JPH0546086B2 - - Google Patents
Info
- Publication number
- JPH0546086B2 JPH0546086B2 JP58159275A JP15927583A JPH0546086B2 JP H0546086 B2 JPH0546086 B2 JP H0546086B2 JP 58159275 A JP58159275 A JP 58159275A JP 15927583 A JP15927583 A JP 15927583A JP H0546086 B2 JPH0546086 B2 JP H0546086B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- bonding
- oxide film
- semiconductor
- mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 238000005498 polishing Methods 0.000 claims description 4
- 239000008188 pellet Substances 0.000 description 20
- 239000011521 glass Substances 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 230000003068 static effect Effects 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/84—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Measuring Fluid Pressure (AREA)
- Pressure Sensors (AREA)
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、半導体基板の接合方法に関し、例え
ば半導体結晶の肉薄ダイヤフラム面に起歪抵抗ゲ
ージを形成した感圧ペレツトを基台に強固に結合
した構造の半導体圧力変換器を実現する方法に用
いられる。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for bonding semiconductor substrates. The structure is used in a method for realizing a semiconductor pressure transducer.
[発明の技術的背景とその問題点]
流体圧力を検出する圧力変換器として、半導体
のピエゾ効果を利用したものが実用化されてい
る。この種の半導体圧力変換器は、その基本構造
を図に示すように、例えばシリコン(Si)からな
る半導体単結晶板1の中央部に、圧力に感応する
肉薄ダイヤフラム面2を形成しこの肉薄ダイヤフ
ラム面2の一方に基板(半導体単結晶板)1とは
逆導電性の拡散抵抗層3を形成し、これを起歪抵
抗ゲージとしている。そして、前記基板1の表面
に設けられたSiO2絶縁膜4に窓部を設け、この
窓部を介して前記起歪抵抗ゲージ3に対するアル
ミニウム等の電極配線5を形成している。しかし
て、このように形成された感圧ペレツトは、前記
基板1の周辺肉厚部を基台6に接着剤7等を用い
て固定され、上記基台6の中央部に設けられた圧
力導入孔8を介して導入された圧力Pに感応する
ものとなつている。[Technical background of the invention and its problems] Pressure transducers that utilize the piezo effect of semiconductors have been put into practical use as pressure transducers for detecting fluid pressure. As shown in the figure, the basic structure of this type of semiconductor pressure transducer is that a thin diaphragm surface 2 that is sensitive to pressure is formed in the center of a semiconductor single crystal plate 1 made of, for example, silicon (Si). A diffused resistance layer 3 having conductivity opposite to that of the substrate (semiconductor single crystal plate) 1 is formed on one side of the surface 2, and this is used as a strain resistance gauge. A window is provided in the SiO 2 insulating film 4 provided on the surface of the substrate 1, and an electrode wiring 5 made of aluminum or the like for the strain resistance gauge 3 is formed through this window. Thus, the pressure-sensitive pellet thus formed is fixed to the base 6 by using an adhesive 7 or the like at the peripheral thick part of the substrate 1, and then fixed to the pressure-introducing pellet provided at the center of the base 6. It is sensitive to the pressure P introduced through the hole 8.
しかして、前記起歪抵抗ゲージ3は、前記圧力
Pによつて歪を生じるダイヤフラムにより抵抗値
変化を示し、この抵抗値変化は前記起歪抵抗ゲー
ジを含んで構成されるフルブリツジ回路等により
検出される。これにより、例えば微弱な圧力変化
をも高感度に検出されるようになつている。 Therefore, the strain resistance gauge 3 exhibits a change in resistance value due to the diaphragm that is strained by the pressure P, and this change in resistance value is detected by a full bridge circuit or the like including the strain resistance gauge. Ru. As a result, even weak pressure changes, for example, can be detected with high sensitivity.
