JPH0549858A - Method for promoting reaction of porous solid catalyst in catalytic reactor - Google Patents
Method for promoting reaction of porous solid catalyst in catalytic reactorInfo
- Publication number
- JPH0549858A JPH0549858A JP3240345A JP24034591A JPH0549858A JP H0549858 A JPH0549858 A JP H0549858A JP 3240345 A JP3240345 A JP 3240345A JP 24034591 A JP24034591 A JP 24034591A JP H0549858 A JPH0549858 A JP H0549858A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- porous solid
- solid catalyst
- reaction
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、主に廃棄物焼却炉や燃
焼ボイラ等に於ける排ガス処理用の触媒反応装置に利用
されるものであり、多孔質の固体触媒を利用した触媒反
応装置に於いて、触媒の反応効率を高めて触媒量の低減
や有害物の除去率の向上を可能とした多孔質触媒の反応
を促進する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mainly used as a catalytic reaction apparatus for treating exhaust gas in a waste incinerator, a combustion boiler, etc., and uses a porous solid catalyst. The present invention relates to a method for promoting the reaction of a porous catalyst, which can improve the reaction efficiency of the catalyst, reduce the amount of the catalyst, and improve the removal rate of harmful substances.
【0002】[0002]
【従来の技術】廃棄物焼却炉や燃焼ボイラ、内燃機関等
の排ガス中には塩化水素等の酸性ガスや硫黄酸化物、窒
素酸化物、重金属類、媒塵等の多くの有害物質が含まれ
ており、これ等の有害物質を除去するために各種の排ガ
ス処理方法が開発されている。その中でも、近年排ガス
中の窒素酸化物や炭化水素、一酸化炭素等の除去装置と
して、所謂多孔質固体触媒を利用した有害物除去装置
(若しくは触媒反応装置)が広く利用されている。Exhaust gas from waste incinerators, combustion boilers, internal combustion engines, etc. contains many harmful substances such as hydrogen chloride and other acidic gases, sulfur oxides, nitrogen oxides, heavy metals, and dust particles. Various exhaust gas treatment methods have been developed to remove these harmful substances. Among them, a harmful substance removing device (or a catalytic reaction device) using a so-called porous solid catalyst has been widely used as a device for removing nitrogen oxides, hydrocarbons, carbon monoxide and the like in exhaust gas in recent years.
【0003】図12は廃棄物焼却炉に設けた排ガス処理
装置Aの一例を示すものであり、燃焼排ガスB内へ中和
吸収剤(消石灰粉末)Cと助剤(ケイソウ土粉末)C′
とを吹き込み、バグフィルタ装置Dにより排ガス内の媒
塵や酸性ガス等を予かじめ除去すると共に、バグフィル
タ装置Dを出た排ガスB´内へNOxと選択的に反応す
る還元剤(NH3やNH4OH等)Fを噴霧し、多孔質の
固体触媒を備えた窒素酸化物除去装置Eにより排ガスB
´内の窒素酸化物を還元除去するものである。(特開昭
62−74440号等)。前記窒素酸化物除去装置Eの
多孔質固体触媒としては、TiO2を担体としてこれに
V2O5を担持したハニカム型の多孔質固体触媒や、Ti
O2やV2O5を多孔質セラミック等に担持した構造の多
孔質固体触媒が多く利用されている。また前記ハニカム
型の多孔質固体触媒の場合には、ハニカムの断面形状を
四角型又は六角型としたものが多く利用されており、且
つハニカムの径及び壁厚さは8〜15mm、及び0.5
〜2.0mm程度に夫々選定されている。FIG. 12 shows an example of an exhaust gas treating apparatus A provided in a waste incinerator. A neutralizing absorbent (slaked lime powder) C and an auxiliary agent (diatomaceous earth powder) C'are placed in a combustion exhaust gas B.
In addition, the bag filter device D preliminarily removes dust and acid gas in the exhaust gas, and the reducing agent (NH 3) that selectively reacts with NOx in the exhaust gas B ′ exiting the bag filter device D. Or NH 4 OH) F, and the exhaust gas B is discharged by the nitrogen oxide removing device E equipped with a porous solid catalyst.
It is for reducing and removing the nitrogen oxides in the ‘ (JP-A-62-74440, etc.). Examples of the porous solid catalyst of the nitrogen oxide removing apparatus E include a honeycomb-type porous solid catalyst in which V 2 O 5 is supported on TiO 2 as a carrier, and Ti.
A porous solid catalyst having a structure in which O 2 or V 2 O 5 is supported on a porous ceramic or the like is often used. Further, in the case of the honeycomb-type porous solid catalyst, a honeycomb cross-section having a square shape or a hexagonal shape is often used, and the diameter and wall thickness of the honeycomb are 8 to 15 mm, and 0.1. 5
Each is selected to be about 2.0 mm.
