[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0541304A - Metallic oxide group thermistor material - Google Patents

Metallic oxide group thermistor material

Info

Publication number
JPH0541304A
JPH0541304A JP3017621A JP1762191A JPH0541304A JP H0541304 A JPH0541304 A JP H0541304A JP 3017621 A JP3017621 A JP 3017621A JP 1762191 A JP1762191 A JP 1762191A JP H0541304 A JPH0541304 A JP H0541304A
Authority
JP
Japan
Prior art keywords
oxide
thermistor
thermistor material
metal oxide
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3017621A
Other languages
Japanese (ja)
Other versions
JP2913518B2 (en
Inventor
Hyong-Jin Jong
炯鎮 丁
相玉 ▲ゆん▼
Sang-Ok Yoon
Ki Yong Hong
起龍 洪
Jon-Kuk Lee
銓國 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JPH0541304A publication Critical patent/JPH0541304A/en
Application granted granted Critical
Publication of JP2913518B2 publication Critical patent/JP2913518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • H01C7/046Iron oxides or ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE: To inexpensively and safely obtain a metal oxide thermistor material having satisfactory characteristics by using iron oxide and titanium oxide in place of cobalt oxide and using zinc oxide in plane of copper oxide. CONSTITUTION: This metal oxide thermistor material is made to have a basic composition of aMnCO3 +bNiO+dZnO+eCo3 O4 +fFe2 O3 +gTiO2 and a composition ratio of 27.86<=a<=41.85, 6.17<=b<=10.97, 0<=d<=47.02, 0<=e<=8.97, 4.13<=f<=51.14 and 0.23<=g<=3.09 in weight ratio (provided a+b+d+e+f+g=100). In an oxide mixing method generally used widely by using such a material, an NTC thermistor is produced. Thus, expensive cobalt oxide is replaced with inexpensive iron oxide or titanium oxide, so production costs can be economized and further, since the use of copper oxide as harmful materials is excluded, stability in production work can be secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MnCO3 −NiO−
ZnO−Co3 4 −Fe2 3 −TiO2系またはM
nCO3 −NiO−CuO−ZnO−Co3 4 −Fe
2 3 −TiO2 系を基本組成とする金属酸化物系サー
ミスタ材料に関する。
This invention relates to MnCO 3 --NiO--
ZnO-Co 3 O 4 -Fe 2 O 3 -TiO 2 system or M
nCO 3 -NiO-CuO-ZnO- Co 3 O 4 -Fe
The present invention relates to a metal oxide based thermistor material having a basic composition of 2 O 3 —TiO 2 system.

【0002】[0002]

【従来の技術】一般に、サーミスタは温度の変化に伴
い、非常に大きく非直線的に抵抗が変化する半導体素子
の一種である。また、その製法としては、主に、鉄(F
e),ニッケル(Ni),マンガン(Mn),モリブデ
ン(Mo)及びコバルト(Co)等の酸化物を混合し
て、焼結することにより得られる。
2. Description of the Related Art In general, a thermistor is a kind of semiconductor element whose resistance changes extremely greatly and non-linearly with a change in temperature. In addition, the manufacturing method is mainly iron (F
It is obtained by mixing oxides such as e), nickel (Ni), manganese (Mn), molybdenum (Mo) and cobalt (Co) and sintering.

【0003】特に、遷移金属酸化物を組合わせて製造し
た金属酸化物系サーミスタは、温度の上昇に伴い電気抵
抗が指数関数的に減少する半導体素子(NTC)であ
り、その原料成分の組成や焼結温度によって結晶構造及
び焼結性が大きく変化するので、常温抵抗及び温度に伴
う抵抗変化にも大きい差異が生じる。これらの特性を利
用して、感温素子,温度補償及び調節素子,電圧調節用
素子等の各種の精密測定機器及び分析機器の核心素子と
して広く使用されている。
In particular, a metal oxide thermistor manufactured by combining transition metal oxides is a semiconductor element (NTC) whose electric resistance exponentially decreases with an increase in temperature. Since the crystal structure and the sinterability largely change depending on the sintering temperature, a large difference occurs between the room temperature resistance and the resistance change with temperature. Utilizing these characteristics, it is widely used as a core element of various precision measuring instruments and analytical instruments such as temperature sensitive elements, temperature compensation and adjustment elements, and voltage adjustment elements.