ところで、このような半導体圧力変換器は上述
したようにダイヤフラムに生じた歪によつて微弱
な圧力を高感度に検出するものであるから、当
然、感圧ペレツトに加わる残留応力やその温度変
化が問題となる。この為には基台6に固定される
感圧ペレツトに応力が加わらないように、その基
台6および接着剤7についても半導体結晶板1で
あるシリコンとの熱膨脹を整合させる必要があ
る。そこで従来、前記基台6として感圧ペレツト
と同じ材料であるシリコンを用いることが考えら
れている。然し乍ら接着剤7としては、例えば
金・シリコンの共晶や低融点半田ガラスを用いざ
るを得ないので、これらの高膨脹率の材料に起因
する残留応力を除去することができないと言う問
題があつた。 By the way, as mentioned above, this type of semiconductor pressure transducer detects minute pressures with high sensitivity due to the strain generated in the diaphragm, so it is natural that the residual stress applied to the pressure-sensitive pellet and its temperature changes will be affected. It becomes a problem. For this purpose, it is necessary to match the thermal expansion of the base 6 and the adhesive 7 with the silicon of the semiconductor crystal plate 1 so that no stress is applied to the pressure-sensitive pellet fixed to the base 6. Therefore, conventionally, it has been considered to use silicon, which is the same material as the pressure-sensitive pellet, for the base 6. However, as the adhesive 7, for example, gold/silicon eutectic or low melting point solder glass must be used, so there is a problem that residual stress caused by these materials with high expansion coefficients cannot be removed. Ta.
これに対して最近では、ホウケイ酸ガラスにて
前記基台6を構成し、感圧プレツトとの接合を高
温加熱、或いは電圧印加することで前記接着剤7
を用いることなく行うことが試みられている。こ
のような手段によれば、上記ガラスの種類を適当
に選ぶことで、広い温度範囲で前記熱膨脹の整合
を図ることが可能となる。然し乍ら、この種の半
導体圧力変換器は静圧下で用いられることが多
く、この場合前記シリコンとガラスとの接合体で
は、両者の圧縮率が一桁以上を異なるために不均
等な変形が発生し、この結果前記感圧ペレツト部
に応力が加わる。この応力は前記ブリツジ回路の
零点変動として現われ、半導体圧力変換器の使用
上大きな問題となる。 On the other hand, recently, the base 6 is made of borosilicate glass, and the adhesive 7 is bonded to the pressure sensitive plate by heating at a high temperature or by applying a voltage.
Attempts are being made to do this without using . According to such means, by appropriately selecting the type of glass, it is possible to match the thermal expansion over a wide temperature range. However, this type of semiconductor pressure transducer is often used under static pressure, and in this case, uneven deformation occurs in the bonded body of silicon and glass because the compressibility of the two differs by more than an order of magnitude. As a result, stress is applied to the pressure sensitive pellet portion. This stress appears as a zero point fluctuation of the bridge circuit and poses a major problem in the use of semiconductor pressure transducers.
[発明の目的]
本発明はこのような事情を考慮してなされたも
ので、その目的とするところは、2つの半導体基
板を相互に接合することができ、例えば残留応力
が小さく、しかも温度特性及び静圧特性の良好な
半導体圧力変換器の製造に応用することができる
接合方法を提供することにある。[Objective of the Invention] The present invention has been made in consideration of the above circumstances, and its purpose is to be able to bond two semiconductor substrates to each other, for example, with low residual stress and with good temperature characteristics. Another object of the present invention is to provide a joining method that can be applied to manufacturing a semiconductor pressure transducer with good static pressure characteristics.
[発明の概要]
本発明は、2つのシリコン基板の各接合面をそ
れぞれ鏡面研磨し、この鏡面研磨された少なくと
も一方の接合面に鏡面状態の酸化膜を形成した
後、前記接合面にOH基を形成し、前記接合面間
に実質的に異物が介在することなく相互に接触さ
せて接合した後、外力による加圧を行なうことな
く、200℃以上かつ1200℃未満の条件で加熱処理
してなる半導体基板の接合方法である。例えば、
感圧ペレツトを固定する基台として上記感圧ペレ
ツトと同じ材料であるシリコンを用い、その接合
面をそれぞれ鏡面研磨し、これらの研磨接合面間
に薄い酸化膜だけを介在させて上記感圧ペレツト
と基台とを直接接合したものである。[Summary of the Invention] The present invention involves mirror-polishing each bonding surface of two silicon substrates, forming a mirror-like oxide film on at least one of the mirror-polished bonding surfaces, and then applying OH groups to the bonding surface. are formed and bonded by bringing them into contact with each other without substantially intervening foreign matter between the bonded surfaces, and then heat-treated at a temperature of 200°C or more and less than 1200°C without applying external pressure. This is a method for bonding semiconductor substrates. for example,
Silicon, which is the same material as the pressure-sensitive pellets, is used as the base for fixing the pressure-sensitive pellets, and the bonding surfaces thereof are polished to a mirror finish, with only a thin oxide film interposed between these polished bonding surfaces, and the pressure-sensitive pellets are fixed. and the base are directly joined.