【0004】而して、前記従前の窒素酸化物除去装置E
に於いては、触媒反応装置内の通過ガス流速を概ね3m
/s程度とし、SV値が約4000〜7000h-1の範
囲となるように設計されている。通過ガスの速度を大き
くすると、ハニカム通路内での乱流が増して触媒の反応
効率が上る反面、排ガス抵抗が増えて触媒表面の摩耗が
進む等の支障が生じるので、一般的に前記の範囲の値が
推奨されている。また、触媒の反応効率は、前記のNH
3の注入当量比と排ガスの温度とにより変化するが、最
近では廃棄物処理施設からのダイオキシン類の排出を防
止するため、煤塵除去装置にバグフィルタを用いて排ガ
ス温度を200°〜220°程度に抑えると共に、リー
クNH3による白煙の発生を防ぐため、NH3の当量比を
0.7程度以下に押えるうにしている。その結果、排ガ
ス温度の上昇やNH3当量比の増量によって、触媒反応
効率を高めることにも一定の制約がある。上述の如き諸
条件の中で、より高度な脱硝を行うためには、やむなく
SV値を小さく設計する必要があり、その結果触媒の容
積が大きくなって設備費及び維持費等が共に高価となる
状況にある。尚、上記図12は、排ガス内から微量有害
物質を除去する触媒反応装置に関するものであるが、こ
れ等の問題は、流体が排ガス等の気体の場合のみなら
ず、液体内の微量有害物質等を触媒による化学反応によ
り除去する触媒反応装置に於いても同様に存在するもの
である。Thus, the above-mentioned conventional nitrogen oxide removing device E
In this case, the flow velocity of the passing gas in the catalytic reaction device is about 3 m.
/ S, and the SV value is designed to be in the range of about 4000 to 7000 h -1 . When the velocity of the passing gas is increased, turbulent flow in the honeycomb passage is increased to increase the reaction efficiency of the catalyst, but on the other hand, the exhaust gas resistance is increased to cause troubles such as abrasion of the catalyst surface. The value of is recommended. Also, the reaction efficiency of the catalyst is
It changes depending on the injection equivalent ratio of 3 and the temperature of the exhaust gas, but recently, in order to prevent the emission of dioxins from the waste treatment facility, a bag filter is used in the dust removal device to change the exhaust gas temperature to about 200 ° to 220 °. In addition to the above, the equivalent ratio of NH 3 is suppressed to about 0.7 or less in order to prevent the generation of white smoke due to the leak NH 3 . As a result, there are certain restrictions in increasing the catalytic reaction efficiency by increasing the exhaust gas temperature and increasing the NH 3 equivalent ratio. Under the above-mentioned conditions, in order to perform more advanced denitration, it is necessary to design the SV value to be small, and as a result, the catalyst volume becomes large and the equipment cost and the maintenance cost become expensive. There is a situation. Note that, although FIG. 12 described above relates to a catalytic reaction device for removing a trace amount of harmful substances from exhaust gas, these problems are not limited to the case where the fluid is a gas such as exhaust gas, but also a trace amount of harmful substances in the liquid. It also exists in a catalytic reaction device for removing C by a chemical reaction with a catalyst.
【0005】一方、このような状況を改善するため、新
しい触媒構造体としてセラミックフォーム型触媒や、セ
ラミックファイバーの不織布板状壁からなるハニカム型
触媒等が試みられている(特開昭平1−258746号
等)。しかし、これ等の新しい試みは、何れも製造方法
やダスト対策、通ガス抵抗、価格等の点でなお改善を要
する問題点が多くあり、未だ実用に供されるまでには至
っていない。On the other hand, in order to improve such a situation, as a new catalyst structure, a ceramic foam type catalyst, a honeycomb type catalyst composed of a ceramic fiber non-woven plate wall, and the like have been tried (Japanese Patent Laid-Open No. 1-258746). Etc.). However, each of these new attempts has many problems that still need improvement in terms of manufacturing method, dust countermeasures, gas resistance, price, etc., and has not yet been put to practical use.
【0006】[0006]
【発明が解決しようとする課題】本件発明は、従前の多
孔質固体触媒を用いた触媒反応装置に於ける上述の如き
問題、即ち触媒量の低減を図ることに限界があり、触
媒反応装置の設備費や維持費の大幅な引き下げが計れな
いこと、セラミックファイバー不織布等の新しい触媒
構造体も製造技術や価格の点に問題があり、実用化が困
難なこと等の問題を解決せんとするものであり、既存の
多孔質固体触媒製品を用い、これに簡単な機構を組み合
わせることによって反応効率を向上させ、触媒反応装置
の小型化及び低価格化を実現し得るようにした触媒反応
装置に於ける多孔質固体触媒の反応を促進する方法を提
供するものである。DISCLOSURE OF THE INVENTION The present invention has the above-mentioned problem in the conventional catalytic reaction apparatus using a porous solid catalyst, that is, there is a limit in reducing the amount of the catalyst, We are trying to solve problems such as difficulty in practically reducing equipment cost and maintenance cost, and difficulty in commercialization of new catalyst structure such as ceramic fiber nonwoven fabric due to problems in manufacturing technology and price. Therefore, in a catalytic reaction device that uses an existing porous solid catalyst product and improves the reaction efficiency by combining it with a simple mechanism, it is possible to realize downsizing and cost reduction of the catalytic reaction device. The present invention provides a method for promoting the reaction of a porous solid catalyst.
