JPH0550601B2 - - Google Patents
Info
- Publication number
- JPH0550601B2 JPH0550601B2 JP61122493A JP12249386A JPH0550601B2 JP H0550601 B2 JPH0550601 B2 JP H0550601B2 JP 61122493 A JP61122493 A JP 61122493A JP 12249386 A JP12249386 A JP 12249386A JP H0550601 B2 JPH0550601 B2 JP H0550601B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- passage
- hydraulic
- spool
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000008929 regeneration Effects 0.000 claims description 58
- 238000011069 regeneration method Methods 0.000 claims description 58
- 238000004891 communication Methods 0.000 claims description 20
- 238000010586 diagram Methods 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Fluid-Pressure Circuits (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
この発明は油圧シリンダなどのアクチユエータ
に圧油を供給し、その戻り油を選択再生する再生
回路弁の構造を簡略化し、かつ再生中および作動
中の管路抵抗を減少せしめる油圧回路に関するも
のである。[Detailed Description of the Invention] Industrial Application Field The present invention simplifies the structure of a regeneration circuit valve that supplies pressure oil to an actuator such as a hydraulic cylinder and selectively regenerates the return oil. This invention relates to a hydraulic circuit that reduces pipe resistance.
従来の技術
従来から、油圧シリンダのロツド側油室からの
戻り油をヘツド側油室へ再生合流させる可変式再
生回路弁では、戻り油を小径スプールなどで閉塞
して再生回路を形成し、作動圧が一定値を越える
と解除し、また、外部からの信号圧力などによ
り、再生解除圧力を可変にさせていた。Conventional technology Conventionally, in variable regeneration circuit valves that regenerate and merge return oil from the rod-side oil chamber of a hydraulic cylinder into the head-side oil chamber, the return oil is blocked with a small-diameter spool to form a regeneration circuit. It was released when the pressure exceeded a certain value, and the regeneration release pressure was made variable based on signal pressure from the outside.
例えば、第6図は可変再生回路弁の一例を示す
断面図であるが、この図において、可変再生回路
弁53のスプール55における、油圧シリンダ2
のロツド側油室Dに通ずる油路を開閉する側に中
空穴を設け、スプリング63により付勢され、軸
線方向に移動自在に中心穴を有する小径スプール
62を嵌挿し、外周から中空穴に通ずるノツチ穴
70,68,71を設け、スプール55が中立時
においては、上記ノツチ穴70は弁本体54内の
ブリツジ通路67に通じ、ノツチ穴68はブリツ
ジ通路67と高圧通路15′との中間に開口し、
弁本体54により閉塞され、ノツチ穴71はタン
ク連通路16′に連通し、更に、スプール55を
右方に移動させるとノツチ穴70は引続きブリツ
ジ通路67に連通し、同時に油路65によりピス
トン油室59に通じ、ノツチ穴68は高圧通路1
5′に連通し、ノツチ穴71は引続きタンク連通
路16′に通じる位置にある。また、小径スプー
ル62の中心穴には、チエツク弁60を介し隣接
して、ピストン61を端部に嵌挿したピストン油
室59と、小径スプール油室69とを設け、外周
から該小径スプール油室69に連通するノツチ穴
56,57を設け、該小径スプール62がスプリ
ング63の付勢力により左方にあるときは、ノツ
チ穴56はノツチ穴68と連通し、ノツチ穴57
はスプール55の内壁で閉塞され、また、小径ス
プール62がスプリング63の付勢力に抗して右
方に移動すると、ノツチ穴72,56は、それぞ
れ、ノツチ穴70,68に連通したままの状態
で、ノツチ穴57はタンク連通路16′に通じて
いるノツチ穴71に連通する位置に設けてある。
更にスプリング63はスプール55の中空穴に設
けてあり、小径スプール62をスプール55との
間で付勢しており、このスプリング室は小径スプ
ール62の端面とプラグ66とにより油室58を
形成し、該油室58にはスプール55が右方に移
動するとパイロツト油口52から外部圧力信号を
導入するノツチ穴25を設けてある。 For example, FIG. 6 is a sectional view showing an example of a variable regeneration circuit valve. In this figure, the hydraulic cylinder 2 at the spool 55 of the variable regeneration circuit valve 53
A hollow hole is provided on the side that opens and closes the oil passage leading to the rod side oil chamber D, and a small diameter spool 62 having a center hole is fitted into the spool 62, which is biased by a spring 63 and has a center hole so as to be movable in the axial direction, and communicates with the hollow hole from the outer periphery. Notched holes 70, 68, and 71 are provided, and when the spool 55 is in neutral, the notched hole 70 communicates with the bridge passage 67 in the valve body 54, and the notched hole 68 is located between the bridge passage 67 and the high pressure passage 15'. Open,
Closed by the valve body 54, the notch hole 71 communicates with the tank communication passage 16', and when the spool 55 is further moved to the right, the notch hole 70 continues to communicate with the bridge passage 67, and at the same time, the piston oil is supplied through the oil passage 65. The notch hole 68 communicates with the chamber 59 and the high pressure passage 1.
5', and the notched hole 71 is located at a position that continues to communicate with the tank communication passage 16'. Further, a piston oil chamber 59 in which a piston 61 is inserted into the end and a small diameter spool oil chamber 69 are provided adjacent to the center hole of the small diameter spool 62 via a check valve 60, and the small diameter spool oil is inserted from the outer periphery. Notched holes 56 and 57 communicating with the chamber 69 are provided, and when the small diameter spool 62 is on the left side due to the urging force of the spring 63, the notched hole 56 communicates with the notched hole 68, and the notched hole 57
are closed by the inner wall of the spool 55, and when the small diameter spool 62 moves to the right against the biasing force of the spring 63, the notched holes 72 and 56 remain in communication with the notched holes 70 and 68, respectively. The notched hole 57 is provided at a position communicating with the notched hole 71 which communicates with the tank communication passage 16'.
Furthermore, a spring 63 is provided in the hollow hole of the spool 55 and biases the small diameter spool 62 between it and the spool 55, and this spring chamber forms an oil chamber 58 with the end face of the small diameter spool 62 and the plug 66. The oil chamber 58 is provided with a notched hole 25 through which an external pressure signal is introduced from the pilot oil port 52 when the spool 55 moves to the right.
上記構成の可変再生回路弁53において、スプ
ール55を右方に切換えて油圧シリンダ2を伸長
させる操作をなし、その負荷圧が小さいときには
ロツド側油室Dからの戻り油は、高圧通路15′、
ノツチ穴68,56、小径スプール油室69、チ
エツク弁60、ノツチ穴72,70を通りブリツ
ジ通路67に合流する再生回路を形成する。次に
油圧シリンダ2の負荷圧が増大し、ヘツド側油室
Cの圧力、従つてブリツジ通路67の圧力が上昇
すると、その圧油は同時に油路65を通りピスト
ン油室59にも流入するので、ピストン61は外
方に抜け出そうとし、その反力がスプリング63
の付勢力よりも大きくなると小径スプール62は
スプール55の内部を右方に移動していき、閉塞
されていたノツチ穴71,57が開口して小径ス
プール油室69とタンク連通路16′は連通する
ので、ロツド側油室Dの戻り油の再生は解除され
る。また、パイロツト油口52からの信号圧力が
ノツチ穴25を通つて油室58に達すると、その
圧力に比例した力が小径スプール62に、スプリ
ング63の付勢力に付加して作用し小径スプール
62の右方への移動条件を加減することとなるの
で、再生解除時期を外部からの信号圧力の大小に
応じて、自由に指令することができる。 In the variable regeneration circuit valve 53 having the above configuration, the spool 55 is switched to the right to extend the hydraulic cylinder 2, and when the load pressure is small, the return oil from the rod side oil chamber D is routed through the high pressure passage 15'.