【0004】従来の金属酸化物系サーミスタ材料には、
スピネル系であるマンガン−ニッケル−コバルト−銅系
と、ヘマタイト系である鉄−チタン系が使用されてお
り、前者のスピネル系サーミスタの場合、組成によって
広い抵抗範囲が得られ、また、大きなB定数を示すの
で、広範囲に応用できるものとして知られている〔参
照:1.Thermistors(ed.by E.
D.Macklen),Electrochemica
l Pub.,Ayr,Scotland(197
9).2.Semiconducting tempe
rature sensors and their
applications(ed.by H.B.Sa
chse),John and Wiley,New
York(1975).3.Ceramic Mate
rials for electronic(ed.b
y R.C.Buchanan),Marcel De
kker,New York(1986)〕。
Conventional metal oxide-based thermistor materials include
A spinel-based manganese-nickel-cobalt-copper system and a hematite-based iron-titanium system are used. In the former spinel-based thermistor, a wide resistance range can be obtained depending on the composition, and a large B constant. It is known to have a wide range of applications [reference: 1. Thermistors (ed. By E.
D. Macklen), Electrochemica
l Pub. , Ayr, Scottland (197
9). 2. Semiducting tempe
rature sensors and their
applications (ed.by HB Sa
chse), John and Wiley, New
York (1975). 3. Ceramic Mate
rias for electronic (ed.b
yR. C. Buchanan), Marcel De
Kker, New York (1986)].

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うなスピネル系のマンガン−ニッケル−コバルト−銅系
サーミスタの場合、酸化コバルトの価格が非常に高いの
で、製造費用の面から不利であるという問題点があっ
た。また、酸化銅は、人体に吸収されると、健康を害す
る有害物質として作用するので、サーミスタの製造時
に、公害が発生するという問題点もあった〔参照:Ha
wley’s condensed chemical
dictionary,11th edition
(ed.by N.L.Sax and R.J.Le
wis,Sr.)Van Nostrand Rein
hold Co.,New York(1987)〕。
However, in the case of such a spinel manganese-nickel-cobalt-copper thermistor, the cost of cobalt oxide is very high, which is disadvantageous in terms of manufacturing cost. was there. In addition, copper oxide, when absorbed by the human body, acts as a harmful substance that impairs health. Therefore, there is a problem in that pollution occurs during the production of the thermistor [Ref: Ha.
wley's condensed chemical
dictionary, 11th edition
(Ed.by NL Sax and R.J.Le.
wis, Sr. ) Van Nostrand Rein
hold Co. , New York (1987)].

【0006】本発明は、安価に、安全に良好な特性を有
する金属酸化物系サーミスタ材料を提供することを目的
とする。
It is an object of the present invention to provide a metal oxide type thermistor material which has good characteristics safely and at low cost.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、以下の構成とする。 (1) 金属酸化物系サーミスタ材料が、 aMnCO3 +bNiO+dZnO+eCo3 4 +f
Fe2 3 +gTiO 2 系を基本組成とし、組成比が重
量比で、 27.86 ≦a≦41.85 6.17 ≦b≦10.97 0 ≦d≦47.02 0 ≦e≦ 8.97 4.13 ≦f≦51.14 0.23 ≦g≦ 3.09 (但し、a+b+d+e+f+g=100 ) であるようにする。
[Means for Solving the Problems]
Therefore, the present invention has the following configurations. (1) The metal oxide-based thermistor material is aMnCO3+ BNiO + dZnO + eCo3OFour+ F
Fe2O3+ GTiO 2The system is the basic composition, and the composition ratio is
The quantitative ratio is 27.86 ≤ a ≤ 41.85 6.17 ≤ b ≤ 10.97 0 ≤ d ≤ 47.02 0 ≤ e ≤ 8.97 4.13 ≤ f ≤ 51.14 0.23 ≤ g ≤ 3.09 (however, a + b + d + e + f + g = 100).