【0007】[0007]
【課題を解決するための手段】流通する気相あるいは液
相中で、多孔質の固体触媒によって化学反応が起生した
場合に、反応に関与する原料成分と生成物とは次の7つ
の過程を経て順次移動することが知られている。 流通相から固体触媒の粒子外表面への反応成分の移
動 細孔内拡散による触媒粒子の内表面への反応成分の
移動 触媒の実質表面上の活性点への反応成分の吸着 吸着された反応成分の触媒化学反応 触媒の実質表面上からの生成物の脱離 触媒粒子外表面への生成物の細孔内逆拡散 触媒粒子外表面から流通相への生成物の移動 上記7つの過程のうち、及びは外部拡散が、また
及びは細孔内拡散が係わっており、触媒反応の総括的
な反応速度を取扱う上に於いては、及びと及び
の物質の移動速度の過程が重要な要素となる。特に、廃
棄物焼却炉やボイラ、内燃機関等の排ガスのような比較
的大流量の排ガス処理に於いて、背圧の小さい触媒装置
とするためにハニカム型触媒等に見られるような意図的
に吹き抜け部を有する触媒構造としたような場合には、
前記外部拡散過程が総括的な反応速度を律することにな
る。また、排気中に低い濃度で含まれる有害成分の触媒
による除去のようにきわめて低濃度領域に於ける反応操
作では、一般に物質移動速度が総括的な反応速度を支配
する条件での反応操作が行われることになる。[Means for Solving the Problems] When a chemical reaction is caused by a porous solid catalyst in a flowing gas phase or liquid phase, the raw material components and products involved in the reaction are the following seven processes. It is known to move sequentially through. Transfer of reaction components from the flowing phase to the outer surface of solid catalyst particles Transfer of reaction components to the inner surface of catalyst particles by diffusion in pores Adsorption of reaction components to active sites on the substantial surface of catalyst Adsorbed reaction components Desorption of products from the substantial surface of the catalyst Intra-pore diffusion of products to the outer surface of the catalyst particles Transfer of products from the outer surface of the catalyst particles to the flowing phase Of the above seven processes, And and are involved in outdiffusion and / or in-pore diffusion, and the process of mass transfer rate of and and and is an important factor in dealing with the overall reaction rate of the catalytic reaction. .. In particular, in treating a large amount of exhaust gas such as exhaust gas from waste incinerators, boilers, internal combustion engines, etc. In the case of a catalyst structure having a blow-through part,
The external diffusion process controls the overall reaction rate. Also, in the reaction operation in an extremely low concentration range such as the removal of harmful components contained in exhaust gas at low concentration by a catalyst, the reaction operation is generally performed under the condition that the mass transfer rate controls the overall reaction rate. Will be seen.
【0008】一方、流通相と触媒粒子外表面との間の物
質の移動は、触媒粒子をとりまいて形成される静止した
薄い流体境膜内を物質が分子拡散により移動することに
よって行われる。また、その時の物質の移動速度は、他
の条件(触媒の外表面積、流通相及び触媒粒子外表面で
の反応成分濃度等)が一定の場合には、境膜物質移動係
数kfを大きくすることにより速くなる。ところで、前
記kf値を大きくするには、流通相の流速を上げること
が先ず必要となる。しかし、ハニカム型触媒のような通
路構造の場合には、流速をいたずらに上げると、背圧が
増加すると共に排ガスの吹き抜けが発生する。その結
果、反応成分の転化が充分に行われなくなり、反応効率
を高めることが出来なくなる。On the other hand, the movement of the substance between the flow phase and the outer surface of the catalyst particles is carried out by molecular diffusion of the substance in a stationary thin fluid film formed around the catalyst particles. Further, regarding the mass transfer rate at that time, when the other conditions (external surface area of catalyst, reaction phase concentration in the flowing phase and outer surface of catalyst particles, etc.) are constant, the film mass transfer coefficient kf should be increased. Faster. By the way, in order to increase the kf value, it is first necessary to increase the flow velocity of the flow phase. However, in the case of a passage structure such as a honeycomb catalyst, if the flow velocity is unnecessarily increased, back pressure increases and exhaust gas blows through. As a result, the reaction components are not sufficiently converted, and the reaction efficiency cannot be increased.
