JPH0540012A - Interferometer and its aligning method - Google Patents
Interferometer and its aligning methodInfo
- Publication number
- JPH0540012A JPH0540012A JP4011915A JP1191592A JPH0540012A JP H0540012 A JPH0540012 A JP H0540012A JP 4011915 A JP4011915 A JP 4011915A JP 1191592 A JP1191592 A JP 1191592A JP H0540012 A JPH0540012 A JP H0540012A
- Authority
- JP
- Japan
- Prior art keywords
- light
- interferometer
- measured
- light receiving
- interference fringes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、被測定面の形状等を
測定する際に、受光面上に測定に適した数の干渉縞を発
生させるアライメント機能を備える干渉計、及び、この
干渉計のアライメント方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer having an alignment function for generating a number of interference fringes suitable for measurement on a light receiving surface when measuring the shape of a surface to be measured, and this interferometer. The present invention relates to the alignment method.
【0002】[0002]
【従来の技術】光の波長以下のオーダで物体の形状を測
定する方法の一つとして、干渉計を利用した空間縞走査
法がある。空間縞走査法は、単一光源からの光束を2分
して被測定面と参照面とで反射させ、これらの反射光を
合成してテレビカメラの撮像面上に干渉縞を発生させ
る。そして、被測定面と参照面との一方を光軸方向に移
動させてカメラの各画素毎の光量変化を解析し、被測定
面の面形状を測定する。2. Description of the Related Art As one of the methods for measuring the shape of an object on the order of light wavelength or less, there is a spatial fringe scanning method using an interferometer. In the spatial fringe scanning method, a light beam from a single light source is divided into two, reflected by a surface to be measured and a reference surface, and these reflected lights are combined to generate an interference fringe on the image pickup surface of a television camera. Then, one of the surface to be measured and the reference surface is moved in the optical axis direction to analyze the change in the amount of light for each pixel of the camera, and the surface shape of the surface to be measured is measured.
【0003】ところで、空間縞走査法による縞解析のア
ルゴリズムを用いる場合、このアルゴリズムを簡便化す
るためには、テレビカメラの画素数nとしてn/4m本(m=1,
2,3・・・)の干渉縞を発生させることが好ましい。そこ
で、干渉縞が測定に適した本数となるように被測定面、
あるいは参照面を傾け、干渉計のアライメントを行って
いる。By the way, when the fringe analysis algorithm by the spatial fringe scanning method is used, in order to simplify this algorithm, the number of pixels n of the television camera is n / 4m (m = 1,
It is preferable to generate interference fringes (2, 3 ...). Therefore, the measured surface should be adjusted so that the number of interference fringes is suitable for measurement.
Alternatively, the reference plane is tilted to align the interferometer.
【0004】[0004]
【発明が解決しようとする課題】従来、干渉縞の本数を
測定するためには、テレビカメラの出力をモニターに表
示し、モニター上で干渉縞の縞数を人間の目で数え、所
定の本数となるよう傾きを調整していたため、その調整
作業は非常に煩雑であり、作業効率が悪いという問題が
あった。Conventionally, in order to measure the number of interference fringes, the output of a television camera is displayed on a monitor, the number of interference fringes is counted by the human eye, and the predetermined number of interference fringes is counted. Since the inclination is adjusted so that the adjustment work is very complicated, there is a problem that the work efficiency is poor.
【0005】[0005]
【発明の目的】この発明は、上記の課題に鑑みてなされ
たものであり、受光面上に形成される干渉縞が所定の本
数となるように、被測定面と参照面との相対的な傾きを
容易に調整することができる干渉計、及びそのアライメ
ント方法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and the relative distance between the measured surface and the reference surface is set so that a predetermined number of interference fringes are formed on the light receiving surface. An object is to provide an interferometer whose tilt can be easily adjusted, and an alignment method thereof.
【0006】[0006]
【課題を解決するための手段】この発明にかかる干渉計
は、上記の目的を達成させるため、被測定面からの被検
光と参照面からの参照光とにより形成される干渉縞を測
定する第1の受光手段と、被検光と参照光とを集光させ
て光点を形成する集光レンズと、集光レンズにより形成
される2つの光点を受光する第2の受光手段と、被検光と
参照光との少なくとも何れか一方を偏向させる手段とを
有することを特徴とする。In order to achieve the above object, an interferometer according to the present invention measures an interference fringe formed by a test light from a measurement surface and a reference light from a reference surface. A first light receiving means, a condenser lens that collects the test light and the reference light to form a light spot, and a second light receiving means that receives two light spots formed by the condenser lens, And a means for deflecting at least one of the test light and the reference light.