A regeneration circuit is formed that passes through the notched holes 68 and 56, the small diameter spool oil chamber 69, the check valve 60, and the notched holes 72 and 70 and joins the bridge passage 67. Next, when the load pressure of the hydraulic cylinder 2 increases and the pressure of the head side oil chamber C and therefore the pressure of the bridge passage 67 rises, the pressure oil simultaneously flows into the piston oil chamber 59 through the oil passage 65. , the piston 61 tries to escape outward, and the reaction force is generated by the spring 63.
When the biasing force becomes larger than the biasing force of Therefore, the regeneration of the return oil in the rod side oil chamber D is canceled. Furthermore, when the signal pressure from the pilot oil port 52 passes through the notch hole 25 and reaches the oil chamber 58, a force proportional to that pressure acts on the small diameter spool 62 in addition to the biasing force of the spring 63. Since the rightward movement conditions are adjusted, the regeneration cancellation timing can be freely commanded depending on the magnitude of the signal pressure from the outside.
なお、第6図における6,6′はスプール55
を切換えるためのパイロツト油室、7,7′は高
圧通路15,15′の最高圧力を規制するリリー
フ弁、16,16′はタンク連通路、39は可変
再生回路弁53の切換過渡期において圧油が逆流
をすることを防止するロードチエツク弁であり、
一般に使用されるパイロツト操作式の油圧切換弁
の構成と同様である。また、22はスプール55
の内部に設けられた油路であり、小径スプール6
2の外周あるいはピストン油室59から漏れた高
圧油をノツチ穴23を経由してタンク連通路16
へ流出させ、閉じ込み圧油による作動不良を起さ
せないようにしてある。 In addition, 6 and 6' in FIG. 6 are the spools 55.
7 and 7' are relief valves that regulate the maximum pressure in the high pressure passages 15 and 15', 16 and 16' are tank communication passages, and 39 is a pressure control valve during the switching transition period of the variable regeneration circuit valve 53. A load check valve that prevents oil from flowing backwards.
The structure is similar to that of a commonly used pilot-operated hydraulic switching valve. Also, 22 is the spool 55
It is an oil passage provided inside the small diameter spool 6.
The high pressure oil leaking from the outer circumference of 2 or from the piston oil chamber 59 is transferred to the tank communication passage 16 via the notch hole 23.
This prevents malfunctions caused by trapped pressure oil.
また、その他の技術として特開昭59−23104号
公報に開示された従来技術の一端として再生油圧
装置が提案されているが、この技術においては、
例えば油圧シリンダの伸長作動中に、その方向の
カウンタ負荷が発生するようなとき、作動側であ
るボトム側油室の圧力が異常に低下し不都合を生
ずることを防止するため、ロツド側油室からの戻
り油が方向切換弁のスプールの中空穴に設けられ
た絞り油路を通過する間の絞り圧力と、上記ボト
ム側油室の圧力との差圧でもつてスプールの中空
穴に内装された再生用スプールを強制的に移動さ
せる構造とし、この絞り圧力が高くなり差圧が大
きくなると、戻り油がタンクへ戻る通路であるス
プール外周へ向けてのポートを閉塞して再生作用
を果たすものであるから、この開示技術の再生油
圧装置の再生各機能はすべて油圧切換弁のスプー
ルの内部において行われるものである。 In addition, as another technique, a regenerative hydraulic system has been proposed as part of the conventional technique disclosed in Japanese Patent Application Laid-Open No. 59-23104, but in this technique,
For example, when a counter load occurs in that direction during the extension operation of a hydraulic cylinder, in order to prevent the pressure in the bottom side oil chamber, which is the operating side, from dropping abnormally and causing problems, the pressure is removed from the rod side oil chamber. The pressure difference between the throttle pressure while the return oil passes through the throttle oil passage provided in the hollow hole of the spool of the directional control valve and the pressure in the bottom side oil chamber is used to regenerate the oil inside the hollow hole of the spool. The structure is such that the spool forcibly moves, and when this squeezing pressure increases and the differential pressure increases, the port toward the spool's outer periphery, which is the path for return oil to return to the tank, is closed to achieve a regeneration effect. Therefore, all the regeneration functions of the regeneration hydraulic system of the disclosed technology are performed inside the spool of the hydraulic switching valve.
発明が解決しようとする課題
ところで、このような従来の可変または通常の
再生回路弁にあつては、再生機能を付与する装置
がすべて該弁のスプール内に収納されているた
め、スプールの構造は複雑であるばかりではな
く、再生回路における通路抵抗を最小限にしよう
とすると、再生回路弁自体が大形となつたり、さ
もなくばスプールの肉厚が少なくなり、強度上か
ら好ましくないという欠点と、通路の有効面積が
確保できず、再生油量に限界を生ずる。Problems to be Solved by the Invention Incidentally, in such conventional variable or normal regeneration circuit valves, all the devices that provide the regeneration function are housed within the spool of the valve, so the structure of the spool is Not only is it complicated, but if you try to minimize the passage resistance in the regeneration circuit, the regeneration circuit valve itself will have to be large, or the spool will have to be thin, which is not desirable from a strength standpoint. , the effective area of the passage cannot be secured, resulting in a limit to the amount of recycled oil.
ここにおいて、従来技術による実施例である第
6図の可変再生回路弁における具備すべき機能構
成を大別すると、第1要件は、再生中、油圧シリ
ンダ2のロツド側油室Dからヘツド側油室Cに圧
油を流入させる通路となるノツチ穴68,56、
小径スプール油室69、チエツク弁60、ノツチ
穴70などを有し、ヘツド側油室Cの圧力が所定
値以内にあるときは、ロツド側油室Dからの戻り
油をヘツド側油室Cに再生させる機能、第2要件
は、いかなる場合にもヘツド側油室Cの回路から
ロツド側油室Dの回路へ圧油が流入することを防
止するチエツク弁60を小径スプール62の内部
中空穴の中に設けること、第3要件は、ヘツド側
油室Cの負荷圧力によつて、油圧シリンダ2が最
大の能力を発揮すべきときには、ロツド側油室D
からの戻り油を小径スプール62に設けたノツチ
穴57、スプール55に設けたノツチ穴71を経
てタンク連通路51に通じさせる機能、および第
4要件として、パイロツト油口52から外部の圧
力信号を、スプール55、小径スプール62、プ
ラグ66で形成する油室58に導き、その圧力信
号の大小により上記ノツチ穴57,71が連通す
る条件を調整する機能である。 Here, roughly dividing the functional configuration that should be provided in the variable regeneration circuit valve of FIG. Notched holes 68, 56 that serve as passageways for pressure oil to flow into the chamber C;
It has a small diameter spool oil chamber 69, a check valve 60, a notch hole 70, etc., and when the pressure in the head side oil chamber C is within a predetermined value, the return oil from the rod side oil chamber D is transferred to the head side oil chamber C. The second requirement for the regeneration function is to install a check valve 60 in the internal hollow hole of the small diameter spool 62 to prevent pressure oil from flowing from the head side oil chamber C circuit to the rod side oil chamber D circuit under any circumstances. The third requirement is that when the hydraulic cylinder 2 should exert its maximum capacity due to the load pressure of the head side oil chamber C, the rod side oil chamber D
The fourth requirement is to communicate the return oil from the pilot oil port 52 to the tank communication passage 51 through the notch hole 57 provided in the small diameter spool 62 and the notch hole 71 provided in the spool 55, and as a fourth requirement, to communicate the external pressure signal from the pilot oil port 52. , the spool 55, the small-diameter spool 62, and the plug 66 into the oil chamber 58, and adjusts the conditions under which the notch holes 57 and 71 communicate with each other depending on the magnitude of the pressure signal.
