JPH0545946Y2 - - Google Patents
Info
- Publication number
- JPH0545946Y2 JPH0545946Y2 JP1986092904U JP9290486U JPH0545946Y2 JP H0545946 Y2 JPH0545946 Y2 JP H0545946Y2 JP 1986092904 U JP1986092904 U JP 1986092904U JP 9290486 U JP9290486 U JP 9290486U JP H0545946 Y2 JPH0545946 Y2 JP H0545946Y2
- Authority
- JP
- Japan
- Prior art keywords
- capillary
- flow path
- branch
- sample
- switching section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001105 regulatory effect Effects 0.000 claims description 10
- 238000005070 sampling Methods 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 238000005259 measurement Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
本考案は、例えばFID(Flame Ionization
Detector)やCLD(Chemical Luminescence
Detector)等を用いた分析計におけるサンプリ
ング装置に関する。[Detailed description of the invention] [Industrial application field] The invention is applicable to, for example, FID (Flame Ionization).
Detector) and CLD (Chemical Luminescence)
Detector) and other sampling devices in analyzers.
FIDやCLD等の分析計に供給されるサンプル量
は数〜数cc/minと少量であるので、そのサンプ
リング装置においては、内径が0.1〜0.3mmという
非常に細いキヤピラリを用いて流量制御を行うよ
うにしているが、サンプル中の不純物等によつて
詰ることがあるという欠点を有している。
Since the amount of sample supplied to analyzers such as FID and CLD is small at several to several cc/min, the flow rate is controlled in the sampling device using a very thin capillary with an inner diameter of 0.1 to 0.3 mm. However, it has the disadvantage that it may become clogged by impurities in the sample.
ところで、従来は、第3図A、第3図Bに示す
ように、サンプル供給路41に一本のキヤピラリ
42を接続したもの〔同図A〕や二つのキヤピラ
リ42,42′を並列に接続して両キヤピラリを
三方切換バルブ43で択一的に選択切換えするも
の〔同図B〕であつた。尚、図中44は検出器を
示す。 By the way, conventionally, as shown in FIGS. 3A and 3B, one capillary 42 is connected to the sample supply path 41 [FIG. 3A], or two capillaries 42, 42' are connected in parallel. Then, the two capillaries were selectively switched using a three-way switching valve 43 (FIG. B). Note that 44 in the figure indicates a detector.
第3図Aに示した従来例は、キヤピラリ42が
詰まつた場合にこれを取換えて測定作業を続行せ
ねばならないが、キヤピラリの交換に手間を要
し、また、交換後温度の安定待ちあるいはバツク
グランドが下がるまで数時間を要する。このため
測定中にキヤピラリが詰まると、修理のため長時
間測定不能となり、特に自動車の排ガス測定など
のライン測定では大きな問題であつた。
In the conventional example shown in FIG. 3A, if the capillary 42 becomes clogged, it must be replaced to continue measurement work, but replacing the capillary is time-consuming and requires waiting for the temperature to stabilize after replacement. Or it may take several hours for the background to drop. For this reason, if the capillary becomes clogged during measurement, it will be impossible to measure for a long time while it is being repaired, which is a big problem, especially in line measurements such as automotive exhaust gas measurements.
また、第3図Bに示した、単にキヤピラリ4
2,42′を二本並列接続しただけでは、同図中、
斜線を施した流路45及び切換えに使うバルブ4
3の中の容積がキヤピラリ42,42′を通過し
て検出器44に送られるサンプル量に比べて大き
く、これがデツドスペースとなつて、ガスの置換
時間が長くなり、検出器44の応答速度が著しく
遅くなると言う欠点があつた。 Alternatively, simply connect the capillary 4 shown in Figure 3B.
In the same figure, if only two 2,42′ are connected in parallel,
Shaded flow path 45 and valve 4 used for switching
3 is large compared to the amount of sample sent to the detector 44 through the capillaries 42, 42', and this becomes a dead space, prolonging the gas replacement time and significantly reducing the response speed of the detector 44. The drawback was that it was slow.