【0008】(2) 金属酸化物系サーミスタ材料が、 aMnCO3 +bNiO+cCuO+dZnO+eCo
3 4 +fFe2 3 +gTiO2 系を基本組成とし、
組成比が重量比で、 21.90 ≦a≦53.68 7.15 ≦b≦13.56 0 ≦c≦50.76 0 ≦d≦35.05 0 ≦e≦30.61 0 ≦f≦38.26 0 ≦g≦ 4.17 (但し、a+b+c+d+e+f+g=100 ) であるようにする。
(2) The metal oxide type thermistor material is aMnCO 3 + bNiO + cCuO + dZnO + eCo
3 O 4 + fFe 2 O 3 + gTiO 2 system is the basic composition,
The composition ratio by weight is 21.90 ≤ a ≤ 53.68 7.15 ≤ b ≤ 13.56 0 ≤ c ≤ 50.76 0 ≤ d ≤ 35.05 0 ≤ e ≤ 30.61 0 ≤ f ≤ 38.26 0 ≤ g ≤ 4.17 (however, a + b + c + d + e + f + g = 100). To be there.

【0009】つまり、本発明は、金属酸化物系サーミス
タ材料として、高価な酸化コバルトの代わりに低廉な酸
化鉄と酸化チタンを使用して、サーミスタ材料の製造原
価を低くし、また、人体に有害な酸化銅の代わりに無害
な酸化亜鉛を使用して、サーミスタ材料の製造時に伴う
公害問題を回避し、更に、多成分系酸化物系で生じる共
晶反応(eutectic reaction)によ
り、液相焼結を生ぜしめ、焼結温度を低くすることによ
って、少ない製造費用で安全に良好な特性を有するサー
ミスタを製造する。
That is, the present invention uses inexpensive iron oxide and titanium oxide in place of expensive cobalt oxide as the metal oxide thermistor material, thereby lowering the manufacturing cost of the thermistor material and harming the human body. By using harmless zinc oxide instead of pure copper oxide, avoid the pollution problem at the time of manufacturing thermistor material, and further, by eutectic reaction that occurs in multi-component oxide system, liquid phase sintering And the sintering temperature is lowered to safely produce a thermistor having good characteristics at a low production cost.

【0010】[0010]

【実施例】このような本発明の金属酸化物系サーミスタ
材料の組成は、aMnCO3 (炭酸マンガン)+bNi
O(酸化ニッケル)+cCuO(酸化銅)+dZnO
(酸化亜鉛)+eCo3 4 (酸化コバルト)+fFe
2 3 (酸化鉄)+gTiO2 (酸化チタン)系を基本
組成とし、その組成比は、重量比で、以下のようにな
る。
EXAMPLE The composition of such a metal oxide thermistor material of the present invention is aMnCO 3 (manganese carbonate) + bNi
O (nickel oxide) + cCuO (copper oxide) + dZnO
(Zinc oxide) + eCo 3 O 4 (Cobalt oxide) + fFe
The basic composition is 2 O 3 (iron oxide) + gTiO 2 (titanium oxide), and the compositional ratio by weight is as follows.

【0011】 29 ≦a+b≦66 0 ≦c+d≦48 0 ≦e+f+g≦54 (但し、a+b+c +d+e+f+g=100 ) また、これを3成分系で表すと、図1のようになる。29 ≦ a + b ≦ 66 0 ≦ c + d ≦ 48 0 ≦ e + f + g ≦ 54 (where a + b + c + d + e + f + g = 100) Further, this can be represented by a three-component system as shown in FIG.