【0007】また、この発明にかかる干渉計のアライメ
ント方法は、干渉計の被測定面からの被検光と参照面か
らの参照光とを集光させて光点を形成し、光点間の距離
を予め定められた距離となるよう被検光と参照光との少
なくともいずれか一方を偏向させることを特徴とする。In the interferometer alignment method according to the present invention, the test light from the measured surface of the interferometer and the reference light from the reference surface are condensed to form light spots, and the light spots between the light spots are formed. At least one of the test light and the reference light is deflected so that the distance becomes a predetermined distance.
【0008】[0008]
【実施例】以下、この発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
【0009】[0009]
【実施例1】図1及び図2は、この発明の実施例1を示し
たものである。First Embodiment FIGS. 1 and 2 show a first embodiment of the present invention.
【0010】図1に示した干渉計において、光源1から発
した光束は、コリメータレンズ2により平行光束とさ
れ、第1のハーフミラー3により被測定面である平面ミラ
ー4と参照ミラー5とに向けて分割される。各ミラーで反
射された光束は、第1のハーフミラー3で重ね合わされ、
第2のハーフミラー6に入射する。In the interferometer shown in FIG. 1, a light beam emitted from a light source 1 is collimated by a collimator lens 2 and is converted by a first half mirror 3 into a plane mirror 4 and a reference mirror 5 which are measured surfaces. Will be split towards. The light flux reflected by each mirror is superposed by the first half mirror 3,
It is incident on the second half mirror 6.
【0011】第2のハーフミラー6を透過した成分は、結
像レンズ7を介して瞳と共役な瞳面に配置された第1の受
光面としてのCCDカメラの撮像面8に結像し、干渉縞を形
成する。他方、ハーフミラー6で反射された成分は、集
光レンズ9により収束され、フーリエ面に位置する第2の
受光面としてのスクリーン10上に各反射光に対応する2
つの光点P1,P2を形成する。The component transmitted through the second half mirror 6 forms an image on the image pickup surface 8 of the CCD camera as the first light receiving surface arranged on the pupil plane conjugate with the pupil via the image forming lens 7, Form interference fringes. On the other hand, the component reflected by the half mirror 6 is converged by the condenser lens 9 and corresponds to each reflected light on the screen 10 as the second light receiving surface located on the Fourier plane.
Form two light spots P1 and P2.
【0012】参照ミラー5は、光軸に対して傾斜自在に
設けられており、参照光を偏向させる偏向手段としての
機能を有している。参照ミラー5の傾斜角度を適当な値
に設定することにより、撮像面8上に形成される干渉縞
の本数、スクリーン10上の光点の間隔δを調整すること
ができる。The reference mirror 5 is provided so as to be tiltable with respect to the optical axis and has a function as a deflecting means for deflecting the reference light. By setting the inclination angle of the reference mirror 5 to an appropriate value, it is possible to adjust the number of interference fringes formed on the imaging surface 8 and the interval δ between the light spots on the screen 10.
【0013】ここで、スクリーン10上の2つの光点P1,P2
の間隔δとCCDカメラの撮像面8に形成される干渉縞の本
数nとの関係について説明する。Here, two light spots P1 and P2 on the screen 10 are
The relationship between the interval Δ and the number n of interference fringes formed on the image pickup surface 8 of the CCD camera will be described.
【0014】n本の干渉縞を発生させるためには、光源1
を発光波長λの単色光源とし、被測定物である平面ミラ
ー4からの反射光束の径をDとすると、参照ミラー5の傾
斜による光束の傾斜角度θを次式のとおりに設定する必
要がある。In order to generate n interference fringes, the light source 1
Is a monochromatic light source with an emission wavelength λ, and the diameter of the reflected light beam from the plane mirror 4 that is the object to be measured is D, it is necessary to set the inclination angle θ of the light beam due to the inclination of the reference mirror 5 according to the following equation. ..
【0015】[0015]
【数1】θ= (nλ)/D [rad][Equation 1] θ = (nλ) / D [rad]
【0016】また、集光レンズ9の焦点距離をfとする
と、スクリーン10上の光点P1,P2の間隔δは、次式の通
りとなる。If the focal length of the condenser lens 9 is f, the interval δ between the light points P1 and P2 on the screen 10 is given by the following equation.