[発明の効果]
かくして本発明によれば、鏡面研磨し、OH基
を形成した半導体基板を単に密着させるだけで半
導体基板の破壊を招くことなしにその引離しを困
難とする程度に上記半導体基板を強固に接合する
ことができる。従つて、本発明を半導体圧力変換
器の製造に適用すれば、例えばシリコン酸化膜が
感圧ペレツトと基台との接着層として有効に作用
して前記感圧ペレツトと基台とを強固に接合す
る。即ち、鏡面研磨された前記感圧ペレツトと基
台の各接合面をそれぞれ清浄化し、その面に薄い
酸化を形成し、これらの間にゴミ等の異物を介在
させることなしに上記両者を接触させて接合する
ので、接着剤に起因する問題のない、特性の良好
な半導体圧力変換器を得ることができる。また、
上記酸化膜の厚みを1μm程度と十分に薄くする
ことによつて半導体圧力変換器の静圧特性や温度
特性等を十分に高いものとすることができる。従
つて各種用途に用いられる半導体圧力変換器とし
て実用上多大な効果が奏せられる。[Effects of the Invention] Thus, according to the present invention, the semiconductor substrate that has been mirror-polished and has OH groups formed thereon can be polished to such an extent that it is difficult to separate the semiconductor substrate without causing destruction of the semiconductor substrate by simply bringing the semiconductor substrate into close contact with the semiconductor substrate. can be firmly joined. Therefore, if the present invention is applied to the manufacture of a semiconductor pressure transducer, for example, the silicon oxide film will effectively act as an adhesive layer between the pressure-sensitive pellet and the base to firmly bond the pressure-sensitive pellet and the base. do. That is, each joint surface between the mirror-polished pressure-sensitive pellet and the base is cleaned, a thin oxide is formed on the surface, and the two are brought into contact without intervening foreign matter such as dust. Since the semiconductor pressure transducer is bonded using adhesives, it is possible to obtain a semiconductor pressure transducer with good characteristics without problems caused by adhesives. Also,
By making the thickness of the oxide film sufficiently thin to about 1 μm, the static pressure characteristics, temperature characteristics, etc. of the semiconductor pressure transducer can be made sufficiently high. Therefore, great practical effects can be achieved as a semiconductor pressure transducer used for various purposes.
[発明の実施例] 以下、本発明の実施例につき説明する。[Embodiments of the invention] Examples of the present invention will be described below.
本発明は感圧ペレツトや基台と同じ構成材料で
ある酸化で上記感圧ペレツトと基台とを接合した
ものであるが、このようにして酸化膜を介在させ
るだけでシリコン同士が接合する原因の詳細は不
明である。然し乍ら、ガラスとガラスとを接触さ
せたとき、そのガラス面が十分に清浄であれば摩
擦係数が非常に大きくなり、上記ガラスの破壊な
しには両者を引離すことができない程度に強く結
合することは良く知られている。また、シリコン
酸化膜もガラスの一種であり、シリコンの清浄面
には短時間で自然酸化膜の層が形成されることも
知られている。従つてこのような酸化膜を介在さ
せたシリコン同士の接合にあつても、上記ガラス
同士の接合と同様な現象が生じるものと考えられ
る。然し乍ら、このシリコン同士の接合の場合、
実際に極く僅かな油分等のよごれがその表面に存
在するだけに上記接合ができなくなり、また接合
面が平滑でなかつたり、接合面間に僅かなゴミ等
が存在するだけで接合ができなくなる。 In the present invention, the pressure-sensitive pellet and the base are bonded together using oxidation, which is the same constituent material as the pressure-sensitive pellet and the base. However, the reason why silicon is bonded to each other simply by interposing an oxide film in this way is solved. Details are unknown. However, when two glasses are brought into contact, if the glass surfaces are sufficiently clean, the coefficient of friction will be very large, and the bond will be strong enough that the two cannot be separated without breaking the glass. is well known. It is also known that silicon oxide film is also a type of glass, and that a layer of natural oxide film is formed on a clean surface of silicon in a short period of time. Therefore, it is thought that the same phenomenon as the above-mentioned bonding between glasses occurs even when silicon is bonded to each other with such an oxide film interposed. However, in the case of this silicon-to-silicon bond,
In fact, the presence of a very small amount of dirt such as oil on the surface will make the above bond impossible, and if the bonding surface is not smooth or there is even a small amount of dirt between the bonding surfaces, the bonding will not be possible. .
