JPH0540569Y2 - - Google Patents
Info
- Publication number
- JPH0540569Y2 JPH0540569Y2 JP1984103119U JP10311984U JPH0540569Y2 JP H0540569 Y2 JPH0540569 Y2 JP H0540569Y2 JP 1984103119 U JP1984103119 U JP 1984103119U JP 10311984 U JP10311984 U JP 10311984U JP H0540569 Y2 JPH0540569 Y2 JP H0540569Y2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- circuit
- temperature range
- sensing element
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010355 oscillation Effects 0.000 claims description 29
- 239000013078 crystal Substances 0.000 claims description 19
- 239000003990 capacitor Substances 0.000 description 13
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- BWSQKOKULIALEW-UHFFFAOYSA-N 2-[2-[4-fluoro-3-(trifluoromethyl)phenyl]-3-[2-(piperidin-3-ylamino)pyrimidin-4-yl]imidazol-4-yl]acetonitrile Chemical compound FC1=C(C=C(C=C1)C=1N(C(=CN=1)CC#N)C1=NC(=NC=C1)NC1CNCCC1)C(F)(F)F BWSQKOKULIALEW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
本考案は各種通信機の局部発振器等に用いられ
る水晶発振回路の温度特性を改善する、水晶発振
回路の温度補償回路に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a temperature compensation circuit for a crystal oscillation circuit that improves the temperature characteristics of the crystal oscillation circuit used in local oscillators of various communication devices.
水晶発振回路の発振周波数の温度に対する変
動、すなわち温度特性を改善するためには、従
来、広い温度範囲にわたり振動の温度係数が小さ
い高精度の水晶を用いるか、あるいはサーミスタ
等の感温抵抗を用いた温度補償回路により発振周
波数の変化を補償するなどしている。
In order to improve the fluctuation of the oscillation frequency of a crystal oscillator circuit with respect to temperature, that is, the temperature characteristics, conventional methods have been to use a high-precision crystal with a small temperature coefficient of vibration over a wide temperature range, or to use a temperature-sensitive resistor such as a thermistor. The temperature compensation circuit used to compensate for changes in the oscillation frequency is used.
高精度の水晶は高価であり発振器の価格を高く
するという問題点がある。またサーミスタ等の温
度補償回路を用いる場合には、低温域では望まし
い温度特性が得られるが、常温域では補償回路の
サーミスタ等の温度係数に起因して温度特性がか
えつて悪化するという問題点がある。
High-precision crystals are expensive and have the problem of increasing the cost of the oscillator. Furthermore, when using a temperature compensation circuit such as a thermistor, desirable temperature characteristics can be obtained in a low temperature range, but there is a problem in that the temperature characteristics are worsened in the room temperature range due to the temperature coefficient of the thermistor, etc. in the compensation circuit. be.
上述の問題的を解決するために、本考案におい
ては、第1感温素子を含み低温域で温度補償を行
う温度補償回路を有する水晶発振回路において、
第2感温素子と、前記温度補償回路と並列に接続
されるとともに前記第2感温素子の出力電圧によ
りそのインピーダンスが変化し、前記第2感温素
子によつて検出された温度が前記低温域側から常
温域にはずれる場合には前記検出された温度と前
記低温域の所定温度との差の変化に従つて徐々に
該温度補償回路を無効化して前記水晶発振回路を
温度補償することなく動作させるトランジスタを
有することを特徴とする水晶発振回路が提供され
る。
In order to solve the above problems, the present invention provides a crystal oscillation circuit having a temperature compensation circuit that includes a first temperature sensing element and performs temperature compensation in a low temperature range.
A second temperature sensing element is connected in parallel with the temperature compensation circuit, and its impedance changes depending on the output voltage of the second temperature sensing element, so that the temperature detected by the second temperature sensing element is lower than the temperature above the temperature compensation circuit. When the temperature range deviates from the normal temperature range, the temperature compensation circuit is gradually disabled according to changes in the difference between the detected temperature and the predetermined temperature in the low temperature range, so that the crystal oscillation circuit is not temperature compensated. A crystal oscillation circuit characterized by having a transistor to be operated is provided.
