの一端との間に接続され 、他方のPTC抵抗器はバリスタV1の他端と中心点コンデンサの他端との間に 接続されている。抵抗器RalとRa2は電流制限器として働くが、後で詳細に 説明するように、これらの抵抗器は第1図に示した電流制限抵抗器RaとRbと 比べて、体積も抵抗値もはるかに小さい。抵抗器Ralはバリスタの一端と電圧 源Eの一方の極との間に直列に接続され、抵抗器Ra2はバリスタの他端と電圧 源Eの他方の極、この場合陰極、との間に直列に接続されている。この陰極はア ースされている。The circuit on the primary side has series combinations Ll-C-L2 connected in series as in Fig. 1. . However, the important difference is that both ends of this series combination are directly connected to input terminals a and b. Note that the current limiting resistors Ra and Rb, which were connected in series in Figure 1, are not present. That is. Instead, the center point can be connected via PTC resistors PTCI, PTC2. The current is limited by a varistor Vl connected in parallel with the capacitor C. one One PTC resistor is connected between one end of the varistor and one end of the center point capacitor. , the other PTC resistor is connected between the other end of varistor V1 and the other end of the center point capacitor. It is connected. Resistors Ral and Ra2 act as current limiters, which will be discussed in detail later. As will be explained, these resistors are similar to the current limiting resistors Ra and Rb shown in FIG. In comparison, both volume and resistance are much smaller. The resistor Ral is connected to one end of the varistor and the voltage The resistor Ra2 is connected in series with one pole of the source E, and the resistor Ra2 is connected to the other end of the varistor and the voltage It is connected in series between the other pole of source E, in this case the cathode. This cathode is is being sourced.

バリスタ■lは金属酸化物タイプのものであり、電圧/電流特性が対称の電圧依 存性抵抗器である。電圧が定格電圧、すなわち公称電圧を越えると、急に抵抗値 が減少する。この種のバリスタの応答時間は25ナノ秒より短い。The varistor is a metal oxide type and has symmetrical voltage/current characteristics. It is a permanent resistor. When the voltage exceeds the rated voltage, that is, the nominal voltage, the resistance value suddenly decreases. decreases. The response time of this type of varistor is less than 25 nanoseconds.

PTC抵抗器は冷導体とも呼ばれ、温度が上がると抵抗値が上がる温度依存性の 半導体抵抗器である。基準温度と呼ばれる所定の温度になると抵抗値が急に大き くなる。正の温度係数が非常に大きいので、PTC(positive tem perature coefficient )抵抗器と呼ばれる。PTC resistors are also called cold conductors, and are temperature-dependent resistors whose resistance increases as the temperature rises. It is a semiconductor resistor. The resistance value suddenly increases when it reaches a predetermined temperature called the reference temperature. It becomes. Since the positive temperature coefficient is very large, PTC (positive temperature) perature coefficient) resistor.

一次側の回路は次のように作動する。加入者線路に雷のパルスが加わった場合、 コンデンサCは充電を始めるので、コンデンサ両端の電圧が上る。コンデンサの 電圧がバリスタの公称電圧を越えると、バリスタVlか導通状態になり始めるの で、バリスタを流れる電流が急増する。その結果−次巻線を流れる電流が急増し て、ついに変成器のコアが飽和する。以後は実際にこれ以上はエネルギーか変成 器の二次側に伝達されなくなる。バリスタを流れる電流が増えるので、抵抗器R alとRa2か吸収すべき電流は第1図の回路に比べればはるかに少くなる。し たかって抵抗器RalとRa2は体積も抵抗値も第1図の回路に比へて、はるか に小さくすることがてきる。The primary circuit operates as follows. If a lightning pulse is applied to the subscriber line, Capacitor C starts charging, so the voltage across the capacitor increases. of capacitor When the voltage exceeds the varistor's nominal voltage, the varistor Vl begins to conduct. The current flowing through the varistor increases rapidly. As a result – the current flowing through the next winding increases rapidly. Eventually, the transformer core saturates. After that, anything more than this is actually energy or transmutation. It is no longer transmitted to the secondary side of the device. Since the current flowing through the varistor increases, the resistor R The current that must be absorbed by al and Ra2 is much smaller than in the circuit of FIG. death The volume and resistance of resistors Ral and Ra2 are much larger than those in the circuit shown in Figure 1. It can be made smaller.