このように上記酸化膜はシリコン間の接合に必
須の要素であり、この酸化膜は例えば熱酸化法化
学蒸着法、スパツタリング法等の物理蒸着法によ
つて形成することができる。しかし、前記シリコ
ン間の接合を為すには酸化膜形成後の接合面表面
が鏡面であることが必要であり、鏡面研磨後のシ
リコン基板に熱酸化膜を形成した場合は鏡面状態
が維持されるが、必要に応じ酸化膜形成後に研磨
処理を施す必要がある。例えば不適切に条件設定
された化学蒸着法で酸化膜を形成した結果、その
酸化膜に0.2μm程度のクラスタが存在するだけで
上記シリコン間の接合が困難になる。 As described above, the oxide film is an essential element for bonding between silicones, and this oxide film can be formed, for example, by a physical vapor deposition method such as a thermal oxidation method, a chemical vapor deposition method, or a sputtering method. However, in order to form a bond between the silicones, it is necessary that the surface of the bonding surface after the oxide film is formed has a mirror surface, and if a thermal oxide film is formed on the silicon substrate after mirror polishing, the mirror surface state will be maintained. However, it is necessary to perform polishing treatment after forming the oxide film, if necessary. For example, as a result of forming an oxide film by a chemical vapor deposition method with inappropriately set conditions, the presence of clusters of about 0.2 μm in the oxide film makes it difficult to bond between the silicones.
このようにして酸化膜を介在させて接合した感
圧ペレツトと基台との接合体はそのままでも高い
気密性を示し、かなり強い接着強度を示すが、更
にこれを200℃以上の温度で加熱処理することに
よつて、上記接合強度を大幅に増大させることが
可能となる。即ち、本発明者等の実験によれば、
前記接合体の接合面に5Kg/cm2程度の圧力を加え
るだけで上記接合体は剥離するが、上記接合体を
200℃で約1時間加熱処理したのちには、15Kg/
cm2以上の圧力を加えても前記接合体の剥離が生じ
ることがなく、その反面、接合面以外の部位で素
子の破壊が生じることが見出された。このこと
は、一般にガラスまたは酸化膜の表面に形成され
るシラノール基(Si−OH)は200℃で脱水縮合
することが知られており、このことを考慮すれ
ば、上記結合度の増大は酸化膜または自然酸化膜
の表面のシラノール基の脱水縮合により(Si−
OSi)の結合が形成されて結合強度が増加するも
のと考えられる。 The joint between the pressure-sensitive pellet and the base, which are bonded with an oxide film interposed in this way, exhibits high airtightness as it is and exhibits quite strong adhesive strength, but it is further heat-treated at a temperature of 200°C or higher. By doing so, it becomes possible to significantly increase the bonding strength. That is, according to the experiments of the present inventors,
The above-mentioned bonded body will peel off by simply applying a pressure of about 5 kg/cm 2 to the bonded surface of the above-mentioned bonded body, but if the above-mentioned bonded body is
After heat treatment at 200℃ for about 1 hour, 15Kg/
It has been found that even when a pressure of cm 2 or more is applied, the bonded body does not peel off, but on the other hand, the element breaks at a portion other than the bonded surface. This is because it is known that silanol groups (Si-OH), which are generally formed on the surface of glass or oxide films, dehydrate and condense at 200°C. By dehydration condensation of silanol groups on the surface of the film or natural oxide film (Si-
It is thought that the bond strength increases due to the formation of bonds of OSi).