上述のように、従来の可変再生回路弁には前記
4つの機能をすべてスプール55に具備させるた
めに非常に複雑な形状となり、また圧油通路とな
る開閉口部断面積を大きくするため、どうしても
肉薄となり強度も低下すると共に、内蔵される関
連部品も複雑となる。ここにおいて、本発明は、
前記4つの機能のうち、第1、第2の機能をスプ
ール以外の作動回路において行わしめ、第3、第
4の機能はそのまま再生回路弁において果たすこ
とにより、可変再生回路弁の構造を簡略化し、ス
プール強度を強化すると共に、再生中における再
生圧油通路の通過抵抗を最小にとどめるような再
生油圧回路を実現することを課題とするものであ
る。 As mentioned above, the conventional variable regeneration circuit valve has a very complicated shape in order to provide the spool 55 with all of the above four functions, and also has a large cross-sectional area of the opening and closing part that serves as the pressure oil passage. The walls become thinner, the strength decreases, and the related parts built in become more complex. Here, the present invention includes:
Of the four functions mentioned above, the structure of the variable regeneration circuit valve is simplified by performing the first and second functions in an operating circuit other than the spool, and performing the third and fourth functions as they are in the regeneration circuit valve. An object of the present invention is to realize a regeneration hydraulic circuit that strengthens the spool strength and minimizes passage resistance of the regeneration pressure oil passage during regeneration.
課題を解決するための手段
この発明は上記課題を解決するものであつて、
以下にその内容を実施例に対応する第1図および
第2図を用いて説明する。Means for Solving the Problems This invention solves the above problems, and includes:
The contents will be explained below using FIG. 1 and FIG. 2 corresponding to the embodiment.
第2図の油圧回路図に示す如く、パイロツト弁
29の圧力信号により切換えられる油圧切換弁3
と常時は内部通路を閉路し、圧力信号が加わると
内部通路を開路する切換弁24、および該切換弁
24の出口ポートに連なる油路に逆流を阻止する
方向にチエツク弁10を内蔵し、その出口側は油
路33により、油圧シリンダ2のヘツド側油室C
に連通する接合ポートを備えた再生機能弁27と
を設け、該再生機能弁27の流入側と油圧シリン
ダ2のロツド側油室Dとを油路34により連通す
る接合ポートを備え、更に前記油圧切換弁3の一
方の出口ポートAに通ずる油路35は油路33の
中間点に、他方の出口ポートBに通ずる油路36
は油路34の中間点に合流しているが、図示の如
く、該再生機能弁27の内部で合流するよう、油
路35,34用の接合ポートを設けてもよい。前
記再生回路弁27に内蔵された切換弁24のスプ
ール切換用パイロツト油室には、油圧切換弁3の
スプールを油圧シリンダ2のヘツド側油室Cに圧
油を供給する側に切換えるパイロツト油室へのパ
イロツト油路30から分岐したパイロツト油路3
2を導く。 As shown in the hydraulic circuit diagram of FIG. 2, the hydraulic switching valve 3 is switched by the pressure signal of the pilot valve 29.
A switching valve 24 that normally closes the internal passage and opens the internal passage when a pressure signal is applied, and a check valve 10 built in the oil passage connected to the outlet port of the switching valve 24 in the direction of preventing backflow. The outlet side is connected to the head side oil chamber C of the hydraulic cylinder 2 by the oil passage 33.
A regeneration function valve 27 is provided with a joint port that communicates with the regeneration function valve 27, and a joint port that communicates the inflow side of the regeneration function valve 27 with the rod side oil chamber D of the hydraulic cylinder 2 through an oil passage 34 is provided. An oil passage 35 leading to one outlet port A of the switching valve 3 is located at an intermediate point of the oil passage 33, and an oil passage 36 leading to the other outlet port B is located at the intermediate point of the oil passage 33.
Although the oil passages 35 and 34 merge at the intermediate point of the oil passage 34, as shown in the figure, a joining port for the oil passages 35 and 34 may be provided so that the oil passages 35 and 34 merge inside the regeneration function valve 27. The spool switching pilot oil chamber of the switching valve 24 built into the regeneration circuit valve 27 includes a pilot oil chamber for switching the spool of the hydraulic switching valve 3 to the side that supplies pressure oil to the head side oil chamber C of the hydraulic cylinder 2. Pilot oil path 3 branched from pilot oil path 30 to
Lead to 2.
また、油圧切換弁3は第1図に示す如く、スプ
ール5の油圧シリンダ2のロツド側油室Dに通ず
る油路を開閉する側に中空穴を設け、スプリング
13により付勢され軸線方向に移動自在の、中間
が細径となり、スプール5の中心穴の内面との間
で小径スプール油室19を形成する小径スプール
12を嵌挿し、外周から中心穴に通じるノツチ穴
18,21を設け、スプール5が中立時において
は、上記ノツチ穴18はブリツジ通路17と高圧
通路15′との中間に開口し、弁本体4により閉
塞され、ノツチ穴21はタンク連通路16′に連
通しており、スプール5を右方に移動させるとノ
ツチ穴18は高圧通路15′に連通し、ノツチ穴
21は引続きタンク連通路16′に通じる位置に
ある。また、小径スプール12がスプリング13
の付勢力により左方にある限り、図示の小径スプ
ール右端大径部の外周はノツチ穴21を閉塞して
いるが、スプリング13の付勢力に抗し、ストツ
パ26に当接するまで右方に移動するとノツチ穴
21を開口する形状にしてある。更に、スプール
5は、小径スプール12をスプリング13の付勢
力に抗する方向に作用するピストン11、ピスト
ン油室9とを内蔵しており、該ピストン油室9に
はAポートに連通する高圧通路15から油路28
が通じている。 As shown in FIG. 1, the hydraulic switching valve 3 has a hollow hole on the side of the spool 5 that opens and closes the oil passage leading to the rod-side oil chamber D of the hydraulic cylinder 2, and is biased by a spring 13 to move in the axial direction. A freely adjustable small diameter spool 12, which has a small diameter in the middle and forms a small diameter spool oil chamber 19 between the inner surface of the center hole of the spool 5, is inserted, and notched holes 18 and 21 are provided that communicate with the center hole from the outer periphery. 5 is neutral, the notched hole 18 opens between the bridge passage 17 and the high pressure passage 15' and is closed by the valve body 4, and the notched hole 21 communicates with the tank communication passage 16', and the spool 5 to the right, the notched hole 18 is in communication with the high pressure passage 15', and the notched hole 21 is in a position where it communicates with the tank communication passage 16'. Also, the small diameter spool 12 is connected to the spring 13.