【0009】而して、現実の焼却炉等の窒素酸化物除去
装置に於いては、上述の如き相反する条件の下で前記S
V値やLV値を適宜に選定して、多孔質固体触媒を用い
た触媒反応装置の設計を行っている。本件発明者は、数
多くのこの種触媒反応装置の実施設計を通して、流通相
の流速を上げることなしに前記境膜物質移動係数kfの
上昇を計ることの必要性を痛感し、多孔質固体触媒は静
置状態で使用されるべきものであると云う従前の固定観
念を打破して、多孔質固体触媒の位置を流通相の流れ方
向に交叉する方向に連続的に相対移動させることによ
り、境膜物質移動係数kfを増大させることを着想し
た。また、本件発明者はこれ等の着想に基づいて、触媒
本体の移動速度や移動範囲と反応効率との関係につい
て、多くの試験を繰り返して実施した。Thus, in a real nitrogen oxide removing device such as an incinerator, the above-mentioned S is removed under the contradictory conditions as described above.
By appropriately selecting the V value and the LV value, a catalytic reactor using a porous solid catalyst is designed. The inventor of the present invention is keenly aware of the necessity of measuring the increase of the membrane mass transfer coefficient kf without increasing the flow velocity of the flowing phase through the practical design of many catalytic reactors of this kind. By breaking the conventional stereotype that it should be used in a stationary state and continuously moving the position of the porous solid catalyst relative to the flow direction of the flowing phase, the boundary film is moved. The idea was to increase the mass transfer coefficient kf. The inventor of the present invention repeatedly carried out many tests on the relationship between the moving speed and moving range of the catalyst body and the reaction efficiency based on these ideas.
【0010】本件発明は、前記着想とこれに基づく反応
効率試験の結果から創作されたものであり、流通する流
体内に多孔質の固体触媒を配設し、化学反応により流体
内に含まれる微量有害物質の除去等を行う反応操作を行
う触媒反応装置に於いて、前記多孔質固体触媒の位置を
流体の流れ方向と交叉する方向に連続的に変位させ、触
媒の表面に形成される流体境膜を攪乱することを発明の
基本構成とするものである。The present invention was created from the above idea and the result of the reaction efficiency test based on the idea. A porous solid catalyst is provided in a flowing fluid, and a trace amount contained in the fluid by a chemical reaction. In a catalytic reactor that performs a reaction operation for removing harmful substances, etc., the position of the porous solid catalyst is continuously displaced in a direction intersecting with the flow direction of the fluid, and a fluid boundary formed on the surface of the catalyst. Disturbing the membrane is the basic constitution of the invention.
【0011】[0011]
【作用】流通相内に置かれた多孔質固体触媒が、流体の
流れ方向と交叉する方向に所定の速度で相対運動をする
ことにより、固体触媒粒子外表面の静止状態にある流体
境膜に外乱が与えられる。その結果、固体触媒の流体通
路断面積を減ずることなしに、触媒の前記境膜物質移動
係数kfが増大し、触媒粒子表面に於ける反応成分や反
応生成物の外部拡散が活発となり、触媒の反応効率が大
幅に向上する。[Function] The porous solid catalyst placed in the flow phase makes relative motion at a predetermined speed in the direction intersecting with the flow direction of the fluid to form a stationary fluid film on the outer surface of the solid catalyst particles. Disturbance is given. As a result, the film mass transfer coefficient kf of the catalyst is increased without reducing the fluid passage cross-sectional area of the solid catalyst, and the outward diffusion of the reaction components and reaction products on the surface of the catalyst particles is activated, and the catalyst The reaction efficiency is greatly improved.
【0012】[0012]
【実施例】以下、図面に基づいて本発明の実施例を説明
する。図1及び図2は本発明を適用した触媒反応装置
(燃焼排ガス内の窒素酸化物除去装置)の要部を示す縦
断面概要図と横断面概要図である。図に於いて、1は排
ガス導入ダクト、2は排ガス導出ダクト、3はケーシン
グ、4はハニカム型多孔質固体触媒、5は触媒補強枠、
6はローラ支持台、7はローラ、8は加振装置、9はガ
スシール、10は排ガスである。前記ハニカム型多孔質
固体触媒4はV5O2を多孔質セラミックに担持して形成
した公知の固体触媒であり、一般的には機械的強度に劣
るものである。そのため、ハニカム型多孔質固体触媒4
の外側に触媒補強枠5を設けることにより、振動に対す
る機械強度の補強が計られている。前記ハニカム型多孔
質固体触媒4は、ローラ支持架台6の上面にローラ7を
介して一定距離だけ移動自在に載置されており、ケーシ
ング3の外部に設けた加振装置8により、排ガス10の
流れ方向に対して垂直な方向に、約ハニカム通路幅の1
/2程度〜数10μmの振幅、並びに数百Hz〜数千H
zの周波数でもって、強制的に連続振動される。Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are a schematic vertical sectional view and a schematic horizontal sectional view showing the main part of a catalytic reaction device (a device for removing nitrogen oxides in combustion exhaust gas) to which the present invention is applied. In the figure, 1 is an exhaust gas introducing duct, 2 is an exhaust gas introducing duct, 3 is a casing, 4 is a honeycomb-type porous solid catalyst, 5 is a catalyst reinforcing frame,
6 is a roller support, 7 is a roller, 8 is a vibrating device, 9 is a gas seal, and 10 is exhaust gas. The honeycomb-type porous solid catalyst 4 is a known solid catalyst formed by supporting V 5 O 2 on a porous ceramic, and generally has poor mechanical strength. Therefore, the honeycomb-type porous solid catalyst 4
By providing the catalyst reinforcing frame 5 on the outer side of, the mechanical strength against vibration is reinforced. The honeycomb-type porous solid catalyst 4 is movably mounted on the upper surface of the roller supporting base 6 through a roller 7 for a predetermined distance, and a vibrating device 8 provided outside the casing 3 serves to remove the exhaust gas 10 from the exhaust gas 10. In the direction perpendicular to the flow direction, about 1 of the honeycomb passage width
Amplitude of about / 2 to several tens of μm, and several hundred Hz to several thousand H
It is forced to vibrate continuously at the frequency of z.