次に具体的な本発明に係る半導体圧力変換器に
ついて説明する。感圧ペレツトは従来公知の技術
をそのまま利用して製作することができる。例え
ば両面研磨したn型の[111]シリコン基板を用
意し、p型の抵抗層を拡散法によつて形成する。
しかるのち、この基板に蒸着したアルミニウムを
フオトリソグラフイ技術を用いてパターニング
し、上記p型抵抗層を起歪抵抗ゲージとするブリ
ツジ回路を形成する。そして、PSGの保護膜を
形成したのち、肉薄ダイヤフラム面をエツチング
法により形成する。これによつて、直径8mm、厚
さ150μmの肉薄ダイヤフラム面を有する10×10
mm、厚さ400μmの感圧ペレツトを作成する。尚、
この感圧ペレツトの感度は、最大圧力4Kg/cm2に
設定されている。またその接合面に設ける酸化膜
は例えばそのウエハーに予め熱酸化等により形成
しておけば、製造工程上都合がよい。 Next, a specific semiconductor pressure transducer according to the present invention will be explained. Pressure-sensitive pellets can be manufactured using conventionally known techniques as they are. For example, an n-type [111] silicon substrate polished on both sides is prepared, and a p-type resistance layer is formed by a diffusion method.
Thereafter, the aluminum deposited on this substrate is patterned using photolithography to form a bridge circuit using the p-type resistance layer as a strain resistance gauge. After forming a PSG protective film, a thin diaphragm surface is formed by etching. As a result, a 10×10
Prepare pressure-sensitive pellets with a thickness of 400 μm. still,
The sensitivity of this pressure-sensitive pellet is set at a maximum pressure of 4 kg/cm 2 . Further, it is convenient in terms of the manufacturing process if the oxide film to be provided on the bonding surface is formed on the wafer in advance by thermal oxidation or the like.
一方、基台としては、外径14mmφ、内径4mm
φ、厚さ3mmのシリコン円板を機械加工して作成
し、その接着すべき面を鏡面研磨する。この円板
を酸素雰囲気中で1200℃で加熱し、0.50μmの酸
化膜を表面に形成する。このようにして得られた
前記感圧ペレツトと基台とをトリクレン煮沸、ア
セトン超音波洗浄後、水洗することで熱酸化膜表
面にOH基を導入し、アセトン置換、フレオン乾
燥の工程で鏡面表面を清浄化した。クリーンルー
ム中でそれらの接合面を相互に接触させ、軽く圧
迫して接合させた。この接合は強固なものであ
り、OH基同士による水素結合によるものと思わ
れる。このようにOH基を導入することで、加圧
を要せず、接着層を溶融するような高温加熱を要
しないで良好な接合を実現できる。しかる後、こ
の接合体をオーブンに入れて200℃で約30分加熱
した。尚、この加熱中にいくつかの試料には5Kg
の加重を加えたが、この加盾の有無による接合力
等の本質的な差異は検出できなかつた。この加熱
により前述の水素結合は、Si−O−Si結合に変わ
り、接合がより強固になる。なおこの加熱処理は
残留応力の発生を抑える。熱酸化膜の成温度以
下、例えば1200℃未満にする必要がある。これを
越えてしまうと残留応力の発生の原因となり、ま
た接着層が溶融してしまい、本発明の接合機構が
実現されなくなる。 On the other hand, the base has an outer diameter of 14 mmφ and an inner diameter of 4 mm.
A silicon disk with a diameter of φ and a thickness of 3 mm is machined, and the surface to be bonded is mirror-polished. This disk is heated at 1200° C. in an oxygen atmosphere to form an oxide film of 0.50 μm on the surface. The pressure-sensitive pellets and base thus obtained are boiled with trichlene, washed with acetone ultrasonic waves, and then washed with water to introduce OH groups onto the surface of the thermal oxide film, followed by acetone substitution and Freon drying to create a mirror-like surface. was cleaned. Their joint surfaces were brought into contact with each other in a clean room and lightly pressed to join. This bond is strong and is thought to be due to hydrogen bonding between OH groups. By introducing OH groups in this manner, good bonding can be achieved without the need for pressure or high-temperature heating that would melt the adhesive layer. Thereafter, this joined body was placed in an oven and heated at 200°C for about 30 minutes. In addition, during this heating, some samples received 5 kg.