【0012】このような材料を用いて、一般に広く使用
する酸化物混合方法にて、NTCサーミスタを製造す
る。以下に、サーミスタの製造過程を、60の実施例に基
づいて具体的に説明する。先ず、材料は、実施例1〜30
については、図2及び図3に示すように、aMnCO3
+bNiO+dZnO+eCo3 4 +fFe2 3
gTiO2 を基本組成とし、組成比が重量比で、 27.86 ≦a≦41.85 6.17 ≦b≦10.97 0 ≦d≦47.02 0 ≦e≦ 8.97 4.13 ≦f≦51.14 0.23 ≦g≦ 3.09 (但し、a+b+d+e+f+g=100 )である金属酸
化物である。
Using such materials, an NTC thermistor is manufactured by a generally widely used oxide mixing method. The manufacturing process of the thermistor will be specifically described below based on 60 embodiments. First, the material is
For, as shown in FIGS. 2 and 3, aMnCO 3
+ BNiO + dZnO + eCo 3 O 4 + fFe 2 O 3 +
The basic composition is gTiO 2 and the composition ratio is 27.86 ≤ a ≤ 41.85 6.17 ≤ b ≤ 10.97 0 ≤ d ≤ 47.02 0 ≤ e ≤ 8.97 4.13 ≤ f ≤ 51.14 0.23 ≤ g ≤ 3.09 (however, a + b + d + e + f + g = 100). ) Is a metal oxide.

【0013】また、実施例31〜60については、図4及び
図5に示すように、aMnCO3 +bNiO+cCuO
+dZnO+eCo3 4 +fFe2 3 +gTiO2
を基本組成とし、組成比が重量比で、 21.90 ≦a≦53.68 7.15 ≦b≦13.56 0 ≦c≦50.76 0 ≦d≦35.05 0 ≦e≦30.61 0 ≦f≦38.26 0 ≦g≦ 4.17 (但し、a+b+c+d+e+f+g=100 )である金
属酸化物である。
Further, in Examples 31 to 60, as shown in FIGS. 4 and 5, aMnCO 3 + bNiO + cCuO.
+ DZnO + eCo 3 O 4 + fFe 2 O 3 + gTiO 2
21.90 ≤ a ≤ 53.68 7.15 ≤ b ≤ 13.56 0 ≤ c ≤ 50.76 0 ≤ d ≤ 35.05 0 ≤ e ≤ 30.61 0 ≤ f ≤ 38.26 0 ≤ g ≤ 4.17 (however, a + b + c + d + e + f + g = 100).

【0014】そして、これら炭酸マンガン,酸化ニッケ
ル,酸化銅,酸化亜鉛,酸化コバルト,酸化鉄及び酸化
チタンを10-4gの精度で、正確に秤量し、ジルコニアボ
ールミル中で、蒸留水と共に充分に混合及び粉砕を行
う。このとき使用される原料としては、次の、か焼(c
alcination)工程にて、酸化物への転換が容
易な化合物、例えば、水酸化物或いは炭酸塩等を含んで
いてもよい。
Then, these manganese carbonate, nickel oxide, copper oxide, zinc oxide, cobalt oxide, iron oxide and titanium oxide were accurately weighed with an accuracy of 10 -4 g, and sufficiently weighed with distilled water in a zirconia ball mill. Mix and grind. As the raw material used at this time, the following calcination (c
In the calcination step, a compound that can be easily converted into an oxide, such as a hydroxide or a carbonate, may be contained.

【0015】次に、混合及び粉砕の完了した試料は750
℃〜850 ℃で、か焼をした後、ポリビニルアルコール
(PVA)水溶液のような一般的な結合剤を微量添加
し、1ton/cm2 の圧力で、加圧成形した後、アル
ミナ板上に載置して、電気炉中で1000〜1200℃の温度で
2時間焼結を行う。焼結時には、結合剤等の有機物が揮
発するので、 600℃で1時間維持し、昇温及び冷却速度
は 300℃/hrにする。
Next, the sample that had been mixed and ground was 750.
After calcination at ℃ ~ 850 ℃, add a small amount of general binder such as polyvinyl alcohol (PVA) aqueous solution, press-mold at 1 ton / cm 2 pressure, and place on an alumina plate. Then, it is sintered in an electric furnace at a temperature of 1000 to 1200 ° C. for 2 hours. During sintering, organic substances such as a binder volatilize, so the temperature is maintained at 600 ° C. for 1 hour, and the heating and cooling rates are set to 300 ° C./hr.