バリスタVlが導通を開始すると、電流は温度依存性抵抗器PTClとPTC2 にも流れる。その結果、これらの温度が上昇してやがて基準温度に達し、抵抗器 の抵抗器が急増する。そのために抵抗器PTC1,PTC2のスイッチング時間 が短くなる。When the varistor Vl starts conducting, the current flows through the temperature dependent resistors PTCl and PTC2. It also flows. As a result, these temperatures rise and eventually reach the reference temperature, causing the resistor to The number of resistors increases rapidly. Therefore, the switching time of resistors PTC1 and PTC2 is becomes shorter.

前述のように、バリスタか開放状態になると、−次巻線を流れる電流が加速的に 増加する。変成器LT2のコアが飽和する迄、電流の増加が続く。コアが飽和し た以後は、これ以上エネルギーは変成器の二次側に伝達されない。飽和の瞬間迄 に二次側に供給された電圧は二段階で減らされる。一部は変成器の二次巻線に並 列に接続されているバリスタv2によって、一部は端子TI、T2に接続されて いる送信装置を保護するためのツェナーダイオードZ5.Z6によって、更に一 部は端子T3.T4に接続されている受信装置を保護するためのツェナーダイオ ードZ7.Z8によってそれが行われる。例えば、バリスタV2の公称電圧が6 0Vならば、60Vより高い電圧はすべてバリスタv2により吸収される。した がって、ツェナーダイオードZ5〜Z8は60Vより低い電圧だけを吸収すれば よい。第1図の例では、ツェナーダイオードZ5〜Z8は6ovより高い電圧も すべて吸収することが必要であるから、ツェナーダイオードの特性がすぐれてい ることが要求される。特に低電流の領域、すなわちツェナーダイオードが非導通 の状態から導通状態への遷移領域においてそうである。本発明の過電圧保護回路 の場合、ツェナーダイオードの抵抗値の動的傾斜が急である必要性は低い。As mentioned above, when the varistor becomes open, the current flowing through the negative winding accelerates. To increase. The current continues to increase until the core of transformer LT2 saturates. core is saturated After that, no more energy is transferred to the secondary side of the transformer. Until the moment of saturation The voltage supplied to the secondary side is reduced in two stages. Some parts are parallel to the secondary winding of the transformer. By the varistor v2 connected to the column, some are connected to the terminals TI, T2 Zener diode Z5. With Z6, one more The part is terminal T3. Zener diode to protect the receiver connected to T4 Code Z7. Z8 does that. For example, if the nominal voltage of varistor V2 is 6 If it is 0V, all voltages higher than 60V will be absorbed by varistor v2. did Therefore, Zener diodes Z5 to Z8 only absorb voltages lower than 60V. good. In the example of Figure 1, the Zener diodes Z5-Z8 can also handle voltages higher than 6ov. Since it is necessary to absorb all of the energy, Zener diodes have excellent characteristics. It is required that Particularly low current areas, i.e. Zener diodes are non-conducting This is so in the transition region from the state to the conducting state. Overvoltage protection circuit of the present invention In this case, there is little need for the dynamic slope of the resistance of the Zener diode to be steep.

第3図は一次側の端子a、bに800マイクロ秒の間1500Vの雷パルスが加 わった場合の、ツェナーダイオードZ5.Z6の両端の電圧を示したものである 。IOマイクロ秒の闇に雪パルスは0ボルトがらI 500ボルトに立上る。第 3図ではY軸は電圧をボルトで、X軸は時間をマイクロ秒で表わしである。雷パ ルスは時間t;0て始まる。バリスタVlに加わる電圧が90ボルトに達すると 、バリスタVlが完全に導通状態になり、それに呼応して、バリスタV2に加わ る電圧が17ボルトに達すると、バリスタV2か開放状態になる。コンデンサC 1は3.9nFであり、コンデンサc2は6.8nFである。第3図によれば、 変成器のコアはわずか50マイクロ秒後に飽和し、二次側の電圧は約6.2ボル トから落ち始めて、約1.8ボルトで落ちつく。これが1.50マイクロ秒後に 達成されている。アース電位との平衡は申し分ない。Figure 3 shows a 1500V lightning pulse applied to primary side terminals a and b for 800 microseconds. Zener diode Z5. This shows the voltage across Z6. . In the darkness of IO microseconds, the snow pulse rises from 0 volts to I 500 volts. No. In Figure 3, the Y-axis represents voltage in volts and the X-axis represents time in microseconds. thunder pa The pulse begins at time t;0. When the voltage applied to the varistor Vl reaches 90 volts , varistor Vl becomes fully conductive, and in response, the voltage applied to varistor V2 When the voltage reaches 17 volts, varistor V2 becomes open. Capacitor C 1 is 3.9 nF, and capacitor c2 is 6.8 nF. According to Figure 3, The transformer core saturates after only 50 microseconds, and the voltage on the secondary side is approximately 6.2 volts. It starts to fall from 0 and settles down at about 1.8 volts. This is after 1.50 microseconds has been achieved. Balance with earth potential is perfect.