第2感温素子によりオンオフされるスイツチ素
子により温度補償回路を所望の補償温度域でオン
させ、それ以外の温度域ではオフにする。それに
より目的とする補償温度域でのみ温度補償回路が
発振回路に接続されて温度補償が行われ、それ以
外の温度域では水晶発振回路から完全に切り離さ
れて該温度域での温度特性の悪化が防止される。
The temperature compensation circuit is turned on in a desired compensation temperature range by a switch element that is turned on and off by the second temperature sensing element, and is turned off in other temperature ranges. As a result, the temperature compensation circuit is connected to the oscillation circuit to perform temperature compensation only in the target compensation temperature range, and is completely disconnected from the crystal oscillation circuit in other temperature ranges, resulting in worsening of temperature characteristics in that temperature range. is prevented.
本考案の一実施例としての水晶発振回路の温度
補償回路が第1図に示される。この第1図の回路
は無線通信機の局部発振器に用いられるものであ
つて、低温域において温度補償が行われるように
構成されている。
A temperature compensation circuit for a crystal oscillation circuit as an embodiment of the present invention is shown in FIG. The circuit shown in FIG. 1 is used in a local oscillator of a wireless communication device, and is configured to perform temperature compensation in a low temperature range.
第1図において、発振回路部分は、水晶共振子
Qx、コンデンサC1〜C3、発振周波数調整用
の可変コンデンサVC1、サーミスタTH2とコ
ンデンサC4からなる低温域補償用回路、低温域
補償用回路をオンオフさせるためのトランジスタ
Q1、インバータQ2,Q3等からなる、発振出
力は端子T1から出力される。トランジスタQ1
のベースは、サーミスタTH1と抵抗器R1の並
列回路を介して電源VBに接続されるとともに、
抵抗器R2を介して接地されており、それにより
ベース・バイアス電圧を供給され、サーミスタ
TH1の出力電圧により抵抗器R1および抵抗R
2で構成されるインピーダンスが変化する。 In Figure 1, the oscillation circuit part is a crystal resonator.
Qx, capacitors C1 to C3, variable capacitor VC1 for adjusting oscillation frequency, low temperature range compensation circuit consisting of thermistor TH2 and capacitor C4, transistor Q1 for turning on and off the low temperature range compensation circuit, inverters Q2, Q3, etc. The oscillation output is output from terminal T1. Transistor Q1
The base of is connected to the power supply VB through a parallel circuit of thermistor TH1 and resistor R1, and
grounded through resistor R2, which provides the base bias voltage and connects the thermistor
Resistor R1 and resistor R depending on the output voltage of TH1
2 changes.
第1図回路の動作が第2図、第3図を参照しつ
つ以下に説明される。 The operation of the circuit of FIG. 1 will be explained below with reference to FIGS. 2 and 3.
トランジスタQ1のベース電位は抵抗器R1,
R2、サーミスタTH1の抵抗値により定まる
が、サーミスタTH1の抵抗値は温度により変化
するので、ベース電位も温度により変化され、ト
ランジスタQ1の導通状態も温度に応じて変化さ
れる。第1図回路の場合は高温になるほどベース
電圧が高くなり、したがつてトランジスタQ1が
導通されるようになつている。このようにトラン
ジスタQ1は前記低温域補償回路と並列に接続さ
れるとともに前記サーミスタTH1の出力電圧に
よりそのインピーダンスが変化し、前記サーミス
タTH1によつて検出された温度が所定温度域
(例えば−30〜−10℃)からはずれる場合には前
記検出された温度と前記所定温度領域との差の変
化に従つて水晶発振回路における温度補償回路の
寄与度を、補償可能温度範囲から離れるに従い
徐々に低くする。 The base potential of transistor Q1 is connected to resistor R1,
R2 is determined by the resistance value of the thermistor TH1, but since the resistance value of the thermistor TH1 changes depending on the temperature, the base potential also changes depending on the temperature, and the conduction state of the transistor Q1 also changes depending on the temperature. In the case of the circuit shown in FIG. 1, the higher the temperature, the higher the base voltage becomes, and therefore the transistor Q1 becomes conductive. In this way, the transistor Q1 is connected in parallel with the low temperature range compensation circuit, and its impedance changes depending on the output voltage of the thermistor TH1, so that the temperature detected by the thermistor TH1 is within a predetermined temperature range (for example -30 to -10℃), the degree of contribution of the temperature compensation circuit in the crystal oscillation circuit is gradually lowered as it moves away from the compensable temperature range according to changes in the difference between the detected temperature and the predetermined temperature range. .