【0016】その後、焼結体の両面に銀ペーストをスク
リーン印刷して、電極を形成し、550 ℃で10分間熱処理
して、24時間放置した後、電気的特性を測定する。試料
片の電気的特性測定は、種々の温度(例えば、25℃と85
℃)に設定したシリコンオイル恒温槽で2端子法にて行
われ、B定数(抵抗−温度特性における任意の2温度間
の温度に対する抵抗変化の大きさを表す定数)は、次式
によって計算する。ここで、R25℃及びR85℃は、25℃
及び85℃における抵抗値を示す。
Then, silver paste is screen-printed on both sides of the sintered body to form electrodes, heat-treated at 550 ° C. for 10 minutes, and allowed to stand for 24 hours, after which electrical characteristics are measured. Measuring the electrical properties of a specimen is done at various temperatures (eg 25 ° C and 85 ° C
(2) in the silicon oil thermostat set to (° C) by the two-terminal method, and the B constant (a constant representing the magnitude of resistance change with respect to temperature between two arbitrary temperatures in the resistance-temperature characteristic) is calculated by the following formula. .. Here, R25 ℃ and R85 ℃ are 25 ℃
And the resistance value at 85 ° C is shown.

【0017】 B={ln(R85℃/R25℃)}/(1/358.155 −1/298.155) 図2〜図5に、実施例毎の比抵抗,B定数及び焼結温度
を示す。また、図6に、実施例2,3,21,28,36,3
8,42,46,50,51,59について温度と比抵抗との関係
を示している。このような製造過程を経て得た本発明の
金属酸化物系サーミスタはスピネル系構造を有し、図2
及び図3に示すように、酸化鉄と酸化チタンとをかなり
の量添加しても充分に固溶され、広い抵抗範囲の優秀な
サーミスタ製造が可能である。
B = {ln (R85 ° C./R25° C.)} / (1 / 358.155 −1 / 298.155) FIGS. 2 to 5 show the specific resistance, B constant and sintering temperature for each example. In addition, in FIG. 6, Examples 2, 3, 21, 28, 36, 3
The relationship between temperature and specific resistance is shown for 8, 42, 46, 50, 51, and 59. The metal oxide-based thermistor of the present invention obtained through such a manufacturing process has a spinel-based structure.
Also, as shown in FIG. 3, even if a considerable amount of iron oxide and titanium oxide are added, they are sufficiently dissolved to form a solid solution, and an excellent thermistor having a wide resistance range can be manufactured.

【0018】従って、本発明の金属酸化物系サーミスタ
材料は、高価な酸化コバルト全部または大部分を低廉な
酸化鉄及び酸化チタンで代替させることによりサーミス
タの製造費用を節減することができ、更に、サーミスタ
の製造時に有害物質として作用する酸化銅の使用を排除
することで製造作業の安定性を確保できる。そして、図
4及び図5に示すように、酸化銅が添加される場合に
は、酸化コバルト、酸化鉄及び酸化チタンの添加量を大
きく変化させることができるので、抵抗範囲を広範囲に
調節することができ、また、B定数を高めることができ
る。
Therefore, the metal oxide-based thermistor material of the present invention can reduce the manufacturing cost of the thermistor by replacing the expensive cobalt oxide in whole or in large part with inexpensive iron oxide and titanium oxide. By eliminating the use of copper oxide, which acts as a harmful substance during the manufacture of the thermistor, the stability of the manufacturing operation can be ensured. Then, as shown in FIGS. 4 and 5, when copper oxide is added, the addition amounts of cobalt oxide, iron oxide and titanium oxide can be greatly changed, so that the resistance range should be adjusted in a wide range. And the B constant can be increased.

【0019】一方、本発明の金属酸化物系サーミスタ材
料は、多成分系組成で相互に共晶反応が生じ、これによ
り、1000〜1200℃で焼結が行われるので、従来のマンガ
ン−ニッケル−コバルト−銅系サーミスタの焼結温度に
比べ 100℃〜 250℃程度、焼結温度を低くすることがで
き、この点においてもサーミスタの製造費用を低くする
ことができる。
On the other hand, in the metal oxide type thermistor material of the present invention, a eutectic reaction occurs with each other in a multi-component composition, which causes sintering at 1000 to 1200 ° C. The sintering temperature can be lowered by about 100 ° C. to 250 ° C. as compared with the sintering temperature of the cobalt-copper based thermistor, and the manufacturing cost of the thermistor can be reduced also in this respect.