過電圧が変成器の一次側から二次側へ伝達されるのに要する時間は、変成器効果 のせいて約50マイクロ秒に縮まるので、パルスエネルギーJ=AVt (J= ノジュール表わしたエネルギー、A=電流、■=二次側の電圧、t=待時間は小 さい。その結果回路部品は寸法の小さいものを使用することができる。The time required for the overvoltage to be transferred from the primary to the secondary of the transformer is determined by the transformer effect. The pulse energy J=AVt (J= Energy expressed in nodules, A = current, ■ = secondary voltage, t = small waiting time Sai. As a result, smaller circuit components can be used.

PTC抵抗器PTC1,PTC2は短い横パルスが線路上に起きたときに高抵抗 に切替わることができないので、パルスエネルギーの大部分がLl−PTCI− Vl−PTC2−L2を通って再び線路に導かれ、そこでエネルギーが吸収され る。PTC resistors PTC1 and PTC2 have high resistance when a short transverse pulse occurs on the line. Since most of the pulse energy cannot be switched to Ll-PTCI- It is guided back to the line through Vl-PTC2-L2, where the energy is absorbed. Ru.

雪パルスの最初の段階の間、特に変成器のコアが飽和するまでの最初の約50マ イクロ秒の間に、エネルギーは変成器コアとコンデンサに蓄えられる。それから ノくリスクVlが導通したとき、すなわち短絡したときに、すべてのエネルギー はLl、、L2を経て再び線路に戻される。During the first phase of the snow pulse, especially the first 50 or so miles until the transformer core saturates. During microseconds, energy is stored in the transformer core and capacitor. after that When Vl conducts, that is, when there is a short circuit, all the energy is returned to the line via Ll, L2.

PTC1とPTC2が完全にスイッチングして高抵抗になると、抵抗器が過電圧 を吸収する。抵抗器が吸収する必要かある熱エネルギーP=U” XRは非常に 小さくなっている。RはPTC抵抗器の抵抗値で、今や非常に大きいからである 。When PTC1 and PTC2 completely switch and become high resistance, the resistor will overvoltage. absorb. The thermal energy that the resistor needs to absorb, P=U”XR, is very It's getting smaller. R is the resistance of the PTC resistor, which is now very large. .

例えば220Vの交流のような過電圧が長時間線路に加わった場合には、中心点 コンデンサCのインビーダン、ス1/Cが非常に高くなって、すべての電流がL L−C−L2を流れるであろう。ここでw=2πfであって、fは交流電圧の周 波数を意味する。この場合の典型的な合計電流は約70mAである。枝路Ra1 .V1.Ra2は短絡され、−次巻線側の鋼の抵抗がすべての電力を熱として吸 収するだろう。熱エネルギーはこの場合的0.5ワツトくらいである。For example, if an overvoltage such as 220V AC is applied to the line for a long time, the center point The impedance of capacitor C, S1/C, becomes very high, and all current becomes L. It will flow through L-C-L2. Here, w=2πf, where f is the frequency of the AC voltage. means wave number. Typical total current in this case is about 70 mA. Branch road Ra1 .. V1. Ra2 is short-circuited, and the steel resistance on the negative winding side absorbs all the power as heat. will be collected. The thermal energy in this case is approximately 0.5 watts.

バリスタVlの公称電圧は、電源電圧Eで導通を開始するほど低くてはいけない 。いいかえれば、公称電圧は電源電圧Eに合わせるべきである。The nominal voltage of the varistor Vl must not be so low that it starts conducting at the supply voltage E . In other words, the nominal voltage should match the power supply voltage E.

本発明による過電流過電圧保護回路がアース平衡を改良するということは、第1 図の実施例の電流制限抵抗器RaとRbが本発明の保護回路には見られないとい う事実から明らかである。低周波信号の場合のアース平衡はRalとRa2によ り決定されるが、ある程度PTC1とPTC2によっても影響される。中心点コ ンデンサCがPTCIとPTC2を短絡し始めるようなわずかに高い周波数の信 号の場合には、アース平衡は線路変成器の一次巻線の銅の抵抗値により決定され る。Vl、Ral。The fact that the overcurrent and overvoltage protection circuit according to the present invention improves ground balance is the first Note that the current limiting resistors Ra and Rb of the illustrated embodiment are not found in the protection circuit of the present invention. This is clear from the fact that Ground balance for low frequency signals is determined by Ral and Ra2. However, it is also influenced to some extent by PTC1 and PTC2. center point A slightly higher frequency signal where capacitor C begins to short PTCI and PTC2. In this case, earth balance is determined by the resistance of the copper in the primary winding of the line transformer. Ru. Vl, Ral.