更に、上記のように二本並列に接続されたサン
プル流路をバルブによつて切り換えるようにする
ならば、配管内(バルブを含む)の圧損変化によ
つて、分析計に供給されるサンプルの流量に大き
な変動が生じ、これによつて分析計の出力に大き
な出力変動が生じ、例えば第2図において曲線B
で示すように、サンプル流量が増大するに伴つて
指示差が大きくなる。 Furthermore, if the two sample channels connected in parallel are switched by a valve as described above, the change in pressure drop in the piping (including the valve) will cause the sample supplied to the analyzer to change. Large variations in the flow rate occur, which in turn causes large variations in the output of the analyzer, such as curve B in Figure 2.
As shown in , the difference in indication increases as the sample flow rate increases.
本考案は、上述の事柄に留意してなされたもの
で、その目的とするところは、圧損による分析計
の出力変動を確実にしかも安価な構成によつて低
減し、かつ、検出器に応答遅れ時間を生じさせる
ことなく、微小流量のキヤピラリの切換えを行う
ことができる分析計のサンプリング装置を提供す
ることにある。 The present invention was developed with the above-mentioned considerations in mind, and its purpose is to reliably reduce the output fluctuations of the analyzer due to pressure drop through a low-cost configuration, and to reduce the response delay of the detector. An object of the present invention is to provide a sampling device for an analyzer that can switch a capillary for a minute flow rate without incurring time.
上述の目的を達成するため、本考案に係る分析
計のサンプリング装置は、サンプル供給路に第1
切換部を介して第1分岐流路と第2分岐流路を接
続し、前記両分岐流路の合流点にはバイパス流路
に接続された第2切換部を設けるとともに、前記
第1分岐流路及び第2分岐流路にそれぞれキヤピ
ラリを接続し、これらのキヤピラリの下流側に検
出器を接続し、さらに前記第1切換部の上流側に
調圧機構を設けると共に、前記バイパス流路にキ
ヤピラリを設けた点に特徴がある。
In order to achieve the above object, the analyzer sampling device according to the present invention includes a first sample supply path.
A first branch flow path and a second branch flow path are connected through a switching section, and a second switching section connected to a bypass flow path is provided at the confluence point of both the branch flow paths. A capillary is connected to each of the channel and the second branch channel, a detector is connected to the downstream side of these capillaries, a pressure regulating mechanism is provided upstream of the first switching section, and a capillary is connected to the bypass channel. It is distinctive in that it has been established.
上記の構成によれば、一方のキヤピラリに詰ま
りが生じた場合、第1切換部および第2切換部を
夫々切換え操作し、一方のキヤピラリ側へのサン
プルの流入を停止し、他方のキヤピラリを通して
検出器側へサンプルを供給することができ、分岐
流路中のサンプルガスは、必要量のみキヤピラリ
に導入され、残りはすみやかにバイパス側に流れ
るため、ガスの置換時間を短縮でき検出器の応答
速度がおくれたりすることなく、また、調圧機構
が第1切換部の上流側という流量変化による圧損
のない部位に設けてあるので、サンプル流量変化
によつて生ずる圧力変化は全てこの調圧機構にお
いて解消される。又、第2切換部の下流側に設け
てあるキヤピラリによつて分析計は所定の応答速
度を維持することができる。
According to the above configuration, when one capillary becomes clogged, the first switching section and the second switching section are switched respectively to stop the sample from flowing into one capillary, and the sample is detected through the other capillary. The sample gas in the branch flow path is introduced into the capillary in only the required amount, and the rest quickly flows to the bypass side, reducing the gas replacement time and increasing the response speed of the detector. In addition, since the pressure regulating mechanism is installed upstream of the first switching section at a location where there is no pressure loss due to changes in the flow rate, all pressure changes caused by changes in the sample flow rate are absorbed by this pressure regulating mechanism. It will be resolved. Further, the analyzer can maintain a predetermined response speed by the capillary provided downstream of the second switching section.
以下、本考案の一実施例を図面に基づいて説明
する。
Hereinafter, one embodiment of the present invention will be described based on the drawings.
第1図は本考案に係る分析計のサンプリング装
置の一構成例を示し、同図において、1は一端が
図外のサンプルガス源に接続されたサンプル供給
路で、絞り弁2を備え、他端は六方バルブ3に接
続されている。 Fig. 1 shows an example of the configuration of a sampling device for an analyzer according to the present invention. The end is connected to a six-way valve 3.