【0020】[0020]

【発明の効果】以上説明したように、本発明によると、
高価な酸化コバルト全部または大部分を低廉な酸化鉄及
び酸化チタンで代替させることによりサーミスタの製造
費用を節減することができ、また、酸化鉄と酸化チタン
とをかなりの量添加しても充分に固溶され、広い抵抗範
囲の優秀なサーミスタ製造が可能である。
As described above, according to the present invention,
By replacing all or most of expensive cobalt oxide with inexpensive iron oxide and titanium oxide, the production cost of the thermistor can be reduced, and even if iron oxide and titanium oxide are added in a considerable amount, it is sufficient. As a solid solution, it is possible to manufacture an excellent thermistor with a wide resistance range.

【0021】また、サーミスタの製造時に有害物質とし
て作用する酸化銅の使用を排除することで製造作業の安
定性を確保できる。また、酸化銅が添加される場合に
は、酸化コバルト、酸化鉄及び酸化チタンの添加量を大
きく変化させることができるので、抵抗範囲を広範囲に
調節することができ、また、B定数を高めることができ
る。
Further, by eliminating the use of copper oxide which acts as a harmful substance during the production of the thermistor, the stability of the production work can be ensured. Further, when copper oxide is added, the addition amounts of cobalt oxide, iron oxide and titanium oxide can be greatly changed, so that the resistance range can be adjusted in a wide range and the B constant can be increased. You can

【0022】更に、従来のマンガン−ニッケル−コバル
ト−銅系サーミスタの焼結温度に比べ 100℃〜 250℃程
度、焼結温度を低くすることができ、この点においても
サーミスタの製造費用を低くすることができる。
Further, the sintering temperature can be lowered by about 100 ° C. to 250 ° C. as compared with the sintering temperature of the conventional manganese-nickel-cobalt-copper thermistor, and also in this point, the manufacturing cost of the thermistor can be reduced. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明にかかる実施例に用いた金属酸化物系
サーミスタ材料の組成比を示す3成分系の図
FIG. 1 is a diagram of a three-component system showing a composition ratio of a metal oxide-based thermistor material used in an example according to the present invention.

【図2】 実施例1〜15の材料組成及び電気的特性を示
す図
FIG. 2 is a diagram showing the material composition and electrical characteristics of Examples 1 to 15.

【図3】 実施例16〜30の材料組成及び電気的特性を示
す図
FIG. 3 is a diagram showing the material composition and electrical characteristics of Examples 16 to 30.

【図4】 実施例31〜46の材料組成及び電気的特性を示
す図
FIG. 4 is a diagram showing the material composition and electrical characteristics of Examples 31 to 46.

【図5】 実施例47〜60の材料組成及び電気的特性を示
す図
FIG. 5 is a diagram showing the material composition and electrical characteristics of Examples 47 to 60.

【図6】 サーミスタの温度と比抵抗との関係を示す図FIG. 6 is a diagram showing the relationship between the temperature and the specific resistance of the thermistor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 李 銓國 大韓民国ソウル特別市道峰区双門洞199− 1 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Lee, Korea 199-1 Sangmun-dong, Dobong-gu, Dobong-gu, Seoul, Republic of Korea