However, no essential difference in bonding force, etc., could be detected with or without this additional shield. By this heating, the aforementioned hydrogen bonds are changed to Si-O-Si bonds, and the bond becomes stronger. Note that this heat treatment suppresses the generation of residual stress. The temperature needs to be lower than the formation temperature of the thermal oxide film, for example, lower than 1200°C. If it exceeds this, residual stress will be generated and the adhesive layer will melt, making it impossible to realize the bonding mechanism of the present invention.
このようにして得られた半導体圧力変換器の圧
力零における残留抵抗の温度変化、真空リークの
有無、および素子破壊圧力を調べたところ、いず
れも目的とする仕様を満足していることが確認さ
れた。即ち、残留抵抗の温度変化は−30℃〜+
100℃の範囲で2%以内であり、真空度10-9Torr
以下であつてもリークがなく、破壊圧力が10Kg/
cm2以上であることが確認された。また上記半導体
圧力変換器を油圧容器に入れ、140Kg/cm2の静圧
を印加し、常圧の場合との抵抗ブリツジの平衡点
の差異を調べたが、0.01%程度であつて事実上問
題とならなかつた。 When we investigated the temperature change in residual resistance at zero pressure, the presence or absence of vacuum leaks, and the element breakdown pressure of the semiconductor pressure transducer obtained in this way, it was confirmed that all of them satisfied the target specifications. Ta. In other words, the temperature change in residual resistance is from -30℃ to +
Within 2% in the range of 100℃, vacuum level 10 -9 Torr
There is no leakage even if the pressure is below 10Kg/
It was confirmed that it was larger than cm 2 . In addition, we placed the above semiconductor pressure transducer in a hydraulic container and applied a static pressure of 140 kg/cm 2 to examine the difference in the equilibrium point of the resistance bridge from that under normal pressure, but the difference was about 0.01%, which is practically a problem. It didn't happen.
一方、自然酸化膜を介在させた接合の例として
上記したものと同じ感圧ペレツトを用い、基台と
して上記したものと同様に機械加工、研磨したシ
リコン基板を王水中で1時間煮沸し、その後水
洗、乾燥し、その表面が水によくぬれて自然酸化
膜が形成されたと判断されるもの形成し、これら
を清浄な環境下で接触させた。この場合にも、か
なり強固な接合体を得ることができた。また、こ
の接合体を電気炉内で400℃、10分間加熱し、そ
の接合強度を増大させた。このようにして得られ
た半導体圧力変換器も、ブリツジ平衡点の温度変
化、静圧変化等が極めて僅かであり、圧力センサ
として十分な特性を示すことが確認された。 On the other hand, as an example of bonding with a natural oxide film interposed, the same pressure-sensitive pellets as above were used, and a silicon substrate machined and polished in the same manner as above was boiled in aqua regia for 1 hour. After washing and drying, the surface was wetted well with water to form what was considered to be a natural oxide film, and these were brought into contact in a clean environment. In this case as well, a fairly strong bonded body could be obtained. Additionally, this bonded body was heated at 400°C for 10 minutes in an electric furnace to increase the bond strength. It was confirmed that the semiconductor pressure transducer obtained in this way also showed extremely small temperature changes, static pressure changes, etc. at the bridge equilibrium point, and exhibited sufficient characteristics as a pressure sensor.
尚、本発明は上記実施例に限定されるものでは
ない。即ち、酸化膜の形成法は従来周知の技術を
適宜用いることができ、その膜厚も仕様に応じて
定めればよい。また上記膜厚は5μm以下とすれ
ばよく、実用上0.6μm程度が好ましい。要するに
本発明はその要旨を逸脱しない範囲で種々変形し
て実施することができる。 Note that the present invention is not limited to the above embodiments. That is, the oxide film can be formed using any conventionally known technique, and the film thickness may be determined according to the specifications. Further, the above-mentioned film thickness may be 5 μm or less, and in practical terms, about 0.6 μm is preferable. In short, the present invention can be implemented with various modifications without departing from the gist thereof.