As long as it is to the left due to the urging force of Then, the notched hole 21 is opened. Furthermore, the spool 5 incorporates a piston 11 that acts on the small diameter spool 12 in a direction against the biasing force of the spring 13, and a piston oil chamber 9, and the piston oil chamber 9 has a high pressure passage communicating with the A port. 15 to oil line 28
is understood.
なお、スプリング13はスプール5の中空穴に
遊挿してあり、小径スプール12をスプール5に
対して付勢しており、このスプリング室は小径ス
プール12の端面とプラグ40とにより油室8を
形成しており、該油室8にはスプール5が右方に
移動するとパイロツト油口14から外部圧力信号
を導入するノツチ穴25が設けられてあり、また
油路22はノツチ穴23によりスプール5が中立
および右方に移動しているときは常時タンク連通
路16に通じ、小径スプール12、ピストン11
の外周から漏出するドレンをタンクに戻す役目を
果たす。 The spring 13 is loosely inserted into the hollow hole of the spool 5 and biases the small diameter spool 12 against the spool 5, and this spring chamber forms an oil chamber 8 with the end face of the small diameter spool 12 and the plug 40. The oil chamber 8 is provided with a notched hole 25 that introduces an external pressure signal from the pilot oil port 14 when the spool 5 moves to the right. When in neutral or moving to the right, it is always connected to the tank communication passage 16, and the small diameter spool 12 and piston 11
It plays the role of returning drain leaking from the outer periphery to the tank.
作 用
第1図および第2図において、パイロツト弁2
9の操作レバをJ方向に引き、パイロツト油路3
0に信号圧力が発生すると油圧切換弁3はG位置
に切換えられ、同時にパイロツト油路32を経て
再生機能弁27の切換弁24もE位置からF位置
に切換えられる。従つて、油圧切換弁3に供給さ
れた圧油はAポート、油路35,33を通り油圧
シリンダ2のヘツド側油室Cに流入するが、油圧
シリンダ2の伸長時負荷が少ないときは、その作
動圧力も低く、ピストン11に作用する力はスプ
リング13の付勢力よりも小さく、小径スプール
12は右方に移動せずノツチ穴21を閉塞してい
るので、ロツド側油室Dからの戻り油は圧力が上
昇し、油路34、切換弁24のF位置通路を通
り、チエツク弁10を押し開いて油路33に合流
する再生回路を形成するのであるが、該再生回路
は、油圧切換弁3から独立し再生機能弁を設ける
ことができるから、すべての通路断面積、外周寸
法などの制約は受けないので、回路抵抗は最小で
ある。Operation In Figures 1 and 2, pilot valve 2
Pull the operation lever 9 in the J direction to open the pilot oil passage 3.
When a signal pressure is generated at 0, the hydraulic switching valve 3 is switched to the G position, and at the same time, the switching valve 24 of the regeneration function valve 27 is also switched from the E position to the F position via the pilot oil passage 32. Therefore, the pressure oil supplied to the hydraulic switching valve 3 flows into the head side oil chamber C of the hydraulic cylinder 2 through the A port and the oil passages 35 and 33, but when the load is small when the hydraulic cylinder 2 is extended, Its operating pressure is also low, the force acting on the piston 11 is smaller than the biasing force of the spring 13, and the small diameter spool 12 does not move to the right but closes the notch hole 21, so the return from the rod side oil chamber D The pressure of the oil increases, and the oil passes through the oil passage 34 and the F position passage of the switching valve 24, pushes open the check valve 10, and joins the oil passage 33, forming a regeneration circuit. Since the regeneration function valve can be provided independently of the valve 3, there are no restrictions on the cross-sectional area of the passage, the outer circumferential size, etc., and therefore the circuit resistance is minimized.
次いで油圧シリンダ2の負荷が増大し高圧通路
15の圧力が上昇し、その圧油が油路28を通つ
てピストン油室9に流入してピストン11の作用
力がスプリング13の付勢力よりも大きくなる
と、小径スプール12はスプール5の内部を右方
に移動していき、閉塞されていたノツチ穴21を
開口させる結果、高圧通路15′はノツチ穴18、
小径スプール油室19、ノツチ穴21によりタン
ク連通路16′と連通するのでロツド側油室Dか
らの戻り油は油路34,36、油圧切換弁3のB
ポートを経てタンク連通路に導かれ再生は解除さ
れる。 Next, the load on the hydraulic cylinder 2 increases, the pressure in the high pressure passage 15 rises, and the pressure oil flows into the piston oil chamber 9 through the oil passage 28, so that the acting force on the piston 11 becomes greater than the biasing force of the spring 13. Then, the small diameter spool 12 moves to the right inside the spool 5, opening the notched hole 21 which had been blocked, and as a result, the high pressure passage 15' opens the notched hole 18,
The small-diameter spool oil chamber 19 communicates with the tank communication passage 16' through the notch hole 21, so the return oil from the rod side oil chamber D flows through the oil passages 34, 36 and B of the hydraulic switching valve 3.
It is guided to the tank communication path through the port and regeneration is canceled.
また、パイロツト油口14から信号圧力を油室
8に送油すると、その圧力に比例した力が、スプ
リング13の付勢力に付加して小径スプール12
に作用するので再生回路の解除条件を可変にする
ことは、従来技術と全く同レベルの機能が得られ
る。 Furthermore, when signal pressure is sent to the oil chamber 8 from the pilot oil port 14, a force proportional to that pressure is added to the biasing force of the spring 13, and the small diameter spool 12
Therefore, by making the release condition of the reproduction circuit variable, it is possible to obtain functions at exactly the same level as the conventional technology.
実施例 以下、本発明の一実施例を説明する。Example An embodiment of the present invention will be described below.