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】aMnCO3 +bNiO+dZnO+eC
3 4 +fFe2 3 +gTiO 2 系を基本組成と
し、組成比が重量比で、 27.86 ≦a≦41.85 6.17 ≦b≦10.97 0 ≦d≦47.02 0 ≦e≦ 8.97 4.13 ≦f≦51.14 0.23 ≦g≦ 3.09 (但し、a+b+d+e+f+g=100 ) であることを特徴とする金属酸化物系サーミスタ材料。
1. AMnCO3+ BNiO + dZnO + eC
o3OFour+ FFe2O3+ GTiO 2The system has a basic composition
However, the composition ratio is 27.86 ≤ a ≤ 41.85 6.17 ≤ b ≤ 10.97 0 ≤ d ≤ 47.02 0 ≤ e ≤ 8.97 4.13 ≤ f ≤ 51.14 0.23 ≤ g ≤ 3.09 (however, a + b + d + e + f + g = 100). Characteristic metal oxide thermistor material.
【請求項2】aMnCO3 +bNiO+cCuO+dZ
nO+eCo3 4 +fFe2 3 +gTiO2 系を基
本組成とし、組成比が重量比で、 21.90 ≦a≦53.68 7.15 ≦b≦13.56 0 ≦c≦50.76 0 ≦d≦35.05 0 ≦e≦30.61 0 ≦f≦38.26 0 ≦g≦ 4.17 (但し、a+b+c+d+e+f+g=100 ) であることを特徴とする金属酸化物系サーミスタ材料。
2. AMnCO 3 + bNiO + cCuO + dZ
The basic composition is nO + eCo 3 O 4 + fFe 2 O 3 + gTiO 2 system, and the composition ratio by weight ratio is 21.90 ≤ a ≤ 53.68 7.15 ≤ b ≤ 13.56 0 ≤ c ≤ 50.76 0 ≤ d ≤ 35.05 0 ≤ e ≤ 30.61 0 ≤ f ≦ 38.26 0 ≦ g ≦ 4.17 (however, a + b + c + d + e + f + g = 100) A metal oxide thermistor material.
JP3017621A 1990-08-16 1991-02-08 Metal oxide thermistor material Expired - Fee Related JP2913518B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR12585/1990 1990-08-16
KR1019900012585A KR930005249B1 (en) 1990-08-16 1990-08-16 Metal-oxide system thermistor

Publications (2)

Publication Number Publication Date
JPH0541304A true JPH0541304A (en) 1993-02-19
JP2913518B2 JP2913518B2 (en) 1999-06-28

Family

ID=19302379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017621A Expired - Fee Related JP2913518B2 (en) 1990-08-16 1991-02-08 Metal oxide thermistor material

Country Status (3)

Country Link
JP (1) JP2913518B2 (en)
KR (2) KR930005249B1 (en)
GB (1) GB2247015A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150289A (en) * 2003-11-13 2005-06-09 Tdk Corp Composition for thermistor, and thermistor element
WO2006085507A1 (en) * 2005-02-08 2006-08-17 Murata Manufacturing Co., Ltd. Surface mounting-type negative characteristic thermistor
JP2008060612A (en) * 2005-02-08 2008-03-13 Murata Mfg Co Ltd Surface mounting-type negative temperature coefficient thermistor
WO2011086850A1 (en) * 2010-01-12 2011-07-21 株式会社村田製作所 Semiconductor ceramic composition for ntc thermistor and ntc thermistor
US9058913B2 (en) 2010-06-24 2015-06-16 Epcos Ag Cobalt-free NTC ceramic and method for producing a cobalt-free NTC ceramic

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111484314B (en) * 2020-04-03 2022-07-01 广东风华高新科技股份有限公司 NTC thermal sensitive ceramic material and preparation method thereof
CN114999752B (en) * 2022-05-27 2024-07-19 广东新成科技实业有限公司 NTC patch thermistor based on semiconductor material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633801A (en) * 1979-08-29 1981-04-04 Nippon Telegraph & Telephone High frequency thermistor porcelain and method of manufacturing same
JPS56160007A (en) * 1980-05-13 1981-12-09 Matsushita Electric Ind Co Ltd Method of manufacturing oxide semiconductor for thermistor
JPS6412501A (en) * 1987-07-07 1989-01-17 Matsushita Electric Ind Co Ltd Manufacture of oxide semiconductor for thermistor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6614015A (en) * 1966-10-05 1968-04-08
JPS6041014B2 (en) * 1980-02-07 1985-09-13 松下電器産業株式会社 Manufacturing method of oxide semiconductor for thermistor
FR2582851B1 (en) * 1985-06-04 1988-07-08 Univ Toulouse COMPOSITIONS OF TRANSITION METAL MANGANITES IN THE FORM OF PARTICLES OR IN THE FORM OF CERAMICS, THEIR PREPARATION AND THEIR USE IN PARTICULAR IN THE MANUFACTURE OF THERMISTORS
DE3619746A1 (en) * 1986-06-12 1987-12-17 Basf Ag SUPER PARAMAGNETIC SOLID PARTICLES