図は半導体圧力変換器の基本構成を示す図であ
る。
1……半導体結晶板、2……肉薄ダイヤフラム
面、3……起歪抵抗ゲージ、5……電極配線、6
……基台。
The figure is a diagram showing the basic configuration of a semiconductor pressure transducer. DESCRIPTION OF SYMBOLS 1... Semiconductor crystal plate, 2... Thin diaphragm surface, 3... Strain resistance gauge, 5... Electrode wiring, 6
...base.
Claims (1)
面研磨し、この鏡面研磨された少なくとも一方の
接合面に鏡面状態の酸化膜を形成した後、前記接
合面にOH基を形成し、前記接合面間に実質的に
異物が介在することなく相互に接触させて接合し
た後、外力による加圧を行なうことなく、200℃
以上かつ1200℃未満の条件で加熱処理してなるこ
とを特徴とする半導体基板の接合方法。 2 前記酸化膜の膜厚が5μm以下であることを
特徴とする特許請求の範囲第1項記載の半導体基
板の接合方法。[Claims] 1. Mirror polishing each bonding surface of two silicon substrates, forming a mirror-like oxide film on at least one of the mirror-polished bonding surfaces, and then forming OH groups on the bonding surface. After the bonding surfaces have been brought into contact with each other without substantially intervening foreign matter, the bonding surfaces are heated at 200°C without applying any external pressure.
1. A method for bonding semiconductor substrates, characterized in that the semiconductor substrates are heat-treated under conditions above and below 1200°C. 2. The method for bonding semiconductor substrates according to claim 1, wherein the oxide film has a thickness of 5 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15927583A JPS6050970A (en) | 1983-08-31 | 1983-08-31 | Semiconductor pressure converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15927583A JPS6050970A (en) | 1983-08-31 | 1983-08-31 | Semiconductor pressure converter |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP40481290A Division JPH0673383B2 (en) | 1990-12-21 | 1990-12-21 | Method for manufacturing semiconductor pressure transducer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6050970A JPS6050970A (en) | 1985-03-22 |
JPH0546086B2 true JPH0546086B2 (en) | 1993-07-13 |
Family
ID=15690219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15927583A Granted JPS6050970A (en) | 1983-08-31 | 1983-08-31 | Semiconductor pressure converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6050970A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001345435A (en) * | 2000-03-29 | 2001-12-14 | Shin Etsu Handotai Co Ltd | Silicon wafer, manufacturing method of laminated wafer and laminated wafer thereof |
US6461939B1 (en) | 1999-04-09 | 2002-10-08 | Shin-Etsu Handotai Co., Ltd. | SOI wafers and methods for producing SOI wafer |
US6797632B1 (en) | 1999-10-14 | 2004-09-28 | Shin-Etsu Handotai Co., Ltd. | Bonded wafer producing method and bonded wafer |
WO2004102668A1 (en) | 2003-05-15 | 2004-11-25 | Shin-Etsu Handotai Co. Ltd. | Soi wafer and process for producing the same |
US8918278B2 (en) | 2000-08-28 | 2014-12-23 | Inrix Global Services Limited | Method and system for modeling and processing vehicular traffic data and information and applying thereof |
US9026114B2 (en) | 2004-07-09 | 2015-05-05 | INRX Global Services Limited | System and method for geographically locating a cellular phone |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62122148A (en) * | 1985-11-21 | 1987-06-03 | Toshiba Corp | Semiconductor substrate |
JPH0795505B2 (en) * | 1990-02-28 | 1995-10-11 | 信越半導体株式会社 | Method for manufacturing bonded wafer |
JPH10223497A (en) * | 1997-01-31 | 1998-08-21 | Shin Etsu Handotai Co Ltd | Manufacture of laminated substrate |
JP3635200B2 (en) | 1998-06-04 | 2005-04-06 | 信越半導体株式会社 | Manufacturing method of SOI wafer |
JP3385972B2 (en) | 1998-07-10 | 2003-03-10 | 信越半導体株式会社 | Manufacturing method of bonded wafer and bonded wafer |