第1図は本発明油圧回路に使用する油圧切換弁
3のスプール5が中立位置にあるときの縦断面
図、第2図は本発明の可変再生回路を示す油圧回
路図、第3図は油圧切換弁3のスプール5を右方
に切換えたときAポートの負荷圧力が比較的低い
ときの、第4図は第3図と同様の状態からAポー
トの負荷圧力が増大したときの、それぞれについ
ての油圧切換弁3の縦断面図を示す。第2図にお
いて1は作動回路の高圧油を発生させる油圧ポン
プで、その高圧油を油圧切換弁3に供給し、2は
ヘツド側油室C、ロツド側油室Dを有する油圧シ
リンダで、これに加わる負荷により発生する油圧
は主としてヘツド側油室Cであり、作動を終了し
て復帰を主目的とする動作時にはロツト側油室D
に圧油を供給する。3はパイロツト圧切換式の油
圧切換弁で、該油圧切換弁3のAポートは油路3
5、再生機能弁27、油路33を経てヘツド側油
室Cへ、またBポートは油路36、再生機能弁2
7、油路34を経てロツド側油室Dに通じてい
る。 Fig. 1 is a longitudinal sectional view when the spool 5 of the hydraulic switching valve 3 used in the hydraulic circuit of the present invention is in the neutral position, Fig. 2 is a hydraulic circuit diagram showing the variable regeneration circuit of the present invention, and Fig. 3 is a hydraulic circuit diagram of the hydraulic switching valve 3 of the present invention. Fig. 4 shows the case when the spool 5 of the switching valve 3 is switched to the right and the load pressure of the A port is relatively low, and Fig. 4 shows the case when the load pressure of the A port increases from the same state as Fig. 3. 3 shows a vertical cross-sectional view of the hydraulic switching valve 3. In Fig. 2, 1 is a hydraulic pump that generates high-pressure oil for the operating circuit, and supplies the high-pressure oil to the hydraulic switching valve 3, and 2 is a hydraulic cylinder that has a head side oil chamber C and a rod side oil chamber D. The hydraulic pressure generated by the load applied to the rotor is mainly in the head side oil chamber C, and when the main purpose is to return after the operation is completed, the hydraulic pressure is generated in the rotor side oil chamber D.
Supply pressure oil to. 3 is a pilot pressure switching type hydraulic switching valve, and the A port of the hydraulic switching valve 3 is connected to the oil path 3.
5. Regeneration function valve 27, oil passage 33 to head side oil chamber C, and B port goes through oil passage 36, regeneration function valve 2.
7. It communicates with the rod side oil chamber D via an oil passage 34.
上記の再生機能弁27はパイロツト油路32の
圧力信号により内部通路を開路し、圧力信号が消
滅すると内部通路を閉路する切換弁24と該切換
弁24の下流側には油路33,35を合流させる
接合ポートを備え、その合流部に向け、上記切換
弁24から自由通路を形成するチエツク弁10を
内蔵し、上流側油路は油圧切換弁3のBポートに
通ずる油路36と油圧シリンダ2のロツド側油室
Dに通ずる油路34とを合流させる接合ポートを
備えている。29は油圧切換弁3を切換える圧力
信号を発生させるパイロツト弁であり、パイロツ
ト油路30,31はそれぞれ上記油圧切換弁3の
パイロツト油室6,6′に連通しており、同時に
油圧シリンダ2を伸長させる側のパイロツト油路
30は分岐してパイロツト油路32となり、切換
弁24のパイロツト油室に通じている。なお、4
1はパイロツト弁29などの油圧源となるパイロ
ツトポンプであり、その吐出油は油路37により
パイロツト弁29などに接続されている。また、
油圧切換弁3は、その縦断面を示す第1図におい
て、4はその弁本体であり、パイロツト油室6ま
たは6′に作用する圧力信号により左右に移動す
るスプール5を内装し、ポートAに連通する高圧
通路15、ポートBに連通する高圧通路15′、
ポートAまたはBからの戻り油並びにリリーフ弁
7,7′のリリーフ油、その他のドレン油などを
も集合させ、タンクに導くタンク連通路16,1
6′、油圧ポンプ1からロードチエツク弁39を
経て流入する高圧油を高圧通路15または15′
の何れかへ選択的に供給するブリツジ通路17が
あり、また該弁本体4に付属して、スプール5を
中立位置に、一定の強制力で保持するスプリング
センタ装置を有しているなどは、既知の油圧切換
弁と全く同様であるが、本可変再生回路に使用す
る油圧切換弁では、内装されるスプール5が異な
り、弁本体4には、外部から再生条件を変更する
指令用パイロツト圧導入口が追加して設けてあ
る。すなわち、切換用スプール5は、前項におい
て詳述した如く、Bポート側に中空穴を設け、内
部にスプリング13により付勢された小径スプー
ル12、ピストン11を内蔵しており、スプール
5が右方に切換えられるとブリツジ通路17と高
圧通路15とが連通するが、高圧通路15の圧力
が低い間、すなわち、油圧シリンダ2の伸長時の
負荷が比較的小さいときは、高圧通路15′は低
圧通路16′に連通せず、反面、高圧通路15の
圧力が上昇し、その圧油の一部が油路28を通つ
てピストン油室9に流入し、ピストン11の発生
する押力がスプリング13の付勢力に打勝つと小
径スプール12はスプール5の中空穴の中でスト
ツパ26に当接するまで右方に移動し、高圧通路
15′をノツチ穴18、小径スプール油室19、
ノツチ穴21を経てタンク連通路16′に連通さ
せるようにしてある。また、スプリング13を収
納しているスプリング室は、小径スプール12、
プラグ40の端面およびスプール5の中空穴内周
面とにより密室状態の油室8を形成しており、油
路20から送られる設定自由な指令圧力は弁本体
4に設けられたパイロツト油口14に接続されて
おり、スプール5が右方に移動したとき、該スプ
ール5の外周に設けたノツチ穴25を経て上記油
室8に導かれる。なお、スプール5の中空穴を設
けた側の反対にある実体軸部分には油路22が設
けてあり、小径スプール12、ピストン11の外
周から漏出するドレンをノツチ穴23を経てタン
ク連通路16に導くようになつている。以上の形
状のほかは、例えば高圧通路15、タンク連通路
16に対応するスプール5の細径部で形成する油
路は公知の油圧切換弁と同じである。 The regeneration function valve 27 has a switching valve 24 that opens an internal passage in response to a pressure signal from a pilot oil passage 32 and closes the internal passage when the pressure signal disappears, and oil passages 33 and 35 on the downstream side of the switching valve 24. It includes a check valve 10 that forms a free passage from the switching valve 24 toward the merging port, and the upstream oil passage is connected to the oil passage 36 leading to the B port of the hydraulic switching valve 3 and the hydraulic cylinder. It is provided with a joining port that joins the oil passage 34 leading to the rod side oil chamber D of No. 2. Reference numeral 29 denotes a pilot valve that generates a pressure signal to switch the hydraulic switching valve 3, and pilot oil passages 30 and 31 communicate with the pilot oil chambers 6 and 6' of the hydraulic switching valve 3, respectively, and simultaneously switch the hydraulic cylinder 2. The pilot oil passage 30 on the side to be expanded branches to become a pilot oil passage 32, which communicates with the pilot oil chamber of the switching valve 24. In addition, 4
Reference numeral 1 denotes a pilot pump that serves as a hydraulic pressure source for the pilot valve 29 and the like, and its discharge oil is connected to the pilot valve 29 and the like through an oil path 37. Also,
In FIG. 1 showing a longitudinal section of the hydraulic switching valve 3, reference numeral 4 is the valve main body, which is equipped with a spool 5 that moves left and right in response to a pressure signal acting on the pilot oil chamber 6 or 6'. A high pressure passage 15 communicating with the port B, a high pressure passage 15' communicating with the port B,
Tank communication passages 16, 1 which collect return oil from port A or B, relief oil from relief valves 7, 7', other drain oil, etc., and lead them to the tank.