第2図には温度変化に対するトランジスタQ1
のしや断状態が示される。第2図において、横軸
は温度T〔℃〕、縦軸はトランジスタQ1のしや断
の程度〔%〕を示すものであり、縦軸の100%は
トランジスタQ1が完全にしや断されている状態
に相当し、また0%は完全に導通されている状態
に相当する。第2図中、実線イであらわされる特
性は抵抗器R1が15kΩ、R2が2.2kΩの場合の
特性であり、一点鎖線ロであらわされる特性はR
1が18kΩ、R2が2.7kΩの場合の特性、二点鎖
線ハであらわされる特性はR1が22kΩ、R2が
3.3kΩの場合の特性である。 Figure 2 shows the transistor Q1 due to temperature changes.
Indicates the current state. In Figure 2, the horizontal axis shows the temperature T [°C], and the vertical axis shows the degree of shriveling of transistor Q1 [%], and 100% on the vertical axis indicates that transistor Q1 is completely shriveled. 0% corresponds to a completely conductive state. In Figure 2, the characteristics represented by the solid line A are the characteristics when the resistors R1 are 15kΩ and R2 are 2.2kΩ, and the characteristics represented by the dashed line B are the characteristics R
The characteristics when 1 is 18kΩ and R2 is 2.7kΩ, and the characteristics represented by the two-dot chain line C are when R1 is 22kΩ and R2 is 22kΩ.
This is the characteristic for 3.3kΩ.
第2図からも明らかなように、トランジスタQ
1は常温以上の温度域ではそのベース電位が高レ
ベルとなつて導通される。この状態では発振周波
数はコンデンサC1とC2の合成容量、およびコ
ンデンサC3と調整用可変コンデンサVC1の合
成容量の値により決まる。この場合、低温域にお
ける発振周波数の温度特性を補償するためのサー
ミスタTH2とコンデンサC4の直列回路はトラ
ンジスタQ1によつて徐々に短絡されることとな
り、サーミスタTH2の温度変化は発振周波数に
影響を与えないまたトランジスタQ1による短絡
は徐々に行われるので前記発振周波数変化の不連
続を防止する。さらに、本願考案では温度補償回
路の水晶発振回路へ寄与度を、補償可能範囲から
離れるに従つて徐々に低くしていくもので、これ
により、温度変化による発振周波数変化の不連続
を無くし、発振周波数の不安定温度域を無くして
いる。 As is clear from Figure 2, the transistor Q
1 has a base potential at a high level and becomes conductive in a temperature range above room temperature. In this state, the oscillation frequency is determined by the combined capacitance of capacitors C1 and C2, and the combined capacitance of capacitor C3 and variable adjustment capacitor VC1. In this case, the series circuit of thermistor TH2 and capacitor C4 for compensating the temperature characteristics of the oscillation frequency in the low temperature range is gradually short-circuited by the transistor Q1, and the temperature change of thermistor TH2 affects the oscillation frequency. Moreover, since the short circuit by the transistor Q1 is gradually performed, discontinuity in the change in the oscillation frequency is prevented. Furthermore, in the present invention, the degree of contribution of the temperature compensation circuit to the crystal oscillation circuit is gradually lowered as it moves away from the compensable range, thereby eliminating discontinuities in oscillation frequency changes due to temperature changes and oscillating. Eliminates unstable frequency temperature range.
常温域から温度が下がるとトランジスタQ1の
ベース電位は低下し、抵抗器R1,R2の抵抗値
とサーミスタTH1の温度係数によつて決まる或
る温度以下になると、トランジスタQ1は温度の
低下によつてしや断状態に移行されるようにな
る。これにより発振周波数は主にコンデンサC
1、コンデンサC3、可変コンデンサVC1によ
り決められるようになるとともに、サーミスタ
TH2がコンデンサC2に直列に接続されるよう
になつて、該サーミスタTH2により低温域での
温度特性が補償されるようになる。 When the temperature drops from the normal temperature range, the base potential of transistor Q1 decreases, and when the temperature drops below a certain temperature determined by the resistance values of resistors R1 and R2 and the temperature coefficient of thermistor TH1, the base potential of transistor Q1 decreases due to the decrease in temperature. It will now be moved to a dormant state. As a result, the oscillation frequency is mainly controlled by capacitor C.
1. It is now determined by capacitor C3 and variable capacitor VC1, and the thermistor
Since TH2 is connected in series with capacitor C2, temperature characteristics in a low temperature range can be compensated by the thermistor TH2.