Ra2はもはや平衡には影響しない。高周波の場合には、アース平衡はLlとL 3間の変換因子と、L2とL3間の変換因子、それらに加えて一次巻線Ll、L 2中の銅の抵抗値とによって決定される。これに対し、第1図の既知の回路では 、抵抗器RaとRbかすべての周波数でアース平衡に影響する。Ra2 no longer affects the equilibrium. In the case of high frequencies, the ground balance is Ll and L 3 and between L2 and L3, plus the primary windings Ll, L It is determined by the resistance value of copper in 2. On the other hand, in the known circuit shown in Figure 1, , resistors Ra and Rb affect the ground balance at all frequencies.

本発明の過電圧過電流保護回路は反射減衰量を改善する効果がある。なぜならば 本発明の回路は第1図の既知の回路に見られる抵抗器RaとRbを含まないから である。RaとRbで電力か消費されないから、線路のインピーダンス整合も改 良される。雑音と高調波歪の因子が共に少くなる。線路に信号を送るための電力 を送信側で減らすことができる。The overvoltage/overcurrent protection circuit of the present invention has the effect of improving return loss. because Since the circuit of the invention does not include the resistors Ra and Rb found in the known circuit of FIG. It is. Since no power is consumed by Ra and Rb, the impedance matching of the line can also be improved. It will be good. Both noise and harmonic distortion factors are reduced. Power to send signals to the railroad tracks can be reduced on the sending side.

混合損失歪における減衰量と基礎減衰量も本発明の過電流過電圧保護回路により 小さくなる。なぜならば、本発明の回路では第1因に示した既知の保護回路に見 られるRaとRbがないので、線路変成器LT2の一次側のLC回路における電 力損失が減るからである。The amount of attenuation and basic attenuation in mixed loss distortion can also be reduced by the overcurrent and overvoltage protection circuit of the present invention. becomes smaller. This is because the circuit of the present invention differs from the known protection circuit shown in the first factor. Since there are no Ra and Rb to be generated, the voltage in the LC circuit on the primary side of line transformer LT This is because power loss is reduced.

本発明による保護回路は第1図の既知の保護回路と比較して、ループ減衰量も減 る。なせならば、線路変成器LT2の二次側の平衡回路網かRaとRbに対応す る必要がないからである。この結果、いわゆる送信機と受信機間の漏話の減衰量 が大きくなる。The protection circuit according to the invention also reduces loop attenuation compared to the known protection circuit of FIG. Ru. If possible, the balanced network on the secondary side of the line transformer LT2 or the one corresponding to Ra and Rb. This is because there is no need to As a result, the so-called attenuation of crosstalk between the transmitter and receiver becomes larger.

過電圧パルスが発生したとき、本発明の回路が実装されている回路基板の電位は 変わらない。第1図の構成では、過電圧はツェナーダイオードZ2とZ4を通っ て基板上で減衰するので、基板の電位が上がるために、部品が発火する危険性が 生ずる。When an overvoltage pulse occurs, the potential of the circuit board on which the circuit of the present invention is mounted is does not change. In the configuration shown in Figure 1, the overvoltage is passed through Zener diodes Z2 and Z4. As the voltage is attenuated on the board, the potential of the board increases, creating a risk of the component catching fire. arise.

本発明の過電圧過電流保護回路が、端末回路または、INbN回路網のR,S、 Tインターフェイスの回路網端末で使われるときには、第2図に示した回路にあ る電圧源Eは除かれる。電圧源Eが必要でない従来の電話網の加入者側で使われ るときも同様である。The overvoltage/overcurrent protection circuit of the present invention provides R, S, When used in a T-interface network terminal, the circuit shown in Figure 2 Voltage source E is removed. Used on the subscriber side of conventional telephone networks where voltage source E is not required. The same applies when

以上説明した本発明の実施例は、請求の範囲内で多くの変形を施すことが可能で ある。The embodiments of the present invention described above can be modified in many ways within the scope of the claims. be.