【0017】[0017]
【数2】δ= fθ= (nλf)/D[Equation 2] δ = fθ = (nλf) / D
【0018】このように、光点の間隔δは干渉縞の本数
nの関数となり、所定の本数の干渉縞を発生させるため
の間隔δが一義的に定まるため、この間隔δを予め定め
られた干渉縞の本数に応じた設定値δ0となるよう参照
面を傾斜させることにより、n本の干渉縞をCCDカメラの
撮像面8上に形成することができる。Thus, the interval δ between the light spots is the number of interference fringes.
Since it becomes a function of n and the interval δ for generating a predetermined number of interference fringes is uniquely determined, the reference surface is inclined so that this interval δ becomes a set value δ0 according to the number of predetermined interference fringes. By doing so, n interference fringes can be formed on the imaging surface 8 of the CCD camera.
【0019】実施例1では、所定の本数nの干渉縞を発生
させるための設定値を示すために、スクリーン10上に図
2に示すような十字形の指標S1,S2が設けられている。こ
れらの指標の中心の間隔が設定値δ0であり、光点P1,P2
をそれぞれの指標の中心に一致させるよう参照ミラー5
の角度を調整することにより、CCDカメラの撮像面8上に
所定の本数の干渉縞が発生する。In the first embodiment, a diagram is displayed on the screen 10 to show the set values for generating a predetermined number n of interference fringes.
Cross-shaped indicators S1 and S2 as shown in 2 are provided. The distance between the centers of these indices is the set value δ0, and the light spots P1, P2
Reference mirror 5 to align the center of each indicator
By adjusting the angle of, a predetermined number of interference fringes are generated on the image pickup surface 8 of the CCD camera.
【0020】なお、第2のハーフミラーは、上記の例で
は光路中に固定して設けられているが、アライメント時
のみ光路中に設定され、干渉縞の測定時には光路中から
退避するよう挿脱自在に設ける構成としてもよい。この
ような構成とすれば、測定時の光量ロスを低減し、ノイ
ズによる影響を受けにくくすることができる。更に、ミ
ラーを挿脱自在に設ける場合には、ハーフミラー6に代
えて全反射ミラーを用いてもよい。Although the second half mirror is fixedly provided in the optical path in the above example, it is set in the optical path only at the time of alignment and is inserted and removed so as to be retracted from the optical path at the time of measuring interference fringes. The configuration may be freely provided. With such a configuration, it is possible to reduce the light amount loss during measurement and make it less susceptible to noise. Furthermore, when the mirror is detachably provided, a total reflection mirror may be used instead of the half mirror 6.
【0021】[0021]
【実施例2】図3及び図4は、この発明の実施例2を示し
たものである。Second Embodiment FIGS. 3 and 4 show a second embodiment of the present invention.
【0022】上記の実施例1では、2つの光点の位置をス
クリーン上で目視により直接確認する構成であるが、実
施例2では、光点の位置をPSD、イメージセンサ等の受光
素子により測定し、更に測定結果に基づいて被測定面と
参照面とをアクチュエータを介して駆動し、光点間隔が
所定の距離となるよう自動的に設定するよう構成してい
る。In the above-mentioned first embodiment, the positions of the two light spots are visually confirmed directly on the screen, but in the second embodiment, the positions of the light spots are measured by a light receiving element such as a PSD or an image sensor. Further, the measurement surface and the reference surface are driven via an actuator based on the measurement result, and the light spot distance is automatically set to a predetermined distance.
【0023】光学系の構成は実施例1とほぼ同様であ
り、図3に示すように、第2の受光面としてスクリーン10
に代えてPSD(ポジションセンシングデバイス)あるいは
イメージセンサ等の受光素子11を用いている。PSDは、
光量が最も大きい部分の座標を検出する素子であるた
め、2つの光点の座標を得るためには、各光点が集光す
る位置に1つづつ合計2つの素子が必要となる。イメージ
センサを用いる場合には1つの素子で2つの光点の座標を
検出することができる。The configuration of the optical system is almost the same as that of the first embodiment, and as shown in FIG. 3, the screen 10 is used as the second light receiving surface.