第3図には、第1図回路による温度特性の改善
状態が示される。第3図において、横軸は温度T
〔℃〕、縦軸は周波数変化△F〔ppm〕をあらわす。
図中、実線イはR1=15kΩ、R2=2.2kΩの場
合の温度特性、一点鎖線ロはR1=18kΩ、R2
=2.7kΩの場合の温度特性、二点鎖線ハはR1=
22kΩ、R2=3.3kΩの場合の温度特性であり、
破線ニで示される特性は温度補償を行わない場合
の裸特性である。 FIG. 3 shows how the temperature characteristics have been improved by the circuit shown in FIG. In Figure 3, the horizontal axis is the temperature T
[°C], and the vertical axis represents the frequency change △F [ppm].
In the figure, the solid line A is the temperature characteristic when R1 = 15kΩ, R2 = 2.2kΩ, and the dashed line b is the temperature characteristic when R1 = 18kΩ, R2
Temperature characteristics when = 2.7kΩ, chain double-dashed line C is R1 =
This is the temperature characteristic when 22kΩ, R2 = 3.3kΩ,
The characteristics indicated by the broken line D are bare characteristics when temperature compensation is not performed.
第3図からも明らかなように、温度に対する周
波数変化△Fは低温域側において大幅に改善され
る。例えば、−30℃においては裸特性ニは−
7.13ppmであるのに対し、特性イは−4.22ppm、
特性ロは−4.31ppm、特性ハは−4.42ppmに改善
される。−10度以上での常温域で点線ニの裸特性
と低温域から常温域への補償無効後の特性(実
線)には、図3に示すように、トランジスタQ1
の特性の影響により若干のずれが生じる。 As is clear from FIG. 3, the frequency change ΔF with respect to temperature is significantly improved in the low temperature region. For example, at -30℃, the bare characteristic D is -
7.13ppm, while characteristic A is −4.22ppm,
Characteristic B is improved to -4.31ppm, and characteristic C is improved to -4.42ppm. As shown in Fig. 3, the bare characteristics (dotted line D) in the room temperature range above -10 degrees Celsius and the characteristics (solid line) after the compensation is disabled from the low temperature range to the room temperature range are as follows:
A slight deviation occurs due to the characteristics of
本考案の実施にあたつては種々の変形形態をと
ることが可能である。例えば第1図の回路は低温
域側の温度特性を補償するためのものであるが、
これに限らず、例えば常温域、あるいは高温域に
おいてのみ補償回路が発振回路に接続されて温度
補償を行うように構成することも可能である。 Various modifications can be made to the implementation of the present invention. For example, the circuit shown in Figure 1 is intended to compensate for the temperature characteristics in the low temperature range, but
The present invention is not limited to this, and it is also possible to configure the compensation circuit to be connected to the oscillation circuit to perform temperature compensation only in the normal temperature range or high temperature range, for example.
本考案によれば、所望の温度域においてのみ温
度補償回路が作動されるようになるので、それ以
外の温度域において発振周波数が該温度補償回路
によつて悪影響を受けることがなくなり、広い温
度範囲にわたり発振回路の温度特性を改善するこ
とができる。また、水晶共振子として高価な高精
度のものを必要としないので、発振回路の価格を
下げることができる。
According to the present invention, since the temperature compensation circuit is activated only in a desired temperature range, the oscillation frequency is not adversely affected by the temperature compensation circuit in other temperature ranges, and a wide temperature range is achieved. The temperature characteristics of the oscillation circuit can be improved over a period of time. Furthermore, since an expensive and highly accurate crystal resonator is not required, the price of the oscillation circuit can be reduced.
第1図は本考案の一実施例としての水晶発振回
路の温度補償回路を示す回路図、第2図は第1図
回路のトランジスタQ1の温度に対するしや断状
態を示す特性図、第3図は第1図回路による温度
特性の改善状態を示す特性図である。
R1〜R3……抵抗器、C1〜C6……コンデ
ンサ、VC……可変コンデンサ、TH1,TH2…
…サーミスタ、Q1……トランジスタ、Q2,Q
3……インバータ、Qx……水晶共振子。
Fig. 1 is a circuit diagram showing a temperature compensation circuit for a crystal oscillation circuit as an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the thermal cutoff state of transistor Q1 of the circuit shown in Fig. 1, and Fig. 3. FIG. 1 is a characteristic diagram showing the state of improvement in temperature characteristics by the circuit of FIG. R1-R3...Resistor, C1-C6...Capacitor, VC...Variable capacitor, TH1, TH2...
...Thermistor, Q1...Transistor, Q2, Q
3...Inverter, Qx...Crystal resonator.