【0013】前記触媒4が強制振動されることにより、
排ガス10の流れは、図3に示す如くハニカム壁面4a
に対して流れの方向が時間的に変動することになり、こ
れによってハニカム壁面4aの近傍に形成された静止状
の流体境膜が攪乱される。即ち図3に於いて、uは排ガ
ス10の流速、vは排ガスの流れに対して垂直方向の振
動速度であり、ω=u+vなる流体の流速が触媒壁面4
aに作用することにより、流体境膜が攪乱されることに
なる。尚、本実施例では、触媒4の振動方向を図3の矢
印イに示す如く、排ガス10の流れと垂直な方向として
いるが、これに替えて、任意の角度αを有する方向に触
媒4を振動させてもよいことは勿論である。Since the catalyst 4 is forcibly vibrated,
The flow of the exhaust gas 10 is as shown in FIG.
On the other hand, the flow direction changes with time, which disturbs the static fluid film formed in the vicinity of the honeycomb wall surface 4a. That is, in FIG. 3, u is the flow velocity of the exhaust gas 10, v is the vibration velocity in the direction perpendicular to the flow of the exhaust gas, and the fluid flow velocity of ω = u + v is the catalyst wall surface 4.
By acting on a, the fluid film will be disturbed. In the present embodiment, the vibration direction of the catalyst 4 is perpendicular to the flow of the exhaust gas 10 as shown by the arrow A in FIG. 3, but instead of this, the catalyst 4 is moved in a direction having an arbitrary angle α. Of course, it may be vibrated.
【0014】図4は前記触媒壁面4aの近傍を模式的に
表した部分拡大断面図であり、また図5は図4に於ける
断面位置Xと反応成分濃度A0との関係を示す線図であ
る。図4に於いて、Hは流通相、Gは流体境膜、Iは触
媒本体内面、Kは細孔模型、Lは反応成分、Mは反応生
成物である。また、図5に於いてP1は触媒粒子外表面
に於ける反応成分濃度、P2は流通相の反応成分濃度で
あり、流体境膜Gが触媒4の振動によって攪乱されるこ
とにより、前記P1が流体境膜Gが安定(静止)してい
る場合に比較して大幅に向上する。FIG. 4 is a partially enlarged sectional view schematically showing the vicinity of the catalyst wall surface 4a, and FIG. 5 is a diagram showing the relationship between the sectional position X in FIG. 4 and the reaction component concentration A 0 . Is. In FIG. 4, H is a flow phase, G is a fluid boundary film, I is the inner surface of the catalyst main body, K is a pore model, L is a reaction component, and M is a reaction product. Further, in FIG. 5, P 1 is the reaction component concentration on the outer surface of the catalyst particles, P 2 is the reaction component concentration in the flow phase, and the fluid boundary film G is disturbed by the vibration of the catalyst 4, P 1 is greatly improved as compared with the case where the fluid film G is stable (stationary).
【0015】図6及び図7は、本発明を適用した他の触
媒反応装置の要部を示す縦断面概要図と横断面概要図で
ある。本実施例に於いては、多孔質固体触媒4は円板型
の多孔質固体触媒に形成されており、軸11に多数の触
媒ディスク4aを並行状に固設することにより形成され
ている。即ち、当該ディスク型の触媒4は、金属円板や
金網に触媒を担持したディスク体や混練成形したディス
ク形触媒体4aを用いて構成されており、電動機12に
より適宜の速度で回転駆動されることにより、円板形触
媒4の外表面に於ける流体境膜Gが、実施例1の場合と
同様に攪乱され、その結果触媒の反応効率が向上するこ
とになる。FIG. 6 and FIG. 7 are a schematic vertical sectional view and a schematic horizontal sectional view showing the main part of another catalytic reactor to which the present invention is applied. In the present embodiment, the porous solid catalyst 4 is formed as a disk-shaped porous solid catalyst, and is formed by fixing a large number of catalyst disks 4a in parallel to the shaft 11. That is, the disk type catalyst 4 is composed of a disk body carrying a catalyst on a metal disk or a wire mesh or a kneading molded disk type catalyst body 4a, and is rotationally driven by an electric motor 12 at an appropriate speed. As a result, the fluid boundary film G on the outer surface of the disk-shaped catalyst 4 is disturbed as in the case of Example 1, and as a result, the reaction efficiency of the catalyst is improved.