KR100796249B1 (en) | 1999-12-24 | 2008-01-21 | 신에쯔 한도타이 가부시키가이샤 | Method for manufacturing bonded wafer |
US6900113B2 (en) | 2000-05-30 | 2005-05-31 | Shin-Etsu Handotai Co., Ltd. | Method for producing bonded wafer and bonded wafer |
KR20030072954A (en) * | 2002-03-07 | 2003-09-19 | 주식회사 케이이씨 | semiconductor pressure sensor and its manufacturing method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5710980A (en) * | 1980-06-23 | 1982-01-20 | Mitsubishi Electric Corp | Semiconductor pressure detecting device |
-
1983
- 1983-08-31 JP JP15927583A patent/JPS6050970A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5710980A (en) * | 1980-06-23 | 1982-01-20 | Mitsubishi Electric Corp | Semiconductor pressure detecting device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6461939B1 (en) | 1999-04-09 | 2002-10-08 | Shin-Etsu Handotai Co., Ltd. | SOI wafers and methods for producing SOI wafer |
EP2413352A2 (en) | 1999-04-09 | 2012-02-01 | Shin-Etsu Handotai Co., Ltd. | Soi wafer and method for producing soi wafer |
US6797632B1 (en) | 1999-10-14 | 2004-09-28 | Shin-Etsu Handotai Co., Ltd. | Bonded wafer producing method and bonded wafer |
JP2001345435A (en) * | 2000-03-29 | 2001-12-14 | Shin Etsu Handotai Co Ltd | Silicon wafer, manufacturing method of laminated wafer and laminated wafer thereof |
US8918278B2 (en) | 2000-08-28 | 2014-12-23 | Inrix Global Services Limited | Method and system for modeling and processing vehicular traffic data and information and applying thereof |
WO2004102668A1 (en) | 2003-05-15 | 2004-11-25 | Shin-Etsu Handotai Co. Ltd. | Soi wafer and process for producing the same |
US9026114B2 (en) | 2004-07-09 | 2015-05-05 | INRX Global Services Limited | System and method for geographically locating a cellular phone |
Also Published As
Publication number | Publication date |
---|---|
JPS6050970A (en) | 1985-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6227040B2 (en) | ||
JPH0546086B2 (en) | ||
JP2001223368A (en) | Method for processing wafer | |
CN101271028A (en) | Silicon pressure transducer chip and method based on silicon-silicon linking and silicon-on-insulating layer | |
JPH0718768B2 (en) | Method for stabilizing surface characteristics of object to be heat treated in vacuum and method for manufacturing pressure sensor | |
JPH0346991B2 (en) | ||
JP4915677B2 (en) | Manufacturing method of sensor device | |
KR950000319B1 (en) | Semiconductor pressure sensor and manufacturing method thereof | |
WO2004077537A1 (en) | Method of fabrication of semiconductor substrate | |
JPH0595122A (en) | Manufacture of semiconductor pressure transducer | |
JPS61230382A (en) | Semiconductor pressure sensor | |
JPS60121777A (en) | Joining method of silicon crystal | |
JP2602003B2 (en) | Silicon crystal joining method | |
JPH0945882A (en) | Semiconductor substrate and manufacture thereof | |
JPH06103287B2 (en) | Sensor element | |
JPS6097678A (en) | Method of mounting semiconductor structure part on surface of substrate | |
JPS57136132A (en) | Semiconductor pressure transducer | |
JP2529799B2 (en) | Method for joining silicon semiconductor devices | |
JPS59154332A (en) | Semiconductor pressure sensor | |
JPH07111435A (en) | Production of crystal piezoelectric device | |
JPS60121776A (en) | Joining method of silicon crystal | |
JP2000046667A (en) | Semiconductor pressure sensor element | |
JP2000019040A (en) | Method for manufacturing pressure sensor | |
JPH0536738B2 (en) | ||
JP2000180282A (en) | Semiconductor pressure sensor |