Instead of this, a light receiving element 11 such as a PSD (position sensing device) or an image sensor is used. PSD is
Since it is an element that detects the coordinates of the portion where the amount of light is the largest, in order to obtain the coordinates of the two light spots, two elements are required, one at each light collecting position. When an image sensor is used, one element can detect the coordinates of two light spots.
【0024】受光素子11によって光点の座標情報を含む
電気信号が駆動制御回路12に入力される。駆動制御回路
12は、この情報に基づいて各ミラー4,5を駆動するアク
チュエータ13,14を制御する。An electric signal including coordinate information of the light spot is input to the drive control circuit 12 by the light receiving element 11. Drive control circuit
The actuator 12 controls actuators 13 and 14 that drive the mirrors 4 and 5 based on this information.
【0025】図4は、干渉計による測定の手順を示すフ
ローチャートである。FIG. 4 is a flow chart showing the procedure of measurement by the interferometer.
【0026】まず、ステップ(図中S.と記する)1におい
て、被測定面であるミラーを所定の位置に配置し、ステ
ップ2で受光素子11の出力に基づいて光点P1,P2の間隔δ
を測定する。ステップ3では、測定された間隔δが所定
の干渉縞の本数に対応する設定値δ0と等しいか否かを
判断し、等しくない場合にはステップ4でこれが等しく
なる方向にアクチュエータ13,14を制御してミラー4,5を
傾斜させ、再びステップ2において間隔δを測定する。
間隔δが設定値δ0と等しくなるまでステップ2,3,4を繰
り返し、等しくなった後にステップ5で干渉縞の解析を
開始する。First, in step (denoted by S. in the figure) 1, a mirror to be measured is placed at a predetermined position, and in step 2, the distance between the light spots P1 and P2 is determined based on the output of the light receiving element 11. δ
To measure. In step 3, it is judged whether or not the measured interval δ is equal to the set value δ0 corresponding to the number of predetermined interference fringes.If they are not equal, in step 4 the actuators 13 and 14 are controlled so that they become equal. Then, the mirrors 4 and 5 are tilted, and the interval δ is measured again in step 2.
Steps 2, 3 and 4 are repeated until the interval δ becomes equal to the set value δ 0, and after it becomes equal, the interference fringe analysis is started in step 5.
【0027】実施例2の構成によれば、干渉計のアライ
メントを自動化することができる。According to the configuration of the second embodiment, the alignment of the interferometer can be automated.
【0028】[0028]
【実施例3】図5は、この発明の実施例3を示す。実施例
1,2は、この発明をトワイマン・グリーン型干渉計に適
用した例であるが、実施例3はこれをマッハ・ツェンダ
ー型干渉計に適用した例である。Third Embodiment FIG. 5 shows a third embodiment of the present invention. Example
1 and 2 are examples in which the present invention is applied to a Twyman-Green type interferometer, and Example 3 is an example in which the present invention is applied to a Mach-Zehnder type interferometer.
【0029】図5に示した干渉計において、光源1から発
した光束は、コリメータレンズ2により平行光束とさ
れ、第1のハーフミラー3により被測定面を持つ平行平面
板4'と参照ミラー5とに向けて分割される。平行平面板
4'を透過してミラー20で反射された被検光と参照ミラー
5で反射された参照光とは、第2のハーフミラー6に入射
する。In the interferometer shown in FIG. 5, the light beam emitted from the light source 1 is collimated by the collimator lens 2 and is collimated by the collimator lens 2. The first half mirror 3 forms a plane-parallel plate 4'having a surface to be measured and a reference mirror 5. Will be split towards and. Plane-parallel plate
Reference light and test light transmitted through 4'and reflected by mirror 20
The reference light reflected by 5 is incident on the second half mirror 6.
【0030】第2のハーフミラー6を透過した参照光、及
びハーフミラー6で反射された被検光の成分は、結像レ
ンズ7を介して瞳と共役な瞳面に配置された第1の受光面
としてのCCDカメラの撮像面8に結像し、干渉縞を形成す
る。他方、ハーフミラーで反射された参照光、及びハー
フミラーを透過した被検光の成分は、集光レンズ9によ
り収束され、フーリエ面に位置する第2の受光面として
のスクリーン10上に各反射光に対応する2つの光点を形
成する。The reference light that has passed through the second half mirror 6 and the component of the test light that has been reflected by the half mirror 6 are arranged via the imaging lens 7 in the first pupil plane that is conjugate with the pupil. An image is formed on the image pickup surface 8 of the CCD camera as a light receiving surface to form interference fringes. On the other hand, the reference light reflected by the half mirror and the component of the test light transmitted through the half mirror are converged by the condenser lens 9 and are reflected on the screen 10 as the second light receiving surface located on the Fourier plane. Form two light spots corresponding to the light.