【0016】図8及び図9は、本発明を適用した更に他
の触媒反応装置の要部を示す縦断面概要図と横断面概要
図である。本実施例に於いては、多孔質固体触媒4とし
て二重円筒型の多孔質固体触媒が使用されており、ケー
シング3内へ複数本の円筒型触媒4を縦向きに並設し、
これを電動機12により所定の速度で回転駆動すること
により、触媒4の外表面に形成された流体境膜を攪乱す
るようにしたものである。FIG. 8 and FIG. 9 are a schematic vertical sectional view and a schematic horizontal sectional view showing the main part of still another catalytic reaction apparatus to which the present invention is applied. In the present embodiment, a double cylinder type porous solid catalyst is used as the porous solid catalyst 4, and a plurality of cylindrical catalysts 4 are vertically arranged in the casing 3.
By rotating this at a predetermined speed by the electric motor 12, the fluid film formed on the outer surface of the catalyst 4 is disturbed.
【0017】図10及び図11は前記二重円筒型多孔質
固体触媒4の詳細構造を示すものであり、外径の異なる
2個のステンレス金網(又はパンチング板)製の筒体1
3a,13bを同芯状に配設し、両者の間の空間部に粒
状の触媒4bを充填することにより、触媒層を形成して
いる。また、当該円筒型触媒4は、内部空間の下端部が
開放されており、ケーシング3内へ回転自在に吊下げ支
持されている。ケーシング3内へ流入して来た排ガス1
0は、一定の速度で回転する円筒型触媒4の周壁を形成
する粒状触媒層を通過してその内部空間内へ入り、下端
部の開口4cを通して排ガス導出ダクト2内へ排出され
て行く。FIG. 10 and FIG. 11 show the detailed structure of the double-cylindrical porous solid catalyst 4, which is a cylindrical body 1 made of two stainless wire nets (or punching plates) having different outer diameters.
The catalyst layers are formed by arranging 3a and 13b concentrically and filling the space between them with the granular catalyst 4b. The lower end of the internal space of the cylindrical catalyst 4 is open, and the cylindrical catalyst 4 is rotatably suspended and supported in the casing 3. Exhaust gas 1 flowing into the casing 3
0 passes through the granular catalyst layer forming the peripheral wall of the cylindrical catalyst 4 rotating at a constant speed, enters the internal space thereof, and is discharged into the exhaust gas discharge duct 2 through the opening 4c at the lower end.
【0018】[0018]
【発明の効果】本件発明においては、流体中に配設した
多孔質固体触媒の位置を流体の流れ方向と交叉する方向
に連続的に強制変位させ、触媒表面に形成される静止し
た薄い流体境膜を攪乱することにより、流通相から固体
触媒粒子外表面への反応成分の移動と、触媒粒子外表面
から流通相への生成物の移動を活発化させるようにして
いる。その結果、従来の触媒反応装置に比較して、特に
流体の通過抵抗を増大することなしに触媒反応を促進し
て触媒効率を高めることができ、流体中の微量有害物の
除去率が向上する。また、従来の触媒反応装置に比較し
て、所謂SV値やAV値を高くとることができ、触媒容
積が減少して装置の小型化が計れると共に、装置の設備
費や維持費を低減することが出来る。更に、触媒本体の
振動または回転運動により触媒のダスト付着物を除去す
る自浄作用が生じ、スートブロー等の触媒洗浄装置を削
除することができる。そのうえ、触媒本体を振動または
回転させる装置は、流体によって大きな負荷が殆どかか
らない極めて簡単な装置であり、価格の大幅な上昇を招
いたり、維持管理に手数を要するということは全く無
い。本発明は上述の通り、優れた実用的効用を有するも
のである。According to the present invention, the position of the porous solid catalyst disposed in the fluid is continuously forcibly displaced in the direction intersecting with the flow direction of the fluid, and the stationary thin fluid boundary formed on the catalyst surface. By disturbing the membrane, the movement of the reaction components from the flowing phase to the outer surface of the solid catalyst particles and the movement of the product from the outer surface of the catalyst particles to the flowing phase are activated. As a result, as compared with the conventional catalytic reaction apparatus, the catalytic efficiency can be enhanced by promoting the catalytic reaction without increasing the passage resistance of the fluid, and the removal rate of trace harmful substances in the fluid is improved. .. In addition, the so-called SV value and AV value can be increased as compared with the conventional catalytic reaction apparatus, the catalyst volume can be reduced, the apparatus can be downsized, and the equipment cost and maintenance cost of the apparatus can be reduced. Can be done. Furthermore, the vibration or rotational movement of the catalyst body causes a self-cleaning action of removing dust deposits on the catalyst, so that the catalyst cleaning device such as soot blow can be eliminated. Moreover, the device for vibrating or rotating the catalyst body is an extremely simple device that is not heavily loaded by the fluid, and does not cause a significant increase in price or require any troublesome maintenance. The present invention has excellent practical utility as described above.