要 約 書 二個の入力端子(a、b)といくつかの出力端子(T1〜T4)とを有する交換 端末回路用の過電圧過電流保護回路が提供される。入力端子は二線式線路に接続 され、出力端子は交換端末回路を経て線路上にアナログ信号とディジタル信号を 伝送するための装置に接続される。交換端末回路は変成器を育するインピーダン ス整合回路網を含み、変成器の一次側と二次側にアースに関して対称の回路網が ある。−次側の回路網は巻線が2等分割され(Ll、L2)、それらの間にコン デンサ(C)が直列に接続されている。本発明の新規な特徴はバリスタ(Vl) がコンデンサ(C)と並列に接続されていることである。サージパルスがコンデ ンサを充電してバリスタの定格電圧に達すると、バリスタは導通して、変成器の コアが#!和するまで一次巻線を流れる電流を増す。変成器の二次側にバリスタ (v2)とツェナーダイオード(25〜Z8)があり、これらは二次側に伝達さ れたサージを段階的に減らして、接続されている装置に安全な電圧を供給する役 目を果たす。Summary book Exchange with two input terminals (a, b) and several output terminals (T1-T4) An overvoltage and overcurrent protection circuit for a terminal circuit is provided. Input terminal connects to two-wire line The output terminal sends analog and digital signals onto the line via a switching terminal circuit. Connected to a device for transmission. Exchange terminal circuit impedance growing transformer The primary and secondary sides of the transformer have symmetrical networks with respect to ground. be. - In the next circuit, the winding is divided into two equal parts (Ll, L2), and there is a connection between them. Capacitors (C) are connected in series. The novel feature of the present invention is the varistor (Vl) is connected in parallel with the capacitor (C). The surge pulse is When the varistor is charged to the rated voltage of the varistor, the varistor conducts and the transformer Core is #! Increase the current through the primary winding until the sum increases. Varistor on the secondary side of the transformer (v2) and Zener diodes (25 to Z8), which are transmitted to the secondary side. It helps to gradually reduce the generated surges and provide a safe voltage to the connected equipment. fulfill the eyes.

国際調査報告international search report

Claims (4)

【特許請求の範囲】[Claims] 1.2個の入力端子(a,b)といくつかの出力端子(T1〜T4)を存する端 末回路または回路網端末用の過電圧過電流保護回路であって、前記2個の入力端 子は二線式線路に接続されるようになっており、前記いくつかの出力端子は前記 過電圧過電流保護回路により保護される装置に接続されるようになっており、前 記端末回路は前記線路上でディジタル信号とアナログ信号を双方向伝送するよう になっている過電圧過電流保護回路において、 一次巻線(L1,L2)と二次巻線(L3,L4)とコアとを有する線路変成器 (LT2)であって、前記一次巻線は2つの巻線部分(L1,L2)を含む前記 変成器と、 前記変成器の一次側に配置されていて、コンデンサ(C)と2個の電流制限抵抗 器(Ra1,Ra2)とを含む第1のアース対称保護回路であって、前記コンデ ンサ(C)は前記2つの巻線部分(L1,L2)の間に直列に接続されて、前記 2個の入力端子(a,b)の間に接続される直列結合体を形成する前記第1のア ース対称保護回路と、 前記変成器(LT2)の二次側に配置されていて、前記出力端に加わる電圧を制 限するためのツェナーダイオード(Z5〜Z8)を含む第2のアース対称保護回 路と、を含み、 前記第1の保護回路は、バリスタ(V1)と2個の温度依存性半導体抵抗器(P TC1,PTC2)とを含み、前記2個の抵抗器のうち一方の抵抗器は前記バリ スタ(V1)の一端と前記コンデンサ(C)の一端との間に直列に接続され、他 方の抵抗器は前記バリスタ(V1)の他端と前記コンデンサ(C)の他端との間 に直列に接続されていることと、 前記直列結合体は、途中に直列抵抗器を介さずに、直接前記2個の入力端子(a ,b)の間に接続されていることと、 を特徴とする過電圧過電流保護回路。1. An end with two input terminals (a, b) and several output terminals (T1 to T4) an overvoltage and overcurrent protection circuit for terminal circuits or network terminals, the two input terminals The child is connected to a two-wire line, and the several output terminals are connected to the two-wire line. It is intended to be connected to equipment protected by an overvoltage and overcurrent protection circuit, and The terminal circuit transmits digital signals and analog signals bidirectionally on the line. In the overvoltage and overcurrent protection circuit, Line transformer with primary windings (L1, L2), secondary windings (L3, L4) and core (LT2), wherein the primary winding includes two winding portions (L1, L2). transformer and A capacitor (C) and two current limiting resistors are placed on the primary side of the transformer. a first earth symmetrical protection circuit comprising a capacitor (Ra1, Ra2); The sensor (C) is connected in series between the two winding portions (L1, L2) and said first terminal forming a series combination connected between two input terminals (a, b); - base symmetrical protection circuit; It is placed on the secondary side of the transformer (LT2) and controls the voltage applied to the output terminal. A second earth symmetrical protection circuit containing Zener diodes (Z5-Z8) to including, The first protection circuit includes a varistor (V1) and two temperature-dependent semiconductor resistors (P TC1, PTC2), one of the two resistors is connected to the barrier. The capacitor (C) is connected in series between one end of the star (V1) and one end of the capacitor (C); One resistor is connected between the other end of the varistor (V1) and the other end of the capacitor (C). be connected in series with The series combination body directly connects the two input terminals (a ,b) and An overvoltage and overcurrent protection circuit featuring: 2.前記第2の保護回路は、前記二次巻線(L3,L4)の出力端子の間に並列 に接続されている第2のバリスタ(V2)を含むことを特徴とする、請求項1記 載の過電圧過電流保護回路。2. The second protection circuit is connected in parallel between the output terminals of the secondary windings (L3, L4). 2. A second varistor (V2) connected to the second varistor (V2). Built-in overvoltage and overcurrent protection circuit. 3.前記第1の電流制限抵抗器(Ra1)は第1の端がアースに接続されて、第 2の端が前記第1のバリスタ(V1)の前記一端に接続されていることと、前記 第2の電流制限抵抗器(Ra2)は第1の端がアースに接続されて、第2の端が 前記第1のバリスタ(V1)の前記他端に接続されていることと、を特徴とする 、請求項2記載の過電圧過電流保護回路。3. The first current limiting resistor (Ra1) has a first end connected to ground and a first current limiting resistor (Ra1). 2 is connected to the one end of the first varistor (V1); The second current limiting resistor (Ra2) has a first end connected to ground and a second end connected to ground. connected to the other end of the first varistor (V1). 3. The overvoltage/overcurrent protection circuit according to claim 2. 4.既知の方法で線路に電流を供給するための電圧源(E)が、前記2個の電流 制限抵抗器(Ra1,Ra2)の前記第1の端同志の間に直列に接続されている ことと、前記電圧源(E)の一方の極が接地されていることと、を特徴とする、 請求項3記載の過電圧過電流保護回路。4. A voltage source (E) for supplying current to the line in a known manner connects said two currents. connected in series between the first ends of the limiting resistors (Ra1, Ra2); and one pole of the voltage source (E) is grounded. The overvoltage/overcurrent protection circuit according to claim 3.
JP3509124A 1990-05-07 1991-03-27 Overvoltage and overcurrent protection circuit with excellent ground balance Expired - Lifetime JP2934502B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9001626-2 1990-05-07
SE9001626A SE466178B (en) 1990-05-07 1990-05-07 OPERATING VOLTAGE AND OPERATING POWER PROTECTION FOR A LINE TRANSFER
PCT/SE1991/000235 WO1991017598A1 (en) 1990-05-07 1991-03-27 An overvoltage and overcurrent protective circuit with high earth balance

Publications (2)

Publication Number Publication Date
JPH05507609A true JPH05507609A (en) 1993-10-28
JP2934502B2 JP2934502B2 (en) 1999-08-16

Family

ID=20379395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3509124A Expired - Lifetime JP2934502B2 (en) 1990-05-07 1991-03-27 Overvoltage and overcurrent protection circuit with excellent ground balance

Country Status (16)

Country Link
US (1) US5142429A (en)
EP (1) EP0456624B1 (en)
JP (1) JP2934502B2 (en)
KR (1) KR0129712B1 (en)
CN (1) CN1025101C (en)
AU (1) AU643292B2 (en)
BR (1) BR9106424A (en)
CA (1) CA2078696A1 (en)
DE (1) DE69103813T2 (en)
DK (1) DK0456624T3 (en)
ES (1) ES2059101T3 (en)
FI (1) FI924646A0 (en)
IE (1) IE66037B1 (en)
NO (1) NO302725B1 (en)
SE (1) SE466178B (en)
WO (1) WO1991017598A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490171A (en) * 1994-03-09 1996-02-06 International Business Machines Corporation Single-port network node transceiver with powered-down protection
US5583734A (en) * 1994-11-10 1996-12-10 Raychem Corporation Surge arrester with overvoltage sensitive grounding switch
DE19709710C1 (en) * 1997-03-10 1998-10-01 Siemens Ag So interface for an ISDN basic connection
US6320883B1 (en) * 1997-10-21 2001-11-20 3Com Corporation Method and apparatus for automatic selection of an unknown ISDN reference
DE19822760A1 (en) * 1998-05-20 1999-11-25 Siemens Ag Network termination device with earth connection for digital communication networks
DE29822765U1 (en) * 1998-12-21 2000-01-27 Siemens AG, 80333 München Circuit arrangement for voltage rectification and limitation
ES2176104B1 (en) * 2000-11-02 2004-03-01 Telefonica Sa DISTURBANCE SUPPRESSOR IN A MEASURE INTERFACE.
EP1509983A2 (en) * 2002-05-31 2005-03-02 Polyphaser Corporation Circuit for diverting surges and transient impulses
US7106573B2 (en) * 2003-06-16 2006-09-12 Adc Dsl Systems, Inc. Protection circuit for a digital subscriber line device
US20050099754A1 (en) * 2003-11-12 2005-05-12 Raido Frequency Systems, Inc. Impedance matched surge protected coupling loop assembly
DE10356497A1 (en) * 2003-12-03 2005-07-14 Siemens Ag Circuit arrangement for protection against overvoltages and overcurrents
US7808751B2 (en) * 2004-04-28 2010-10-05 Bel Fuse Inc. Differential electrical surge protection within a LAN magnetics interface circuit
US20090108980A1 (en) * 2007-10-09 2009-04-30 Littelfuse, Inc. Fuse providing overcurrent and thermal protection
US8027136B2 (en) * 2007-10-18 2011-09-27 Transtector Systems, Inc. Surge suppression device having one or more rings
US7944670B2 (en) * 2007-10-30 2011-05-17 Transtector Systems, Inc. Surge protection circuit for passing DC and RF signals
CN101488666B (en) * 2008-01-18 2010-12-08 研祥智能科技股份有限公司 Network port lightning preventing circuit and RJ45 interface apparatus thereof
US8599528B2 (en) * 2008-05-19 2013-12-03 Transtector Systems, Inc. DC and RF pass broadband surge suppressor
WO2011041801A2 (en) * 2009-10-02 2011-04-07 Transtector Systems, Inc. Rf coaxial surge protectors with non-linear protection devices
US8400760B2 (en) * 2009-12-28 2013-03-19 Transtector Systems, Inc. Power distribution device
WO2011119723A2 (en) * 2010-03-26 2011-09-29 Transtector Systems, Inc. Ethernet surge protector
US20110271802A1 (en) 2010-05-04 2011-11-10 Edward Honig Double handle tool
US8441795B2 (en) 2010-05-04 2013-05-14 Transtector Systems, Inc. High power band pass RF filter having a gas tube for surge suppression
CA2798891C (en) 2010-05-11 2016-04-12 Transtector Systems, Inc. Dc pass rf protector having a surge suppression module
US8611062B2 (en) 2010-05-13 2013-12-17 Transtector Systems, Inc. Surge current sensor and surge protection system including the same
WO2011150087A2 (en) 2010-05-26 2011-12-01 Transtector Systems, Inc. Dc block rf coaxial devices
US8730637B2 (en) 2010-12-17 2014-05-20 Transtector Systems, Inc. Surge protection devices that fail as an open circuit
WO2013120101A1 (en) 2012-02-10 2013-08-15 Transtector Systems, Inc. Reduced let through voltage transient protection or suppression circuit
US9048662B2 (en) 2012-03-19 2015-06-02 Transtector Systems, Inc. DC power surge protector
US9190837B2 (en) 2012-05-03 2015-11-17 Transtector Systems, Inc. Rigid flex electromagnetic pulse protection device
US9124093B2 (en) 2012-09-21 2015-09-01 Transtector Systems, Inc. Rail surge voltage protector with fail disconnect
TWI543470B (en) 2012-12-05 2016-07-21 技嘉科技股份有限公司 Connection apparatus circuits and high voltage surge protection method thereof
WO2016200700A1 (en) 2015-06-09 2016-12-15 Transtector Systems, Inc. Sealed enclosure for protecting electronics
US10356928B2 (en) 2015-07-24 2019-07-16 Transtector Systems, Inc. Modular protection cabinet with flexible backplane
US10588236B2 (en) 2015-07-24 2020-03-10 Transtector Systems, Inc. Modular protection cabinet with flexible backplane
US9924609B2 (en) 2015-07-24 2018-03-20 Transtector Systems, Inc. Modular protection cabinet with flexible backplane
CN106486992A (en) * 2015-08-27 2017-03-08 中兴通讯股份有限公司 A kind of interface protective circuit with oscillating characteristic and method
WO2017075286A1 (en) 2015-10-27 2017-05-04 Transtector Systems, Inc. Radio frequency surge protector with matched piston-cylinder cavity shape
US9991697B1 (en) 2016-12-06 2018-06-05 Transtector Systems, Inc. Fail open or fail short surge protector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB839581A (en) * 1957-11-26 1960-06-29 Siemens Edison Swan Ltd Improvements relating to telephone systems
US4032718A (en) * 1976-05-19 1977-06-28 Bell Telephone Laboratories, Incorporated Four-wire integrable hybrid
DE2911109C3 (en) * 1979-03-21 1982-03-04 Siemens AG, 1000 Berlin und 8000 München Surge arrester for several lines to be fused together
SE426127B (en) * 1981-04-24 1982-12-06 Ericsson Telefon Ab L M DC MAGNETIZED FORK TRANSFORMER
SE450677B (en) * 1982-04-01 1987-07-13 Ericsson Telefon Ab L M SUPPLY CIRCUIT IN A DC MAGNETIZED FORK TRANSFORMER
US4398066A (en) * 1981-08-19 1983-08-09 Siemens Corporation Automatic power denial circuit for a subscriber line interface circuit

Also Published As

Publication number Publication date
ES2059101T3 (en) 1994-11-01
JP2934502B2 (en) 1999-08-16
EP0456624A1 (en) 1991-11-13
IE911365A1 (en) 1991-11-20
AU7874991A (en) 1991-11-27
US5142429A (en) 1992-08-25
FI924646A (en) 1992-10-14
KR0129712B1 (en) 1998-04-09
CN1025101C (en) 1994-06-15
DE69103813D1 (en) 1994-10-13
SE466178B (en) 1992-01-07
EP0456624B1 (en) 1994-09-07
NO302725B1 (en) 1998-04-14
BR9106424A (en) 1993-05-04
NO924051D0 (en) 1992-10-20
SE9001626L (en) 1991-11-08
CN1056391A (en) 1991-11-20
AU643292B2 (en) 1993-11-11
DK0456624T3 (en) 1994-10-10
NO924051L (en) 1992-10-20
FI924646A0 (en) 1992-10-14
WO1991017598A1 (en) 1991-11-14
DE69103813T2 (en) 1995-01-05
CA2078696A1 (en) 1991-11-08
IE66037B1 (en) 1995-12-13
SE9001626D0 (en) 1990-05-07

Similar Documents

Publication Publication Date Title
JPH05507609A (en) Overvoltage/overcurrent protection circuit with excellent ground balance
US7529073B2 (en) Protecting medium voltage inductive coupled device from electrical transients
US8179655B2 (en) Surge protection apparatus and methods
EP0291169B1 (en) Protection arrangement for a telephone subscriber line interface circuit
MX2007009101A (en) Power line communications interface and surge protector.
US6882514B2 (en) Overcurrent and overvoltage protection method and architecture for a tip and ring subscriber line interface circuit
US4079208A (en) Telecommunications transmission and signalling circuits
CA2456368C (en) Protection circuit for a digital subscriber line device
US20020101980A1 (en) Protection of subscriber line interface circuits (SLICS) without degradation in longitudinal balance
CA1281768C (en) Protection arrangements for communications lines
CN201018492Y (en) Interface switching circuit for data transmission circuit
US6163447A (en) Telephone equipment protection circuit
US3987375A (en) Transmission bridge exhibiting reduced distortion
JP3616369B2 (en) Communication line protector
JPH05122841A (en) Protector
CN201001115Y (en) Interface switching circuit for data transmission circuit
WO2002021658A1 (en) Method and apparatus for protecting multiple telephone lines
GB2137444A (en) A-c current limiting device
WO2001018934A1 (en) Method and apparatus for protecting electronic equipment coupled to a telephone line
Solutions Protecting Legerity Subscriber Line Interface Circuits (SLICs) with Bourns® TISP® Protector Products
AN Designing Surge and Power Fault Protection Circuits for Solid State Subscriber Line Interfaces
CA2087053A1 (en) Power cross protection of the tip/ring interface to customer premise equipment
KR20020036501A (en) Sdsl subscriber device for performing surge protection