【0031】参照ミラー5は、光軸に対して傾斜自在に
設けられており、参照光を偏向させる偏向手段としての
機能を有している。参照ミラー5の傾斜角度を適当な値
に設定することにより、撮像面8上に形成される干渉縞
の本数、スクリーン10上の光点の間隔を調整することが
できる。The reference mirror 5 is provided so as to be tiltable with respect to the optical axis and has a function as a deflecting means for deflecting the reference light. By setting the tilt angle of the reference mirror 5 to an appropriate value, it is possible to adjust the number of interference fringes formed on the imaging surface 8 and the interval between the light spots on the screen 10.
【0032】なお、偏向手段としては、参照ミラー5の
他、ミラー20を回動自在に設けてもよい。As the deflecting means, in addition to the reference mirror 5, a mirror 20 may be rotatably provided.
【0033】[0033]
【発明の効果】以上説明したように、この発明によれ
ば、被測定面からの被検光と参照面からの参照光とを集
光させて光点の間隔を測定することにより、干渉縞の本
数を知ることができ、干渉縞の本数を数える等の操作を
しなくとも、容易に干渉縞を所定の本数に設定すること
ができる。As described above, according to the present invention, the interference fringes are measured by converging the test light from the surface to be measured and the reference light from the reference surface and measuring the distance between the light spots. It is possible to know the number of the interference fringes, and it is possible to easily set the interference fringes to a predetermined number without performing an operation such as counting the number of the interference fringes.
【図1】 実施例1の構成を示す光学系の説明図であ
る。FIG. 1 is an explanatory diagram of an optical system showing the configuration of a first embodiment.
【図2】 図1に示した装置のスクリーンを示す説明図
である。FIG. 2 is an explanatory diagram showing a screen of the device shown in FIG.
【図3】 実施例2の構成を示す光学系の説明図であ
る。FIG. 3 is an explanatory diagram of an optical system showing the configuration of a second embodiment.
【図4】 実施例2の作用を示すフローチャートであ
る。FIG. 4 is a flowchart showing the operation of the second embodiment.
【図5】 実施例3の構成を示す光学系の説明図であ
る。FIG. 5 is an explanatory diagram of an optical system showing the configuration of Example 3.
1…光源 4…被測定面 5…参照面 8…撮像面(第1の受光面) 10…スクリーン(第2の受光面) 11…受光素子(第2の受光面) 1 ... Light source 4 ... Measured surface 5 ... Reference surface 8 ... Imaging surface (first light receiving surface) 10 ... Screen (second light receiving surface) 11 ... Light receiving element (second light receiving surface)
Claims (4)
照光とにより形成される干渉縞を測定する第1の受光手
段と、 前記被検光と参照光とを集光させて光点を形成する集光
レンズと、 前記集光レンズにより形成される2つの光点を受光する
第2の受光手段と、 前記被検光と前記参照光との少なくとも何れか一方を偏
向させる偏向手段とを有することを特徴とする干渉計。1. A first light receiving unit for measuring an interference fringe formed by the test light from the surface to be measured and the reference light from the reference surface, and the test light and the reference light being condensed. A condensing lens that forms a light spot, a second light receiving unit that receives two light spots formed by the condensing lens, and a deflection that deflects at least one of the test light and the reference light. And an interferometer.
できるスクリーンであり、このスクリーンは、前記間隔
を所定の値とするために前記光点が位置すべき位置に指
標が設けられていることを特徴とする請求項1に記載の
干渉計。2. The second light receiving means is a screen for visually recognizing the light spot, and the screen is provided with an index at a position where the light spot should be located in order to set the interval to a predetermined value. The interferometer according to claim 1, wherein
を光電変換して検出する受光素子であり、この受光素子
の出力に基づいて前記光点の間隔を測定し、測定結果に
基づいて前記間隔が所定の値となるよう前記偏向手段を
制御する偏向制御手段を有することを特徴とする請求項
1に記載の干渉計。3. The second light receiving means is a light receiving element that photoelectrically converts the coordinates of the light point to detect, and measures the interval between the light points based on the output of the light receiving element. A deflection control means for controlling the deflection means so that the distance becomes a predetermined value based on the distance.