【図1】本発明を適用した触媒反応装置の縦断面概要図
である。FIG. 1 is a schematic vertical sectional view of a catalytic reactor to which the present invention is applied.
【図2】図1のイーイ視断面概要図である。FIG. 2 is a schematic cross-sectional view taken along the line E-I of FIG.
【図3】ハニカム型多孔質固体触媒の移動を示す説明図
である。FIG. 3 is an explanatory diagram showing movement of a honeycomb-type porous solid catalyst.
【図4】触媒外表面近傍の状況を模式的に示すための部
分拡大断面図である。FIG. 4 is a partially enlarged cross-sectional view for schematically showing the condition near the outer surface of the catalyst.
【図5】触媒外表面近傍に於ける反応成分濃度の状況を
示す線図である。FIG. 5 is a diagram showing a situation of reaction component concentrations near the outer surface of the catalyst.
【図6】本発明を適用した他の触媒反応装置の縦断面概
要図である。FIG. 6 is a schematic vertical sectional view of another catalytic reaction device to which the present invention is applied.
【図7】図6のイーイ視断面概要図である。FIG. 7 is a schematic cross-sectional view taken along the line E-I of FIG.
【図8】本発明を適用した更に他の触媒反応装置の縦断
面図である。FIG. 8 is a vertical cross-sectional view of still another catalytic reaction device to which the present invention is applied.
【図9】図8のイーイ視断面図である。9 is a cross-sectional view taken along the line E-I of FIG.
【図10】円筒型多孔質固体触媒の縦断面図である。FIG. 10 is a vertical sectional view of a cylindrical porous solid catalyst.
【図11】図10のイーイ視断面図である。11 is a cross-sectional view taken along line E-I of FIG.
【図12】従前の多孔質固体触媒を利用した有害物除去
装置の一例を示すものである。FIG. 12 shows an example of a harmful substance removing device using a conventional porous solid catalyst.
1 排ガス導入ダクト H 流通相 2 排ガス導出ダクト G 流体境
膜 3 ケーシング I 触媒本
体の内面 4 ハニカム型多孔質固体触媒 K 細孔模
型 5 触媒補強枠 L 反応成
分 6 ローラ支持台 M 反応生
成物 7 ローラ P1 触媒粒
子外表面に於ける反応 8 加振装置 成分濃
度 9 ガスシール P2 流通相
の反応成分濃度 10 排ガス 11 軸 12 電動機 13a,13b 円筒形金網1 Exhaust gas introduction duct H Distribution phase 2 Exhaust gas discharge duct G Fluid boundary film 3 Casing I Inner surface of catalyst body 4 Honeycomb type porous solid catalyst K Pore model 5 Catalyst reinforcement frame L Reaction component 6 Roller support M Reaction product 7 Roller P 1 Reaction on the outer surface of catalyst particles 8 Excitation device Component concentration 9 Gas seal P 2 Reaction component concentration in flowing phase 10 Exhaust gas 11 Shaft 12 Electric motor 13a, 13b Cylindrical wire mesh
Claims (5)
設し、化学反応により流体内に含まれる微量有害物質の
除去等の反応操作を行う触媒反応装置に於いて、前記多
孔質固体触媒の位置を流体の流れ方向と交叉する方向に
連続的に変位させ、触媒表面に形成される流体境膜を攪
乱するようにしたことを特徴とする触媒反応装置に於け
る多孔質固体触媒の反応を促進する方法。1. A catalytic reaction apparatus in which a porous solid catalyst is disposed in a flowing fluid and a reaction operation such as removal of a trace amount of harmful substances contained in the fluid by a chemical reaction is carried out. The position of the catalyst is continuously displaced in a direction intersecting with the flow direction of the fluid to disturb the fluid boundary film formed on the catalyst surface. How to accelerate the reaction.
体触媒とし、当該ハニカム型の多孔質固体触媒を所定の
振幅並びに周波数で強制的に振動させるようにした請求
項1に記載の触媒反応装置に於ける多孔質固体触媒の反
応を促進する方法。2. The catalytic reaction according to claim 1, wherein the porous solid catalyst is a honeycomb-type porous solid catalyst, and the honeycomb-type porous solid catalyst is forcibly vibrated at a predetermined amplitude and frequency. Method for promoting reaction of porous solid catalyst in apparatus.
媒とし、当該円板型の多孔質固体触媒を所定の速度で回
転駆動するようにした請求項1に記載の触媒反応装置に
於ける多孔質固体触媒の反応を促進する方法。3. The catalytic reaction device according to claim 1, wherein the porous solid catalyst is a disk-shaped porous solid catalyst, and the disk-shaped porous solid catalyst is rotationally driven at a predetermined speed. Method for accelerating the reaction of a porous solid catalyst in.