この六方バルブ3は固定ブロツク4の内部に回
転自在の弁体5を備え、固定ブロツク4には6つ
の接続ポート6,7,8,9,10,11が形成
されてあり、弁体5には2つの独立した内部流路
12,13が形成してある。接続ポート6にはサ
ンプル供給路1の終端が接続してあり、接続ポー
ト7,8間には分岐流路としての第1流路14の
両端が接続してある。接続ポート9,10間には
分岐流路としての第2流路15の両端が接続して
あり、接続ポート11にはバイパス流路16の始
端が接続してある。そして、接続ポート6,7と
接続ポート11,10、また、接続ポート8,1
1と接続ポート9,6、更に、接続ポート6と接
続ポート11とはそれぞれ180度対称となるよう
に配置されている。従つて、弁体5を180度回転
させることにより、サンプル供給路1に、第1流
路14又は第2流路15の何れか一方を連通させ
ることができる。 This six-way valve 3 includes a rotatable valve body 5 inside a fixed block 4. Six connection ports 6, 7, 8, 9, 10, and 11 are formed in the fixed block 4. Two independent internal channels 12 and 13 are formed. The terminal end of the sample supply path 1 is connected to the connection port 6, and both ends of a first flow path 14 as a branch flow path are connected between the connection ports 7 and 8. Both ends of a second flow path 15 as a branch flow path are connected between the connection ports 9 and 10, and a starting end of a bypass flow path 16 is connected to the connection port 11. Then, connection ports 6 and 7, connection ports 11 and 10, and connection ports 8 and 1
1 and the connection ports 9 and 6, and furthermore, the connection port 6 and the connection port 11 are arranged so as to be 180 degrees symmetrical with each other. Therefore, by rotating the valve body 5 by 180 degrees, either the first flow path 14 or the second flow path 15 can be made to communicate with the sample supply path 1.
そして、前記六方バルブ3によつて、その接続
ポート6,7,9で第1切換部を構成し、接続ポ
ート8,10,11で第2切換部を構成する。 In the six-way valve 3, the connection ports 6, 7, and 9 constitute a first switching section, and the connection ports 8, 10, and 11 constitute a second switching section.
17,18はそれぞれの一端が第1流路14、
第2流路15に接続された互いに並列関係にある
キヤピラリ(以下、第1キヤピラリ17、第2キ
ヤピラリ18と云う)である。19はバイパス流
路16に設けられるキヤピラリ(以下、第3キヤ
ピラリ19と云う)で、その下流側には流量計2
0が設けられている。21は第1キヤピラリ1
7、第2キヤピラリ18の下流側の合流点Pより
下流側に設けられる分析計である。 One end of each of 17 and 18 is the first flow path 14,
These are capillaries (hereinafter referred to as a first capillary 17 and a second capillary 18) that are connected to the second flow path 15 and are in a parallel relationship with each other. 19 is a capillary (hereinafter referred to as the third capillary 19) provided in the bypass flow path 16, and a flow meter 2 is installed downstream of the capillary 19.
0 is set. 21 is the first capillary 1
7. An analyzer installed downstream of the confluence P on the downstream side of the second capillary 18.
22は六方バルブ3の上流側においてサンプル
供給路1から分岐した流路23に設けられる調圧
機構で、例えば高精度の空気圧レギユレータ24
と二次圧レギユレータ25とから主として構成さ
れており、空気圧レギユレータ24は二次圧レギ
ユレータ25により適度なコントロール圧力を加
えることによつて六方バルブ3の入口圧を所定圧
に保つように開閉制御する。 22 is a pressure regulating mechanism provided in a flow path 23 branched from the sample supply path 1 on the upstream side of the six-way valve 3; for example, a high-precision pneumatic regulator 24;
and a secondary pressure regulator 25, and the pneumatic regulator 24 controls the opening and closing of the six-way valve 3 to maintain the inlet pressure at a predetermined pressure by applying an appropriate control pressure to the secondary pressure regulator 25. .
而して、上記の構成によれば、バイパス流路1
6に設けた第3キヤピラリ19によつて、分析計
21における所定の応答速度が得られる。一方、
サンプルSの流量変化によつて生ずる圧損変化
は、六方バルブ3の上流側に設けられる調圧機構
22によつて解消されるので、前記流量変化に起
因する分析計21の出力変動は殆どなくなり、例
えば第2図において実線Aで示すように、サンプ
ルSの流量が変化しても指示差は殆どゼロを維持
し、安定な出力が得られる。 According to the above configuration, the bypass flow path 1
A predetermined response speed in the analyzer 21 can be obtained by the third capillary 19 provided in the analyzer 6 . on the other hand,
Changes in pressure loss caused by changes in the flow rate of the sample S are eliminated by the pressure regulating mechanism 22 provided upstream of the six-way valve 3, so fluctuations in the output of the analyzer 21 due to the changes in flow rate are almost eliminated. For example, as shown by the solid line A in FIG. 2, even if the flow rate of the sample S changes, the difference in indication remains almost zero, and a stable output can be obtained.