Claims (1)
度補償回路を有する水晶発振回路において、 第2感温素子と、 前記温度補償回路と並列に接続されるとともに
前記第2感温素子の出力電圧によりそのインピー
ダンスが変化し、前記第2感温素子によつて検出
された温度が前記低温域側から常温域にはずれる
場合には前記検出された温度と前記低温域の所定
温度との差の変化に従つて徐々に該温度補償回路
を無効化して前記水晶発振回路を温度補償するこ
となく動作させるトランジスタを有することを特
徴とする水晶発振回路。[Scope of Claim for Utility Model Registration] A crystal oscillation circuit having a temperature compensation circuit that includes a first temperature sensing element and performs temperature compensation in a low temperature range, wherein a second temperature sensing element is connected in parallel with the temperature compensation circuit; The impedance of the second temperature sensing element changes depending on the output voltage of the second temperature sensing element, and when the temperature detected by the second temperature sensing element deviates from the low temperature range to the normal temperature range, the detected temperature and the low temperature A crystal oscillation circuit comprising a transistor that gradually disables the temperature compensation circuit according to a change in the difference between the temperature range and a predetermined temperature, thereby operating the crystal oscillation circuit without temperature compensation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10311984U JPS6118612U (en) | 1984-07-10 | 1984-07-10 | Temperature compensation circuit for crystal oscillator circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10311984U JPS6118612U (en) | 1984-07-10 | 1984-07-10 | Temperature compensation circuit for crystal oscillator circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6118612U JPS6118612U (en) | 1986-02-03 |
JPH0540569Y2 true JPH0540569Y2 (en) | 1993-10-14 |
Family
ID=30662513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10311984U Granted JPS6118612U (en) | 1984-07-10 | 1984-07-10 | Temperature compensation circuit for crystal oscillator circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6118612U (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51139751A (en) * | 1975-04-25 | 1976-12-02 | Motorola Inc | Temperature compensating circuit |
JPS5652908A (en) * | 1979-10-05 | 1981-05-12 | Seikosha Co Ltd | Oscillation frequency adjusting device |
JPS60226203A (en) * | 1984-04-25 | 1985-11-11 | Kinseki Kk | Temperature compensation circuit of crystal oscillator |
-
1984
- 1984-07-10 JP JP10311984U patent/JPS6118612U/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51139751A (en) * | 1975-04-25 | 1976-12-02 | Motorola Inc | Temperature compensating circuit |
JPS5652908A (en) * | 1979-10-05 | 1981-05-12 | Seikosha Co Ltd | Oscillation frequency adjusting device |
JPS60226203A (en) * | 1984-04-25 | 1985-11-11 | Kinseki Kk | Temperature compensation circuit of crystal oscillator |
Also Published As
Publication number | Publication date |
---|---|
JPS6118612U (en) | 1986-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3373379A (en) | Crystal oscillator with temperature compensation | |
JPS5895408A (en) | Improved temperature compensating circuit | |
US3831111A (en) | Temperature compensator for a crystal oscillator | |
JPH0540569Y2 (en) | ||
US7049899B2 (en) | Temperature compensated piezoelectric oscillator and electronic device using the same | |
CA1057828A (en) | Temperature compensated surface acoustic wave oscillator | |
JP5040798B2 (en) | Piezoelectric oscillator | |
US3324415A (en) | Frequency and amplitude stabilized rc coupled oscillator circuit | |
US4297655A (en) | Temperature compensated crystal oscillator | |
JP2002135051A (en) | Piezoelectric oscillator | |
US3270296A (en) | Temperature compensating device for a crystal oscillator | |
WO1998056112A2 (en) | Oscillator frequency-drift compensation | |
US3457529A (en) | Temperature compensation of crystal-controlled circuit | |
JPS641969B2 (en) | ||
US3508168A (en) | Crystal oscillator temperature compensating circuit | |
JP2005217773A (en) | Voltage-controlled piezoelectric oscillator | |
JP7549847B2 (en) | Oscillator circuit and electronic device | |
JP2001060828A (en) | Temperature compensation oscillator | |
JPH10215120A (en) | Quartz oscillation circuit | |
JPH0533054Y2 (en) | ||
JPS5915121Y2 (en) | Temperature compensated crystal oscillator circuit | |
JP2975037B2 (en) | Temperature compensated crystal oscillator | |
JP2024157047A (en) | Oscillator circuit and electronic device | |
JP2750886B2 (en) | Temperature sensitive voltage generating circuit and temperature compensating element using the same | |
JPH0441605Y2 (en) |