6', the high pressure oil flowing from the hydraulic pump 1 through the load check valve 39 is passed through the high pressure passage 15 or 15'.
There is a bridge passage 17 for selectively supplying water to either one of the valves, and a spring center device attached to the valve body 4 that holds the spool 5 in a neutral position with a constant force. Although it is exactly the same as the known hydraulic switching valve, the hydraulic switching valve used in this variable regeneration circuit has a different built-in spool 5, and the valve body 4 has a pilot pressure introduced from the outside for commands to change the regeneration conditions. An additional mouth is provided. That is, as described in detail in the previous section, the switching spool 5 has a hollow hole on the B port side, and contains therein a small diameter spool 12 and a piston 11 that are biased by a spring 13. When switched to , the bridge passage 17 and the high pressure passage 15 communicate with each other, but while the pressure in the high pressure passage 15 is low, that is, when the load when the hydraulic cylinder 2 is extended is relatively small, the high pressure passage 15' communicates with the low pressure passage. 16', on the other hand, the pressure in the high pressure passage 15 rises, a part of the pressure oil flows into the piston oil chamber 9 through the oil passage 28, and the pushing force generated by the piston 11 is applied to the spring 13. When the biasing force is overcome, the small diameter spool 12 moves to the right in the hollow hole of the spool 5 until it comes into contact with the stopper 26, and the high pressure passage 15' passes through the notch hole 18, the small diameter spool oil chamber 19, and the small diameter spool oil chamber 19.
It communicates with the tank communication passage 16' through the notched hole 21. The spring chamber housing the spring 13 also includes a small diameter spool 12,
The end face of the plug 40 and the inner circumferential surface of the hollow hole of the spool 5 form a closed oil chamber 8, and the freely setable command pressure sent from the oil passage 20 is sent to the pilot oil port 14 provided in the valve body 4. When the spool 5 moves to the right, it is guided to the oil chamber 8 through a notched hole 25 provided on the outer periphery of the spool 5. In addition, an oil passage 22 is provided in the solid shaft portion of the spool 5 opposite to the side where the hollow hole is provided, and the drain leaking from the outer periphery of the small diameter spool 12 and the piston 11 is routed through the notch hole 23 to the tank communication passage 16. It is designed to lead to Other than the above-mentioned shape, the oil passage formed by the narrow diameter portion of the spool 5 corresponding to the high pressure passage 15 and the tank communication passage 16, for example, is the same as that of a known hydraulic switching valve.
以上の油圧回路構成からなる可変再生回路の作
動について説明する。 The operation of the variable regeneration circuit having the above hydraulic circuit configuration will be explained.
第2図におけるパイロツト弁29の操作レバを
J方向に傾倒させると、パイロツトポンプ41の
圧油は調圧されてパイロツト圧となり、パイロツ
ト油路30を通り油圧切換弁3のパイロツト油室
に入り、スプールをG位置に切換え、同時にパイ
ロツト油路32のパイロツト圧は再生機能弁27
の切換弁24のパイロツト油室に入りスプールを
E位置からF位置に切換える。この状態では、油
圧ポンプ1の圧油は油圧切換弁3のG位置通路、
油路35,33を通り油圧シリンダ2のヘツド側
油室Cに流入し、該シリンダ2を伸長させ、ロツ
ド側油室Dの戻り油は油路34に流出するが、油
圧切換弁3がG位置であつて、しかも油圧シリン
ダ2の伸長時の負荷抵抗が小さいときはヘツド側
油室Cの圧力もさほど上昇していないので、第3
図に示す如く、ノツチ穴21は小径スプール12
の外周部で閉止されているのでBポートから高圧
通路15′、ノツチ穴18、小径スプール油室1
9、ノツチ穴21、タンク連通路16′に至る油
路は遮断され、従つて、上記油路34からの戻り
油は油路36へ流入することはなく、切換弁24
のF位置通路を経てチエツク弁10を押し開き、
油路33へ再生合流しヘツド側油室Cへと流入
し、油圧シリンダ2の伸長速度を早める。 When the operating lever of the pilot valve 29 in FIG. 2 is tilted in the J direction, the pressure oil in the pilot pump 41 is regulated to the pilot pressure, passes through the pilot oil passage 30, and enters the pilot oil chamber of the hydraulic switching valve 3. The spool is switched to the G position, and at the same time the pilot pressure in the pilot oil passage 32 is changed to the regeneration function valve 27.
enters the pilot oil chamber of the switching valve 24 and switches the spool from the E position to the F position. In this state, the pressure oil of the hydraulic pump 1 flows through the G position passage of the hydraulic switching valve 3.
The oil flows into the head side oil chamber C of the hydraulic cylinder 2 through the oil passages 35 and 33, causing the cylinder 2 to extend, and the return oil in the rod side oil chamber D flows out into the oil passage 34, but when the hydraulic switching valve 3 position, and when the load resistance during extension of the hydraulic cylinder 2 is small, the pressure in the head side oil chamber C has not increased significantly, so the third
As shown in the figure, the notch hole 21 is connected to the small diameter spool 12.
Since it is closed at the outer periphery of the B port, there is a high pressure passage 15', a notch hole 18, and a small diameter spool oil chamber 1.
9, the oil passage leading to the notch hole 21 and the tank communication passage 16' is blocked, so that the return oil from the oil passage 34 does not flow into the oil passage 36, and the switching valve 24
Push open the check valve 10 through the F position passage,
The oil regenerates into the oil passage 33, flows into the head side oil chamber C, and accelerates the expansion speed of the hydraulic cylinder 2.
上記状態から、油圧シリンダ2の伸長時の負荷
が増大すると、ヘツド側油室Cの作動圧力は上昇
し、これにともない高圧通路15の圧力も当然高
くなり、第4図に示すとおり高圧油は、高圧通路
15、油路28を通つてピストン油室9に流入
し、ピストン11と、これに当接する小径スプー
ル12を右方に押し、その作動力がスプリング1
3の付勢力よりも大きくなると小径スプール12
は、頂部がストツパ26に当接するまで移動し、
その結果小径スプール12の外周部で閉止されて
いたノツチ穴21は開口し、油路34からの戻り
油は油路36、Bポート、高圧通路15′、ノツ
チ穴18、小径スプール油室19、ノツチ穴21
を通りタンク連通路16′を経てタンクに開放さ
れ、油路34の圧力は降下するので切換弁24が
F位置に切換わつていても油路33,35の合流
点側が高圧となつているので、チエツク弁10を
押し開くことはなく、従つて油路33側の高圧油
は、チエツク弁10により逆流することもない。
また、再生機能を解除する条件は、上述の如く、
ヘツド側油室Cの圧油により発生するピストン1
1の押力がスプリング13の付勢力より大きくな
つたときであるが、外部の調整可能のパイロツト
圧油をパイロツト油路20、パイロツト油口1
4、ノツチ穴25を経て油室8に導入すると、そ
のパイロツト圧に比例した力がスプリング13の
付勢力の方向に付加され、ピストン11の押力に
対抗することとなるので、外部からのパイロツト
圧油の圧力を加減して供給することにより自由に
再生機能の解除時期を選択、決定することのでき
る可変再生回路の形成が可能であることは、従来
技術における可変再生回路の構成、機能と全く同
一の思想によるものである。 In the above state, when the load when the hydraulic cylinder 2 is extended increases, the operating pressure in the head side oil chamber C increases, and accordingly, the pressure in the high pressure passage 15 naturally increases, and as shown in Fig. 4, the high pressure oil , flows into the piston oil chamber 9 through the high pressure passage 15 and the oil passage 28, pushes the piston 11 and the small diameter spool 12 in contact with it to the right, and the operating force is applied to the spring 1.