尚、本考案は上記実施例の如き構造の六方バル
ブの他に、市販の三方弁を2つ組み合わせて結果
的に六方バルブを構成するようにしてもよい。 In the present invention, in addition to the six-way valve having the structure as in the above embodiment, two commercially available three-way valves may be combined to form a six-way valve.
以上説明したように、本考案に係る分析計のサ
ンプリング装置は、サンプル供給路に第1切換部
を介して第1分岐流路と第2分岐流路を接続し、
前記両分岐流路の合流点にはバイパス流路に接続
された第2切換部を設けるとともに、前記第1分
岐流路及び第2分岐流路にそれぞれキヤピラリを
接続し、これらのキヤピラリの下流側に検出器を
接続し、さらに前記第1切換部の上流側に調圧機
構を設けると共に、前記バイパス流路にキヤピラ
リを設けてあるので、次の効果を奏する。
As explained above, the sampling device of the analyzer according to the present invention connects the first branch channel and the second branch channel to the sample supply channel via the first switching part,
A second switching section connected to the bypass flow path is provided at the confluence point of both the branch flow paths, and capillaries are connected to the first branch flow path and the second branch flow path, respectively, and the downstream side of these capillaries is connected to the first branch flow path and the second branch flow path. Since a detector is connected to the first switching section, a pressure regulating mechanism is provided upstream of the first switching section, and a capillary is provided in the bypass flow path, the following effects are achieved.
すなわち、第1分岐流路及び第2分岐流路に接
続したキヤピラリのうち一方が詰まつたときに
は、流路を切換え、第1、第2切換部内のたまり
をすみやかに排出し立上りの応答遅れを生じるこ
となく直ちに測定を続けることができ、又、定常
状態においてもキヤピラリに導入されるガスの残
りはすみやかにバイパスラインより排出されるた
めキヤピラリには順次新しいサンプルガスが必要
量導入されるため応答遅れを生じない。詰まつた
キヤピラリは、ラインを止めた時などあるいはラ
イン稼働中においても適時交換、修理でき、ライ
ンの稼働障害を小さくできる。又時々キヤピラリ
を切換えることにより、キヤピラリのつまり具合
を調べることができ、キヤピラリの交換時期の予
測ができる。さらに本考案では、第3図Bで示す
従来技術におけるようなデツドスペース及びそれ
に起因する応答遅れがなく、適確な測定を行え
る。 That is, when one of the capillaries connected to the first branch flow path and the second branch flow path becomes clogged, the flow path is switched, and the accumulation in the first and second switching parts is promptly discharged to reduce the delay in response to startup. Measurement can be continued immediately without any occurrence of gas leakage, and even in steady state, the remaining gas introduced into the capillary is quickly discharged from the bypass line, so new sample gas is introduced into the capillary in the required amount, resulting in a response time. No delays. A clogged capillary can be replaced or repaired in a timely manner, such as when the line is stopped, or even while the line is in operation, reducing line operational problems. Also, by switching the capillary from time to time, it is possible to check whether the capillary is clogged, and it is possible to predict when the capillary should be replaced. Further, in the present invention, there is no dead space and response delay caused by the dead space as in the prior art shown in FIG. 3B, and accurate measurements can be performed.
さらに本考案では、調圧機構が第1切換部の上
流側という流量変化による圧損のない部位に設け
てあるので、サンプル流量変化によつて生ずる圧
力変化は全てこの調圧機構において解消される。
又、第2切換部の下流側に設けてあるキヤピラリ
によつて分析計は所定の応答速度を維持すること
ができる。 Furthermore, in the present invention, since the pressure regulating mechanism is provided upstream of the first switching section at a location where there is no pressure loss due to changes in the flow rate, all pressure changes caused by changes in the sample flow rate are eliminated in this pressure regulating mechanism.