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633801A (en) * 1979-08-29 1981-04-04 Nippon Telegraph & Telephone High frequency thermistor porcelain and method of manufacturing same
JPS56160007A (en) * 1980-05-13 1981-12-09 Matsushita Electric Ind Co Ltd Method of manufacturing oxide semiconductor for thermistor
JPS6412501A (en) * 1987-07-07 1989-01-17 Matsushita Electric Ind Co Ltd Manufacture of oxide semiconductor for thermistor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150289A (en) * 2003-11-13 2005-06-09 Tdk Corp Composition for thermistor, and thermistor element
WO2006085507A1 (en) * 2005-02-08 2006-08-17 Murata Manufacturing Co., Ltd. Surface mounting-type negative characteristic thermistor
JP2008060612A (en) * 2005-02-08 2008-03-13 Murata Mfg Co Ltd Surface mounting-type negative temperature coefficient thermistor
US7548149B2 (en) 2005-02-08 2009-06-16 Murata Manufacturing Co., Ltd. Surface-mount negative-characteristic thermistor
WO2011086850A1 (en) * 2010-01-12 2011-07-21 株式会社村田製作所 Semiconductor ceramic composition for ntc thermistor and ntc thermistor
JPWO2011086850A1 (en) * 2010-01-12 2013-05-16 株式会社村田製作所 Semiconductor porcelain composition for NTC thermistor and NTC thermistor
US8547198B2 (en) 2010-01-12 2013-10-01 Murata Manufacturing Co., Ltd. Semiconductor ceramic composition for NTC thermistors and NTC thermistor
US9058913B2 (en) 2010-06-24 2015-06-16 Epcos Ag Cobalt-free NTC ceramic and method for producing a cobalt-free NTC ceramic

Also Published As

Publication number Publication date
KR930006337B1 (en) 1993-07-14
KR930005249B1 (en) 1993-06-17
JP2913518B2 (en) 1999-06-28
KR920004300A (en) 1992-03-27
GB2247015A (en) 1992-02-19
GB9116910D0 (en) 1991-09-18

Similar Documents

Publication Publication Date Title
WO1986003051A1 (en) Oxide semiconductor for thermistor and a method of producing the same
JPH0541304A (en) Metallic oxide group thermistor material
WO1985000690A1 (en) Oxide semiconductor for thermistor
US7556745B2 (en) Sintered compact for thermistor element, process for producing the same, thermistor element and temperature sensor
JP2894036B2 (en) High temperature thermistor and manufacturing method thereof
EP0810612B1 (en) Oxide ceramic thermistor containing indium
JPH10233303A (en) Ntc thermistor
CN114956789B (en) Linear wide-temperature-area high-temperature-sensitive resistor material and preparation method thereof
KR0135637B1 (en) Thermister composition
KR970007509B1 (en) Ntc thermistor
JPS6097601A (en) Oxide semiconductor porcelain for thermistor
JPH0578921B2 (en)
KR101647354B1 (en) Ceramic composition of thermistor for temperature sensor
US6270693B1 (en) Thermistor composition
JPS61113211A (en) Oxide semiconductor for thermistor
CN116621573A (en) Spinel type thermistor material for measuring temperature in high-temperature wide temperature area and preparation method thereof
JPS62108505A (en) Oxide semiconductor for thermistor
JP3391190B2 (en) Thermistor composition
JP2001155907A (en) Thermistor composition
JPH0722206A (en) Thermistor
JPS62108503A (en) Oxide semiconductor for thermistor
JPS61113205A (en) Manufacture of oxide semiconductor for thermistor
JPH0578922B2 (en)
JPS62152104A (en) Ptc ceramic resistor
JPS5945964A (en) Ceramic resistor material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees