[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0550433A - Preparation of fiber-reinforced composite material - Google Patents

Preparation of fiber-reinforced composite material

Info

Publication number
JPH0550433A
JPH0550433A JP23720391A JP23720391A JPH0550433A JP H0550433 A JPH0550433 A JP H0550433A JP 23720391 A JP23720391 A JP 23720391A JP 23720391 A JP23720391 A JP 23720391A JP H0550433 A JPH0550433 A JP H0550433A
Authority
JP
Japan
Prior art keywords
fiber
reinforcing material
composite material
resin
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23720391A
Other languages
Japanese (ja)
Other versions
JPH0790553B2 (en
Inventor
Noriaki Ide
昇明 井出
Tsutomu Nishimura
務 西村
Akio Muranaka
昭雄 村中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23720391A priority Critical patent/JPH0790553B2/en
Publication of JPH0550433A publication Critical patent/JPH0550433A/en
Publication of JPH0790553B2 publication Critical patent/JPH0790553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To improve impregnating properties of a resin and to increase fiber content by specifying the structure of a reinforcing material. CONSTITUTION:At least two liq. raw materials 4 and 5 mixed in a mixing apparatus 2 are cast in a mold 3 wherein a reinforcing material is filled in advance and then reacted and cured to obtain a composite material. In this case, a reinforcing material layer 6 wherein 2 to 10 fiber layers each consisting of fiber bundles arranged by a strand density of 10-25 filaments/25mm are laminated in such a way that the fiber arranging direction in the adjoining fiber layer has an intersection angle of 10-90 deg. and they are kept at a knitting density of 2-10 filaments/25mm by using a knitting yarn, is used for performing injection molding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明方法により製造される繊維
強化複合材料は、強化繊維の含有率が高く力学的特性に
優れているので、比強度の要求される分野に広く利用す
ることができる。
INDUSTRIAL APPLICABILITY The fiber-reinforced composite material produced by the method of the present invention has a high content of reinforcing fibers and is excellent in mechanical properties, and thus can be widely used in fields requiring specific strength. ..

【0002】[0002]

【従来の技術】近年、自動車部材や電子機器用ハウジン
グ材、電気絶縁材等の分野においては、2種以上の液状
原料を混合した後、金型キャビティー内に注入して、該
金型内で反応硬化させることにより成形体を得る反応射
出成形法(以下RIM法という)が幅広く利用されてい
る。またキャビティー内に予め補強繊維を充填してお
き、上記混合液体を注入・反応硬化させることにより複
合材を得る構造用反応射出成形法(以下S−RIM法と
いう)は、比較的短いサイクルで力学的特性に優れた成
形品が得られることにより、ハンドレイアップ法に代わ
る新しい複合材料の成形方法として注目され実用化され
つつある。
2. Description of the Related Art In recent years, in the fields of automobile members, housing materials for electronic devices, electrical insulating materials, etc., two or more kinds of liquid raw materials are mixed and then poured into a mold cavity to be injected into the mold cavity. 2. Description of the Related Art A reaction injection molding method (hereinafter referred to as RIM method) in which a molded body is obtained by reaction-curing at 2) is widely used. In addition, the structural reaction injection molding method (hereinafter referred to as the S-RIM method) in which a reinforcing fiber is filled in the cavity in advance and a composite material is obtained by injecting the above mixed liquid and curing by reaction is a relatively short cycle. Since a molded product having excellent mechanical properties can be obtained, it has been attracting attention and is being put into practical use as a new composite material molding method that replaces the hand lay-up method.

【0003】S−RIM法の概略を図1に示す。実施に
あたってはタンク1に入れた反応性液状原料4及び5を
同時に吐出させ、混合装置2内で衝突混合させて得られ
た混合液を予め強化材を充填しておいた金型3内に注入
し、加熱硬化させ複合材料を得る。
An outline of the S-RIM method is shown in FIG. In carrying out the method, the reactive liquid raw materials 4 and 5 contained in the tank 1 are discharged at the same time, and the mixed liquid obtained by collision and mixing in the mixing device 2 is injected into the mold 3 which is filled with the reinforcing material in advance. And heat-cured to obtain a composite material.

【0004】上記の方法で得られた複合材料の力学的特
性は、使用される強化材と樹脂に主として依存し、特に
強化材の含有率に支配される。従って強化材の含有率を
高くすることが重要である。しかしながら、金型内の強
化材料の充填密度が高い場合には、反応性樹脂原料を導
入する際の強化材による流動抵抗が大きくなり、金型内
での強化材の移動や強化材への樹脂の含浸不良を引き起
こす。そこで従来は強化材の充填密度を下げるか、或は
繊維密度の小さい強化材(ランダム繊維マット等)を使
用することにより、樹脂原料注入時の流動抵抗を下げて
上記の問題を解決していたが、これらの解決策では必然
的に成形品の力学的特性は低いものとならざるを得な
い。
The mechanical properties of the composite material obtained by the above method depend mainly on the reinforcing material and the resin used, and in particular are governed by the content of reinforcing material. Therefore, it is important to increase the content of the reinforcing material. However, when the packing density of the reinforcing material in the mold is high, the flow resistance due to the reinforcing material when introducing the reactive resin raw material becomes large, and the movement of the reinforcing material in the mold and the resin to the reinforcing material are increased. Cause poor impregnation. Therefore, conventionally, the filling density of the reinforcing material is reduced or a reinforcing material having a small fiber density (random fiber mat or the like) is used to reduce the flow resistance at the time of injecting the resin raw material to solve the above problems. However, these solutions inevitably result in poor mechanical properties of the molded product.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記のような
事情に鑑みてなされたものであり、強化材の種類によっ
て流動抵抗を下げるのではなく、その配列構造を工夫す
ることによって流動抵抗を低く抑えることにより、強化
材の含有率が高く、従って力学的特性の優れた繊維強化
材料を製造する方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and the flow resistance is reduced by devising the array structure of the reinforcing material, rather than decreasing the flow resistance by the type of the reinforcing material. It is an object of the present invention to provide a method for producing a fiber-reinforced material having a high content of a reinforcing material and therefore having excellent mechanical properties by controlling the content to be low.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すること
のできた本発明の繊維強化材料の製造方法は予め強化材
が充填された金型内に、2種以上の液状原料を混合して
注入し、反応硬化させることにより複合材料を得る構造
用反応射出成形法において、ストランド密度:10〜2
5本/25mmで引き揃えられた繊維群からなる繊維層
を、隣接する繊維層における繊維引揃え方向が10〜9
0度の交差角をなす様に2〜10層積層すると共に、こ
れらをニッティング糸を用いて2〜10本/25mmのニ
ッティング密度で保持して強化材層を構成したものを用
いて射出成形することに要旨がある。
The method for producing a fiber-reinforced material of the present invention, which has been able to solve the above-mentioned problems, is a method in which two or more kinds of liquid raw materials are mixed and injected into a mold filled with a reinforcing material in advance. Strand density: 10 to 2 in a structural reaction injection molding method in which a composite material is obtained by reaction curing
A fiber layer consisting of a group of fibers aligned at 5 fibers / 25 mm, and the fiber alignment direction in the adjacent fiber layers is 10 to 9
2 to 10 layers are laminated so as to form a crossing angle of 0 degree, and these are held at a knitting density of 2 to 10 yarns / 25 mm using knitting yarns and injected using a reinforcement layer. There is a point in molding.

【0007】[0007]

【作用】従来のS−RIM法で複合材料を製造した場合
の、強化材含有率は最大でも30〜50重量%であっ
た。これに対して本発明では、強化材の配列構造を特定
することによって強化材による流動抵抗を低く抑え、強
化材の含有率を70重量%以上に高めることに成功し
た。以下更に詳しく説明する。
When the composite material is manufactured by the conventional S-RIM method, the content of the reinforcing material is 30 to 50% by weight at the maximum. On the other hand, in the present invention, the flow resistance due to the reinforcing material is suppressed to a low level by specifying the array structure of the reinforcing material, and the content of the reinforcing material is increased to 70% by weight or more. This will be described in more detail below.

【0008】強化材として用いられる多積層物として
は、引き揃えられた繊維群の層をニッティングにより保
持した多積層物を用いる。通常の織物や編物の様な繊維
と繊維の重なり部(crimp) が存在する様なものを用いる
と、その部位で樹脂の流動性が抑制され流動抵抗が増加
するが、本発明では重なり部のない繊維層(non-crimpタ
イプ不織布)を用いているので、重なり部で樹脂の流動
を阻害することがなくなり、強化材の含有率を高めるこ
とができるようになった。なおこの時ストランド密度は
10〜25本/25mmとなる様に制御する必要がある。
ストランド密度が低過ぎる場合には成形品の繊維含有率
が低く、その結果その力学的特性も低くなり、また高す
ぎる場合には樹脂の流動抵抗が大きくなり強化材の移動
や強化材への樹脂の含浸不良を引き起こす。尚繊維の総
デニールは用いる素材によっても異なるが、例えばガラ
ス繊維の場合は200〜3000dであることが好まし
い。またその直径は0.3mm 以下であることが好ましい。
As the multi-laminate used as the reinforcing material, a multi-laminate in which layers of aligned fiber groups are held by knitting is used. When a fiber having a fiber-fiber overlapping portion (crimp) such as a normal woven or knitted fabric is used, the fluidity of the resin is suppressed and the flow resistance is increased at that portion, but in the present invention, the overlapping portion Since no fibrous layer (non-crimp type non-woven fabric) is used, the flow of the resin is not obstructed at the overlapping portion, and the content of the reinforcing material can be increased. At this time, it is necessary to control the strand density to be 10 to 25 strands / 25 mm.
If the strand density is too low, the fiber content of the molded product will be low, and as a result its mechanical properties will be low, and if it is too high, the flow resistance of the resin will be large and the movement of the reinforcement and the resin to the reinforcement will be low. Cause poor impregnation. The total denier of the fiber varies depending on the material used, but in the case of glass fiber, for example, it is preferably 200 to 3000 d. The diameter is preferably 0.3 mm or less.

【0009】上記繊維層を積層するに当たっては角度を
変化させて積層する。角度の変化は積層された隣層繊維
引揃え方向が互いに10〜90度で交差する様に積層さ
せていく必要がある。交差角度を10〜90度で積層す
ることによって、形状の保持が容易になると同時に、得
られる複合材料の水平方向における強度変化を低く抑え
ることができる。
When laminating the fiber layers, the angle is changed. The change in the angle needs to be performed such that the adjacent fiber alignment directions of the adjacent layers intersect each other at 10 to 90 degrees. By laminating the intersecting angles at 10 to 90 degrees, the shape can be easily retained, and at the same time, the strength change in the horizontal direction of the obtained composite material can be suppressed to be low.

【0010】次に、ニッティングにより各層を一体的に
連結して保持するが、その時のニッティング糸の密度は
2〜10本/25mmに制御する必要がある。密度が低過
ぎる場合には繊維層の繊維が乱れ易くなり、また高すぎ
る場合には樹脂の流動抵抗が大きくなり強化材への樹脂
の未含浸等の問題を引き起こす。
Next, each layer is integrally connected and held by knitting, and the density of the knitting yarn at that time needs to be controlled to 2 to 10 threads / 25 mm. If the density is too low, the fibers of the fiber layer are likely to be disturbed, and if it is too high, the flow resistance of the resin becomes large, causing problems such as not impregnating the reinforcing material with the resin.

【0011】尚本発明に用いられる強化材及びニッティ
ング糸の素材は特に限定されるものではなく、ガラス繊
維や炭素繊維、アラミド繊維等の公知の強化繊維及びそ
れらの混合物を適宜組み合わせて用いることができ、ま
たその形状も特に限定されず、長繊維及び短繊維のいず
れを用いることもできる。マトリックス材料も特に限定
されず、2種以上の液状原料を混合して反応硬化させら
れるものであれば良く、例えばエポキシ樹脂やフェノー
ル樹脂、不飽和ポリエステル樹脂等より適宜選択するこ
とができる。
The materials for the reinforcing material and knitting yarn used in the present invention are not particularly limited, and known reinforcing fibers such as glass fiber, carbon fiber, aramid fiber and mixtures thereof may be used in appropriate combination. Moreover, the shape thereof is not particularly limited, and either long fibers or short fibers can be used. The matrix material is also not particularly limited as long as it can be mixed and cured by mixing two or more kinds of liquid raw materials, and can be appropriately selected from epoxy resin, phenol resin, unsaturated polyester resin and the like.

【0012】また本発明の非重なり型多積層ガラス繊維
織物は単独で使用するだけでなく、織物、編物、不織布
等種々の形態の強化材と適宜組み合わせて使用すること
もできる。
Further, the non-overlapping type multi-layer glass fiber woven fabric of the present invention can be used not only alone but also in combination with various forms of reinforcing materials such as woven fabric, knitted fabric and non-woven fabric.

【0013】以下実施例によって本発明を更に詳述する
が、下記実施例は本発明を制限するものではなく、前・
後記の趣旨を逸脱しない範囲で変更実施することは全て
本発明の技術範囲に包含される。
The present invention will be described in more detail with reference to the following examples, but the following examples do not limit the present invention.
All modifications and implementations are included in the technical scope of the present invention without departing from the spirit of the description below.

【0014】[0014]

【実施例】【Example】

実施例1及び2、比較例1〜3 実施例1 ピストンシリンダータイプの反応射出成形機(図1参
照)を使用し、予め金型3の中に非重なり型多積層ガラ
ス繊維織物6〔4層(それぞれの角度0°/+45°/
−45°/90°),目付量:2300g/m2,繊維スト
ランド密度:17本/25mm,ニッティング糸密度:6
本/25mmのものを2枚〕を積層した。タンク1内のエ
ポキシ樹脂4及び硬化剤5を112:30(g)の比率
となるように調整しつつ計量送液し、混合装置部2で衝
突混合させた後、142g/秒の速さで金型内に吐出し
た。その後金型温度130℃、成形時間5分の条件で成
形した。
Examples 1 and 2, Comparative Examples 1 to 3 Example 1 Using a piston-cylinder type reaction injection molding machine (see FIG. 1), a non-overlapping multi-layered glass fiber fabric 6 [4 layers] was previously placed in the mold 3. (Each angle 0 ° / + 45 ° /
-45 ° / 90 °), basis weight: 2300 g / m 2 , fiber strand density: 17/25 mm, knitting yarn density: 6
Book / 25 mm 2 sheets]. The epoxy resin 4 and the curing agent 5 in the tank 1 were metered and fed while being adjusted to have a ratio of 112: 30 (g), and after being collision-mixed by the mixing device section 2, at a speed of 142 g / sec. It was discharged into the mold. After that, molding was performed under conditions of a mold temperature of 130 ° C. and a molding time of 5 minutes.

【0015】実施例2 実施例1と同一の成形機を用い、同一仕様の多積層織物
2枚の間に更に連続繊維マット(目付量:300g/m
2 )を1枚挟み、同一条件で成形した。
Example 2 Using the same molding machine as in Example 1, a continuous fiber mat (weight per unit area: 300 g / m) was further added between two multi-layered fabrics having the same specifications.
2 ) was sandwiched and molded under the same conditions.

【0016】比較例1 非重なり型多積層ガラス繊維織物として繊維ストランド
密度:30本/25mm,ニッティング糸密度:15本/
25mmのものを用いた以外は実施例1と同様にして成形
した。
Comparative Example 1 As a non-overlapping multi-layer glass fiber woven fabric, fiber strand density: 30/25 mm, knitting yarn density: 15 /
Molding was performed in the same manner as in Example 1 except that a 25 mm one was used.

【0017】比較例2 非重なり型多積層ガラス繊維織物の代わりに平織ガラス
繊維織物(目付量:330g/m2,ストランド密度:経1
6本/25mm,緯14本/25mm)8枚を積層して用い
た以外は実施例1と同様にして成形した。
Comparative Example 2 Instead of the non-overlapping type multi-layer glass fiber woven fabric, a plain woven glass fiber woven fabric (weight per unit area: 330 g / m 2 , strand density: warp 1)
Molding was performed in the same manner as in Example 1 except that 8 sheets (6 lines / 25 mm, weft 14 lines / 25 mm) were laminated and used.

【0018】比較例3 非重なり型多積層ガラス繊維織物の代わりに連続ガラス
繊維マット(目付量:300g/m2)を6枚積層して用い
た以外は実施例1と同様にして成形した。
Comparative Example 3 The procedure of Example 1 was repeated, except that 6 continuous glass fiber mats (weight per unit area: 300 g / m 2 ) were used instead of the non-overlapping multi-layer glass fiber woven fabric.

【0019】以上の様にして形成した際の金型内におけ
る樹脂の含浸性及びそれぞれの成形品の力学的特性評価
結果を表1に示す。尚、力学的特性の評価は下記のよう
にして行なった。 *曲げ強度 :JIS K−7055 *曲げ弾性率 :JIS K−7055 *アイゾット衝撃強度:JIS K−7110
Table 1 shows the impregnation properties of the resin in the mold and the evaluation results of the mechanical properties of each molded product when formed as described above. The mechanical properties were evaluated as follows. * Bending strength: JIS K-7055 * Bending elastic modulus: JIS K-7055 * Izod impact strength: JIS K-7110

【0020】[0020]

【表1】 [Table 1]

【0021】表に示される様に実施例1及び2は樹脂の
含浸性が良く、従来よりも繊維含有率の高い複合材料が
得られた。従って曲げ強度等の力学的特性においても大
変優れた材料が得られた。一方比較例1はストランド密
度及びニッティング密度が高いため、また比較例2は平
織物を用いたため樹脂の含浸性が悪く、含浸不良を引き
起こして均一な複合材料を得ることができなかった。ま
た比較例3は樹脂の含浸性は良かったが、繊維含有率が
低いため、力学的特性はあまり優れたものではなかっ
た。
As shown in the table, Examples 1 and 2 had good resin impregnation properties, and composite materials having a higher fiber content than the conventional ones were obtained. Therefore, a material having excellent mechanical properties such as bending strength was obtained. On the other hand, Comparative Example 1 has a high strand density and knitting density, and Comparative Example 2 uses a plain woven fabric, so that the resin impregnation property is poor and impregnation failure is caused to fail to obtain a uniform composite material. Further, in Comparative Example 3, the resin impregnation property was good, but the mechanical properties were not so excellent because the fiber content was low.

【0022】[0022]

【発明の効果】本発明は以上のように構成されており、
強化材の構造を限定することにより樹脂の含浸性を高
め、ひいては繊維含有率を高めることができる様になっ
た。従って得られる複合材料は曲げ強度等の力学的特性
に優れている。
The present invention is configured as described above,
By limiting the structure of the reinforcing material, it has become possible to enhance the impregnation property of the resin and thus the fiber content. Therefore, the obtained composite material is excellent in mechanical properties such as bending strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】S−RIM法に用いられる装置の概略説明図で
ある。
FIG. 1 is a schematic explanatory view of an apparatus used for an S-RIM method.

【符号の説明】[Explanation of symbols]

1 樹脂原料タンク 2 樹脂混合装置 3 金型 4 樹脂原料1 5 樹脂原料2 6 繊維強化材 1 Resin Raw Material Tank 2 Resin Mixing Device 3 Mold 4 Resin Raw Material 1 5 Resin Raw Material 2 6 Fiber Reinforcement Material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 予め強化材が充填された金型内に、2種
以上の液状原料を混合して注入し、反応硬化させること
により複合材料を得る構造反応射出成形法において、ス
トランド密度:10〜25本/25mmで引き揃えられた
繊維群からなる繊維層を、隣接する繊維層における繊維
引揃え方向が10〜90度の交差角をなす様に2〜10
層積層すると共に、これらをニッティング糸を用いて2
〜10本/25mmのニッティング密度で保持して強化材
層を構成したものを用いて射出成形することを特徴とす
る繊維強化複合材料の製造方法。
1. A structure reaction injection molding method for obtaining a composite material by mixing and injecting two or more kinds of liquid raw materials into a mold preliminarily filled with a reinforcing material to obtain a composite material. Strand density: 10 2 to 10 such that a fiber layer composed of a group of fibers aligned at -25 fibers / 25 mm has a crossing angle of 10 to 90 degrees between adjacent fiber layers.
Layer them together and put them together using knitting thread 2
A method for producing a fiber-reinforced composite material, characterized in that the fiber-reinforced composite material is injection-molded by using a reinforcing material layer that is held at a knitting density of 10 fibers / 25 mm.
JP23720391A 1991-08-23 1991-08-23 Method for manufacturing fiber-reinforced composite material Expired - Fee Related JPH0790553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23720391A JPH0790553B2 (en) 1991-08-23 1991-08-23 Method for manufacturing fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23720391A JPH0790553B2 (en) 1991-08-23 1991-08-23 Method for manufacturing fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
JPH0550433A true JPH0550433A (en) 1993-03-02
JPH0790553B2 JPH0790553B2 (en) 1995-10-04

Family

ID=17011906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23720391A Expired - Fee Related JPH0790553B2 (en) 1991-08-23 1991-08-23 Method for manufacturing fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JPH0790553B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886759A (en) * 1995-03-06 1999-03-23 Hitachi, Ltd. Liquid crystal display device having a side edge type back light system with a hue layer in the vicinity of the light source
JP2002275292A (en) * 2001-03-19 2002-09-25 Sumitomo Bakelite Co Ltd Method for producing prepreg and laminate
JP2014529532A (en) * 2011-08-26 2014-11-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Manufacturing method of molded product
CN108638530A (en) * 2018-04-13 2018-10-12 杭州碳谱新材料科技有限公司 One-step method prepares sandwich sandwich structure composite material injection molding apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886759A (en) * 1995-03-06 1999-03-23 Hitachi, Ltd. Liquid crystal display device having a side edge type back light system with a hue layer in the vicinity of the light source
JP2002275292A (en) * 2001-03-19 2002-09-25 Sumitomo Bakelite Co Ltd Method for producing prepreg and laminate
JP2014529532A (en) * 2011-08-26 2014-11-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Manufacturing method of molded product
CN108638530A (en) * 2018-04-13 2018-10-12 杭州碳谱新材料科技有限公司 One-step method prepares sandwich sandwich structure composite material injection molding apparatus and method

Also Published As

Publication number Publication date
JPH0790553B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
KR100570229B1 (en) Carbon fiber fabrics, fiber-reinforced plastic molded articles using the fabrics, and methods of making the molded articles
KR100411355B1 (en) Reinforcing fiber base for composite material
CN100556672C (en) The semifinished sheet that comprises the textile fabrics of metal wire and non-metallic fibers and comprise this textile fabrics
JP5882240B2 (en) Multiaxial laminate having polymer nonwoven fabric
Mirdehghan Fibrous polymeric composites
JP5194453B2 (en) Fiber reinforced resin
US7930907B2 (en) Crimp-free infusible reinforcement fabric and composite reinforced material therefrom
KR102492502B1 (en) A method for producing a dry preform produced by knitting, a method for producing a product made of a composite material from the preform
EP3827967A1 (en) Method for additive manufacturing of a preform
US5667882A (en) Textile reinforcement which can be used for producing composite materials
JP2001064406A (en) Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
Latifi Engineered Polymeric Fibrous Materials
KR101135406B1 (en) Crimp-free infusible reinforcement fabric and composite reinforced material therefrom
CN114008256A (en) Rovings and fabrics for fiber reinforced composites
JPH0550433A (en) Preparation of fiber-reinforced composite material
KR100997447B1 (en) Fiber Reinforced Plastic and Method for Producing Thereof
KR100885897B1 (en) Fiber Reinforced Plastic and Method for Producing Thereof
JPH02133632A (en) Sewing yarn for forming preform material for reinforcing resin
US20040005435A1 (en) 3-Dimensionally (3-d) stitched fabrics
JP3328736B2 (en) Three-dimensional integrated reinforced structural member
JP7514474B2 (en) Pultrusion products
JP2605384B2 (en) Thermoplastic composite sheet for molding and molded article thereof
GB2180562A (en) Mechanically strengthened glass fibre mat and method of making the same
JP2870994B2 (en) Fiber reinforced composite and molding method
WO2002020260A1 (en) 3-dimensionally (3-d) stitched fabrics

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960326

LAPS Cancellation because of no payment of annual fees