間部へ充填した円筒型の多孔質固体触媒とし、当該円筒
型の多孔質固体触媒を所定の速度で回転駆動すると共
に、粒状触媒層を通過して内部へ流入した流体をその下
方開口より導出するようにした請求項1に記載の触媒反
応装置に於ける多孔質固体触媒の反応を促進する方法。4. The porous solid catalyst is a cylindrical porous solid catalyst in which a granular catalyst is filled in a space of a double wall, and the cylindrical porous solid catalyst is rotationally driven at a predetermined speed, The method for accelerating the reaction of the porous solid catalyst in the catalytic reaction apparatus according to claim 1, wherein the fluid that has passed through the catalyst layer and has flowed into the inside is discharged from the lower opening.
型の多孔質固体触媒を窒素酸化物の除去用触媒とし、且
つ当該多孔質触媒を、振幅がハニカム通路幅の約0.5
倍〜数十μm、周波数が数百〜数千ヘルツでもって水平
方向に強制振動させるようにした請求項2に記載の触媒
反応装置に於ける多孔質固体触媒の反応を促進する方
法。5. A fluid is combustion exhaust gas, and a honeycomb-type porous solid catalyst is used as a catalyst for removing nitrogen oxides, and the porous catalyst has an amplitude of about 0.5 of a honeycomb passage width.
The method for accelerating the reaction of the porous solid catalyst in the catalytic reaction device according to claim 2, wherein forced vibration is performed in the horizontal direction at a frequency of several times to several tens of μm and a frequency of several hundreds to several thousands of hertz.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3240345A JPH0549858A (en) | 1991-08-26 | 1991-08-26 | Method for promoting reaction of porous solid catalyst in catalytic reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3240345A JPH0549858A (en) | 1991-08-26 | 1991-08-26 | Method for promoting reaction of porous solid catalyst in catalytic reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0549858A true JPH0549858A (en) | 1993-03-02 |
Family
ID=17058108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3240345A Pending JPH0549858A (en) | 1991-08-26 | 1991-08-26 | Method for promoting reaction of porous solid catalyst in catalytic reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0549858A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7845367B2 (en) | 2006-07-28 | 2010-12-07 | Hitachi Construction Machinery Co., Ltd. | Lock device for operation pattern selecting valve |
US8311181B2 (en) * | 2008-11-28 | 2012-11-13 | General Electric Company | Apparatus and method of visualizing multi-energy imaging data |
-
1991
- 1991-08-26 JP JP3240345A patent/JPH0549858A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7845367B2 (en) | 2006-07-28 | 2010-12-07 | Hitachi Construction Machinery Co., Ltd. | Lock device for operation pattern selecting valve |
US8311181B2 (en) * | 2008-11-28 | 2012-11-13 | General Electric Company | Apparatus and method of visualizing multi-energy imaging data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10500054A (en) | Substances that remove contaminants from gas streams | |
CN1845780B (en) | Improved diesel exhaust filter | |
AT1177U2 (en) | FLUE GAS PURIFICATION SYSTEM | |
Lopatin et al. | Pressure drop and mass transfer in the structured cartridges with fiber-glass catalyst | |
CN102091484B (en) | Integrated device for removal of dusts and gaseous pollutants | |
CN108295636A (en) | A kind of flue gas desulfurization denitration dust-removing integrated system and technique based on membrane material | |
Zhang et al. | Integration of dedusting and denitration in V2O5-WO3/TiO2/PTFE-based catalytic bag-filter materials: Lab-and pilot-scale testing and development of SCR models | |
JPH0549858A (en) | Method for promoting reaction of porous solid catalyst in catalytic reactor | |
US5750084A (en) | Fluidized-bed denitrating method | |
Li et al. | Performance and reaction mechanism for low‐temperature NOx catalytic synergistic Hg0 oxidation of catalytic polyphenylene sulfide filter materials | |
CN113453781A (en) | Catalytic filtration system for treating particulate-containing exhaust gas from stationary emission sources | |
JP2004524258A (en) | Ammonia oxidation method | |
JP4226811B2 (en) | Exhaust gas treatment method and apparatus | |
JPH1057762A (en) | Reaction and regeneration device for catalyst and method therefor | |
Qian et al. | Soot removal from diesel engine exhaust using a rotating fluidized bed filter | |
JP4220142B2 (en) | Exhaust gas treatment equipment | |
JP2003265927A (en) | METHOD OF TREATING EXHAUST GAS AND CATALYST BODY USEFUL FOR DECOMPOSING PAHs | |
JPH07112119A (en) | Method for accelerating reaction of porous solid catalyst | |
JPH0436729B2 (en) | ||
JPH06165916A (en) | Centrifugal fluidized bed dust removal/desulfurizing/ denitrifying device | |
JP2671090B2 (en) | Centrifugal fluidized bed exhaust gas treatment equipment | |
CN115350533B (en) | Dust removal denitration integration filter bag | |
JP2001280116A (en) | Exhaust emission control device for diesel engine | |
JP3885973B2 (en) | Method and apparatus for removing particles contained in fluid flow | |
JP2563045B2 (en) | Device to prevent particle deformation in centrifugal fluidized bed |