The interferometer described in 1.
からの参照光とを集光させて光点を形成し、該光点間の
距離を予め定められた距離となるよう前記被検光と前記
参照光との少なくともいずれか一方を偏向させることを
特徴とする干渉計のアライメント方法。4. The light spot is formed by condensing the test light from the measured surface of the interferometer and the reference light from the reference surface, and the distance between the light points is set to a predetermined distance. An interferometer alignment method characterized in that at least one of the test light and the reference light is deflected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01191592A JP3206948B2 (en) | 1991-02-18 | 1992-01-27 | Interferometer and interferometer alignment method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10992391 | 1991-02-18 | ||
JP3-109923 | 1991-02-18 | ||
JP01191592A JP3206948B2 (en) | 1991-02-18 | 1992-01-27 | Interferometer and interferometer alignment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0540012A true JPH0540012A (en) | 1993-02-19 |
JP3206948B2 JP3206948B2 (en) | 2001-09-10 |
Family
ID=26347445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01191592A Expired - Lifetime JP3206948B2 (en) | 1991-02-18 | 1992-01-27 | Interferometer and interferometer alignment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3206948B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002202112A (en) * | 2000-11-06 | 2002-07-19 | Fujitsu Ltd | Shape measuring apparatus |
JP2008292438A (en) * | 2007-05-23 | 2008-12-04 | J Tec:Kk | Ultraprecisely shape measuring method and device |
JP2018115988A (en) * | 2017-01-19 | 2018-07-26 | 株式会社東京精密 | Front face shape measurement device measurement preparation alignment method, and front face shape measurement device |
-
1992
- 1992-01-27 JP JP01191592A patent/JP3206948B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002202112A (en) * | 2000-11-06 | 2002-07-19 | Fujitsu Ltd | Shape measuring apparatus |
JP2008292438A (en) * | 2007-05-23 | 2008-12-04 | J Tec:Kk | Ultraprecisely shape measuring method and device |
JP2018115988A (en) * | 2017-01-19 | 2018-07-26 | 株式会社東京精密 | Front face shape measurement device measurement preparation alignment method, and front face shape measurement device |
Also Published As
Publication number | Publication date |
---|---|
JP3206948B2 (en) | 2001-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4647867B2 (en) | Apparatus and method used to evaluate a target larger than the sensor measurement aperture | |
US4761071A (en) | Apparatus and method for determining corneal and scleral topography | |
US5841149A (en) | Method of determining the distance of a feature on an object from a microscope, and a device for carrying out the method | |
US3639041A (en) | System and method for scanning the depth of the optic fundus | |
JPH1075931A (en) | Ophthalmodiaphanoscope | |
US5650853A (en) | Vibration-resistant interferometer | |
US4867554A (en) | Surface examining apparatus | |
JPH0593888A (en) | Method and device for determining optical axis of off-set mirror | |
JPH0812127B2 (en) | Curvature radius measuring device and method | |
JPS6249562B2 (en) | ||
JP2000241128A (en) | Plane-to-plane space measuring apparatus | |
JP3206948B2 (en) | Interferometer and interferometer alignment method | |
JPH05317256A (en) | Intraocular size measuring instrument | |
JPH035810B2 (en) | ||
JP2983673B2 (en) | Method and apparatus for measuring radius of curvature | |
JP4148592B2 (en) | Birefringence measuring method and birefringence measuring apparatus | |
JPS63208736A (en) | Optical characteristic measuring instrument for optical system | |
JPH05317255A (en) | Measuring instrument for eye to be examined | |
JP2911283B2 (en) | Non-contact step measurement method and device | |
JP2828145B2 (en) | Optical section microscope apparatus and method for aligning optical means thereof | |
JP2966568B2 (en) | Interferometer | |
JPS63138204A (en) | Shape measuring method | |
JP2505042B2 (en) | Lens eccentricity measuring device | |
JP2817794B2 (en) | Eye refractive power measuring device | |
JPS62503049A (en) | Methods and apparatus for orienting, inspecting and/or measuring two-dimensional objects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090706 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100706 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110706 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110706 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120706 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120706 Year of fee payment: 11 |