If it becomes larger than the biasing force of 3, the small diameter spool 12
moves until the top touches the stopper 26,
As a result, the notched hole 21, which had been closed at the outer circumference of the small diameter spool 12, is opened, and the return oil from the oil passage 34 flows through the oil passage 36, the B port, the high pressure passage 15', the notched hole 18, the small diameter spool oil chamber 19, and the small diameter spool oil chamber 19. Notch hole 21
is opened to the tank via the tank communication passage 16', and the pressure in the oil passage 34 drops, so even if the switching valve 24 is switched to the F position, the confluence side of the oil passages 33 and 35 remains at high pressure. Therefore, the check valve 10 is not pushed open, and therefore the high pressure oil on the oil passage 33 side does not flow back through the check valve 10.
In addition, the conditions for canceling the playback function are as described above.
Piston 1 generated by pressure oil in head side oil chamber C
When the pushing force of the spring 13 becomes larger than the urging force of the spring 13, the external adjustable pilot pressure oil is applied to the pilot oil passage 20 and the pilot oil port 1.
4. When introduced into the oil chamber 8 through the notched hole 25, a force proportional to the pilot pressure is applied in the direction of the biasing force of the spring 13, counteracting the pushing force of the piston 11, so that the pilot pressure from the outside is The fact that it is possible to form a variable regeneration circuit that can freely select and determine the release timing of the regeneration function by adjusting and decreasing the pressure of pressurized oil is based on the structure and function of the variable regeneration circuit in the prior art. They are based on exactly the same idea.
また、パイロツト弁29の操作レバをI方向に
傾倒すると、パイロツト油路31のパイロツト圧
のみが上昇するので、切換弁24はE位置に復帰
し、油路34とチエツク弁10の間の通路は遮断
され、一方、油圧切換弁3はH位置となり、油圧
シリンダ2は通常の縮小作動を行う。 Furthermore, when the operating lever of the pilot valve 29 is tilted in the I direction, only the pilot pressure in the pilot oil passage 31 increases, so the switching valve 24 returns to the E position, and the passage between the oil passage 34 and the check valve 10 is closed. On the other hand, the hydraulic switching valve 3 is in the H position, and the hydraulic cylinder 2 performs a normal contraction operation.
第5図は本発明の第2実施例を示す油圧・電気
回路図である。第1実施例においては、油圧切換
弁3がパイロツト圧により切換えられる方式につ
いてであるのに対して、第2実施例は、手動式の
場合に関する。すなわち、第5図において3′は
手動操作式の油圧切換弁、42はその操作レバ
で、該操作レバ42に連動して、油圧シリンダ2
を伸長させる方向に操作レバ42を操作したとき
にのみ閉路するリミツトスイツチ43を設け、再
生機能弁27′には電磁切換弁24′を内蔵させ、
前記リミツトスイツチ43が閉路して電気信号が
電線44を経て送られると電磁切換弁24′が励
磁され、内部通路を回路するようにしてある他は
第1実施例と同様の構成であり、作動についても
同じである。 FIG. 5 is a hydraulic/electrical circuit diagram showing a second embodiment of the present invention. In the first embodiment, the hydraulic switching valve 3 is switched by pilot pressure, whereas in the second embodiment, it is operated manually. That is, in FIG. 5, 3' is a manually operated hydraulic switching valve, 42 is its operating lever, and in conjunction with the operating lever 42, the hydraulic cylinder 2 is operated.
A limit switch 43 is provided that closes only when the operating lever 42 is operated in the direction of extending the regeneration function valve 27', and a solenoid switching valve 24' is built into the regeneration function valve 27'.
When the limit switch 43 is closed and an electric signal is sent through the electric wire 44, the electromagnetic switching valve 24' is energized and the internal passage is made to circuit. The same is true.
発明の効果
以上説明したように、この発明の回路は、油圧
シリンダ作動用油圧再生回路弁における再生機能
部のみを油圧切換弁から独立して設けたので、従
来の可変再生回路弁のスプールに比し、内部構成
部分は少なく簡単な形状のスプールを備えた油圧
切換弁を使用することができ、しかも再生油が通
る内部通路断面積を大きくとり流体の通過抵抗を
少なくし、かつ、油圧切換弁の形状を大きくする
こともなくスプールの強度を十分に保つことがで
きる。また、独立した単体の再生機能弁は油圧切
換弁の設置位置に関係なく設けることができるの
で、機器、配管の構成上有利であるばかりではな
く、上記再生機能弁を油圧シリンダ直近の位置に
設けることにより再生中の圧油経路は最短となり
配管中の圧力損失はさらに少なくなる。Effects of the Invention As explained above, in the circuit of the present invention, only the regeneration function part in the hydraulic regeneration circuit valve for hydraulic cylinder operation is provided independently from the hydraulic switching valve, so that it is compared to the spool of the conventional variable regeneration circuit valve. However, it is possible to use a hydraulic switching valve with a simple-shaped spool with few internal components, and a large cross-sectional area of the internal passage through which recycled oil passes, reducing fluid passage resistance. It is possible to maintain sufficient strength of the spool without increasing the shape of the spool. In addition, since an independent single regeneration function valve can be installed regardless of the installation position of the hydraulic switching valve, it is not only advantageous in terms of equipment and piping configuration, but also the regeneration function valve can be installed at a position immediately adjacent to the hydraulic cylinder. This makes the pressure oil path during regeneration the shortest, further reducing pressure loss in the piping.
第1図は本発明の回路に使用する油圧切換弁の
中立状態の縦断面図、第2図は本発明の油圧回路
図、第3図は第1図に示す油圧切換弁のスプール
を右方へ切換えたときの縦断面図、第4図は第3
図の状態から小径スプールが右方に移動したとき
の縦断面図、第5図は本発明の第2実施例を示す
油圧・電気回路図、第6図は従来の可変再生回路
弁の縦断面図である。
3……油圧切換弁、8……油室、9……ピスト
ン油室、10……チエツク弁、11……ピスト
ン、12……小径スプール、19……小径スプー
ル油室、24……切換弁、27……再生機能弁。
Fig. 1 is a vertical cross-sectional view of the hydraulic switching valve used in the circuit of the present invention in a neutral state, Fig. 2 is a hydraulic circuit diagram of the invention, and Fig. 3 shows the spool of the hydraulic switching valve shown in Fig. 1 on the right side. Figure 4 is a vertical cross-sectional view when switching to
A longitudinal cross-sectional view when the small diameter spool moves to the right from the state shown in the figure, Fig. 5 is a hydraulic/electrical circuit diagram showing the second embodiment of the present invention, and Fig. 6 is a longitudinal cross-section of a conventional variable regeneration circuit valve. It is a diagram. 3...Hydraulic switching valve, 8...Oil chamber, 9...Piston oil chamber, 10...Check valve, 11...Piston, 12...Small diameter spool, 19...Small diameter spool oil chamber, 24...Switching valve , 27...Regeneration function valve.
Claims (1)
せる作動システムであつて、常時は油圧切換弁の
スプールに内蔵したスプリングの設定力により油
圧シリンダのロツド側油室からの戻り油がタンク
連通路に通ずる油路を閉路しているが、該油圧シ
リンダの伸長作動圧力が所定値をこえると開路す
るようにするとともに、外部からの信号圧力の大
小により上記内蔵したスプリングの設定力を可変
とするごとき油圧切換弁により構成した油圧回路
において、常時はばねの付勢力により内部油路を
閉路しているが、油圧シリンダを伸長作動させる
方向への操作素子に連動して開路する切換弁と、
その下流側から油圧シリンダのヘツド側油室に通
ずる油路の接続口と、該油路の途中には該接続口
に向け自由油路を形成するチエツク弁と、上記切
換弁の上流側から油圧シリンダのロツド側油室に
通ずる油路の接続口とからなる再生機能弁を、前
記油圧切換弁と油圧シリンダのヘツド側油室およ
びロツド側油室とを接続する管路の中間に設けた
ことを特徴とする可変再生回路。1 An operating system that expands and contracts the hydraulic cylinder by switching the hydraulic switching valve, and normally returns oil from the rod side oil chamber of the hydraulic cylinder to the tank communication path by the setting force of a spring built into the spool of the hydraulic switching valve. The oil passage is closed, but it is opened when the extension pressure of the hydraulic cylinder exceeds a predetermined value, and the setting force of the built-in spring is varied depending on the magnitude of signal pressure from the outside. In a hydraulic circuit configured with a switching valve, an internal oil passage is normally closed by the biasing force of a spring, but the switching valve opens in conjunction with an operating element in a direction to extend and operate a hydraulic cylinder;
There is a connection port for an oil path that leads from the downstream side to the head side oil chamber of the hydraulic cylinder, a check valve that forms a free oil path toward the connection port in the middle of the oil path, and a hydraulic A regeneration function valve consisting of a connection port of an oil passage leading to the rod side oil chamber of the cylinder is provided in the middle of the pipe line connecting the hydraulic switching valve and the head side oil chamber and the rod side oil chamber of the hydraulic cylinder. A variable regeneration circuit featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61122493A JPS62278301A (en) | 1986-05-27 | 1986-05-27 | Variably regenerating circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61122493A JPS62278301A (en) | 1986-05-27 | 1986-05-27 | Variably regenerating circuit |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3108983A Division JPH0784882B2 (en) | 1991-02-15 | 1991-02-15 | Variable playback circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62278301A JPS62278301A (en) | 1987-12-03 |
JPH0550601B2 true JPH0550601B2 (en) | 1993-07-29 |
Family
ID=14837209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61122493A Granted JPS62278301A (en) | 1986-05-27 | 1986-05-27 | Variably regenerating circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62278301A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH089441Y2 (en) * | 1989-04-26 | 1996-03-21 | 株式会社小松製作所 | Hydraulic circuit |
JP2520760Y2 (en) * | 1989-06-15 | 1996-12-18 | 株式会社小松製作所 | Directional switching valve with variable regeneration valve |
JPH0746801Y2 (en) * | 1989-07-31 | 1995-10-25 | 新キャタピラー三菱株式会社 | Logic valve |
JPH07109207B2 (en) * | 1990-10-18 | 1995-11-22 | 新キャタピラー三菱株式会社 | Load pressure compensation type logic valve |
KR100435618B1 (en) * | 2001-11-21 | 2004-06-12 | 한국기계연구원 | Hydraulic intensifier |
WO2006115407A1 (en) * | 2005-04-28 | 2006-11-02 | B.V. Holmatro Industrial Equipment | Tool with hydraulic valve system |
DE102005059238B4 (en) * | 2005-12-12 | 2016-03-31 | Linde Hydraulics Gmbh & Co. Kg | Control valve device for controlling a consumer |
DE102005059239B4 (en) * | 2005-12-12 | 2014-06-26 | Linde Hydraulics Gmbh & Co. Kg | valve means |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58118303A (en) * | 1981-12-29 | 1983-07-14 | Ishikawajima Harima Heavy Ind Co Ltd | Regenerative circuit in fluid pressure circuit |
JPS5923104A (en) * | 1982-07-30 | 1984-02-06 | Kayaba Ind Co Ltd | Hydraulic pressure control device with combined regeneration and preferential operation |
JPS59194102A (en) * | 1983-04-18 | 1984-11-02 | Hitachi Constr Mach Co Ltd | Breathing preventing device for hydraulic cylinder |
-
1986
- 1986-05-27 JP JP61122493A patent/JPS62278301A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58118303A (en) * | 1981-12-29 | 1983-07-14 | Ishikawajima Harima Heavy Ind Co Ltd | Regenerative circuit in fluid pressure circuit |
JPS5923104A (en) * | 1982-07-30 | 1984-02-06 | Kayaba Ind Co Ltd | Hydraulic pressure control device with combined regeneration and preferential operation |
JPS59194102A (en) * | 1983-04-18 | 1984-11-02 | Hitachi Constr Mach Co Ltd | Breathing preventing device for hydraulic cylinder |
Also Published As
Publication number | Publication date |
---|---|
JPS62278301A (en) | 1987-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH031523B2 (en) | ||
JPH0583405U (en) | Control valve with pressure compensation valve | |
JPH0550601B2 (en) | ||
JPH0495601A (en) | Pilot pressure control circuit of selector valve in actuator drive circuit | |
US5253672A (en) | Hydraulic pressure control system | |
JPS62278302A (en) | Variably regenerating circuit | |
JPH0784882B2 (en) | Variable playback circuit | |
JP7474346B2 (en) | Directional and flow control valves and hydraulic systems | |
EP0231876B1 (en) | Hydraulic pressure control system | |
JP3673118B2 (en) | Control device for fluid pressure actuator | |
JPS5824642Y2 (en) | Switching valve device that controls flow rate and back pressure | |
JP2581853Y2 (en) | Pressure compensation valve | |
JP3627995B2 (en) | Cylinder lowering prevention valve device | |
JP2630775B2 (en) | Priority operation control device for high load actuator | |
JPH0740083Y2 (en) | Control device for hydraulic drive | |
JP2545176Y2 (en) | Compound control valve | |
JP2514159Y2 (en) | Flow control valve | |
WO1991013266A1 (en) | A clutch control system | |
JP3703306B2 (en) | Hydraulic control device | |
JP3535239B2 (en) | Flow control valve | |
JPH0112961B2 (en) | ||
JPH059521Y2 (en) | ||
JPH0625682Y2 (en) | Poppet type fluid control valve | |
JPS58102809A (en) | Hydraulic valve | |
JPH0141921Y2 (en) |