Further, the analyzer can maintain a predetermined response speed by the capillary provided downstream of the second switching section.
第1図は本考案に係るサンプリング装置の一例
を示す構成図、第2図はサンプル流量と指示差と
の関係を示す特性図、第3図A及び第3図Bは従
来技術を示す構成図である。
1……サンプル供給路、3……六方バルブ、1
6……バイパス流路、17,18……キヤピラ
リ、19……キヤピラリ、21……分析計、22
……調圧機構、S……サンプル。
Fig. 1 is a block diagram showing an example of a sampling device according to the present invention, Fig. 2 is a characteristic diagram showing the relationship between sample flow rate and indicated difference, and Figs. 3A and 3B are block diagrams showing the prior art. It is. 1...Sample supply path, 3...Six-way valve, 1
6... Bypass flow path, 17, 18... Capillary, 19... Capillary, 21... Analyzer, 22
...Pressure regulating mechanism, S...Sample.
Claims (1)
流路と第2分岐流路を接続し、前記両分岐流路の
合流点にはバイパス流路に接続された第2切換部
を設けるとともに、前記第1分岐流路及び第2分
岐流路にそれぞれキヤピラリを接続し、これらの
キヤピラリの下流側に検出器を接続し、さらに前
記第1切換部の上流側に調圧機構を設けると共
に、前記バイパス流路にキヤピラリを設けたこと
を特徴とする分析計のサンプリング装置。 A first branch channel and a second branch channel are connected to the sample supply channel via a first switching section, and a second switching section connected to the bypass channel is provided at the confluence of the two branch channels. , connecting capillaries to the first branch flow path and the second branch flow path, connecting a detector to the downstream side of these capillaries, and further providing a pressure regulating mechanism upstream of the first switching part, A sampling device for an analyzer, characterized in that a capillary is provided in the bypass flow path.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986092904U JPH0545946Y2 (en) | 1986-06-17 | 1986-06-17 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986092904U JPH0545946Y2 (en) | 1986-06-17 | 1986-06-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62203436U JPS62203436U (en) | 1987-12-25 |
JPH0545946Y2 true JPH0545946Y2 (en) | 1993-11-30 |
Family
ID=30955010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1986092904U Expired - Lifetime JPH0545946Y2 (en) | 1986-06-17 | 1986-06-17 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0545946Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5177655B2 (en) * | 2008-07-25 | 2013-04-03 | 東亜ディーケーケー株式会社 | Dust meter |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5423916Y2 (en) * | 1975-02-13 | 1979-08-15 |
-
1986
- 1986-06-17 JP JP1986092904U patent/JPH0545946Y2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62203436U (en) | 1987-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5546788A (en) | Method and apparatus for measuring the concentration of solid particles (soot) in the exhaust gases of internal combustion engines | |
JPH0348517Y2 (en) | ||
JPH0545946Y2 (en) | ||
JPH0335510B2 (en) | ||
JPH0887335A (en) | Mass flow rate controller | |
JP3668088B2 (en) | Gas analyzer calibration method and calibration apparatus | |
US4545235A (en) | Gas analyzer with aspirated test gas | |
JP2596339Y2 (en) | Gas analyzer sampling equipment | |
JP4300350B2 (en) | Exhaust gas measuring device and exhaust gas measuring method | |
JPS61116638A (en) | Gas regulator | |
JPH0136110Y2 (en) | ||
JPH01302134A (en) | Apparatus for measuring particulate substance in exhaust gas | |
JPH0743648Y2 (en) | Gas chromatograph | |
JPH09127074A (en) | Adjusting device for flow rate of carrier gas at sample injection port for gas chromatograph | |
JP2526299Y2 (en) | Exhaust gas splitter | |
US20230204553A1 (en) | Creating Mass Flow Parity in a Variant Multi-Channel Sampling System | |
JPS6219971Y2 (en) | ||
JP2001249064A (en) | Exhaust gas diluting device | |
JPH09318504A (en) | Dilution ratio measuring equipment | |
JPH0413640Y2 (en) | ||
JP2001165918A (en) | Gas chromatograph | |
JPH0743651Y2 (en) | Gas chromatograph | |
JPH0436451Y2 (en) | ||
JPS612043A (en) | Device for measuring selective transmission factor of high pressure mixed gas in film sample | |
JPH0446203Y2 (en) |