JPH0538408A - Gas-liquid separation apparatus - Google Patents
Gas-liquid separation apparatusInfo
- Publication number
- JPH0538408A JPH0538408A JP19653591A JP19653591A JPH0538408A JP H0538408 A JPH0538408 A JP H0538408A JP 19653591 A JP19653591 A JP 19653591A JP 19653591 A JP19653591 A JP 19653591A JP H0538408 A JPH0538408 A JP H0538408A
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- gas
- flow
- liquid
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Separating Particles In Gases By Inertia (AREA)
- Cyclones (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は各種プラントにおける気
液二相流の気液分離装置、特に地熱発電用蒸気の純度向
上に好適な気液分離装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-liquid two-phase flow gas-liquid separator in various plants, and more particularly to a gas-liquid separator suitable for improving the purity of geothermal power generation steam.
【0002】[0002]
【従来の技術】図10は従来の気液分離装置の一例を示
す水平横断面図(図11のX−X断面)、図11は図1
0のXI−XI縦断側面図、図12は図10のXII −XII 縦
断正面図である。2. Description of the Related Art FIG. 10 is a horizontal cross-sectional view showing an example of a conventional gas-liquid separator (X-X section in FIG. 11), and FIG.
0 is a vertical sectional side view of XI-XI, and FIG. 12 is a vertical sectional front view of XII-XII in FIG.
【0003】これらの図において、(01)は竪型円筒
状の筒体、(02)は同筒体(01)の側面に接線方向
に取付けられた円形断面の流入ノズル、(03)は同流
入ノズルに接続された入口管である。(04)は気体排
出管であって、上記筒体(01)内に同軸に配され、上
端が上記筒体(01)内の上部に開口している。(0
5)は上記筒体(01)の下部に開口する液体排出管で
ある。上記流入ノズル(02)の断面は、上記入口管
(03)(径D03)をそのまま延長した同一寸法の円形
断面となっている。またそのノズル幅B02(=ノズル径
D02)は、筒体(01)と気体排出管(04)との間に
形成される環状断面の旋回流路(06)の幅B06とほぼ
同等である。In these figures, (01) is a vertical cylindrical cylinder, (02) is an inflow nozzle having a circular cross section tangentially attached to the side surface of the cylinder (01), and (03) is the same. An inlet pipe connected to the inflow nozzle. Reference numeral (04) is a gas discharge pipe, which is coaxially arranged in the cylindrical body (01) and has an upper end opened to an upper part in the cylindrical body (01). (0
Reference numeral 5) is a liquid discharge pipe that opens at the bottom of the cylindrical body (01). The cross section of the inflow nozzle (02) is a circular cross section of the same size obtained by directly extending the inlet pipe (03) (diameter D 03 ). The nozzle width B 02 (= nozzle diameter D 02 ) is almost equal to the width B 06 of the swirling flow passage (06) having an annular cross section formed between the cylindrical body (01) and the gas discharge pipe (04). Is.
【0004】このような気液分離装置において、入口管
(03)から流入ノズル(02)を経て筒体(01)の
環状旋回流路(06)に気液二相流が流入すると、この
環状旋回流路(06)内で液滴が慣性力と遠心力によっ
て筒体(01)の内周壁に衝突・付着し、その後、重力
の作用で壁面を伝って流下し、底部に溜る。これを液体
排出管(05)から系外に排出する。一方、気体は環状
旋回流路(06)内を旋回して上昇し、気体排出管(0
4)内に導入されて、系外に排出される。この環状旋回
流路(06)内の気体流の上昇速度は、筒体(01)の
中心部に設置される気体排出管(04)によって、中心
部が速く周辺部で遅い顕著な特徴がある。In such a gas-liquid separator, when a gas-liquid two-phase flow flows from the inlet pipe (03) through the inflow nozzle (02) into the annular swirl flow path (06) of the cylindrical body (01), In the swirl flow path (06), the droplets collide with and adhere to the inner peripheral wall of the cylindrical body (01) due to inertial force and centrifugal force, and then flow down by the action of gravity along the wall surface and collect at the bottom. This is discharged out of the system through the liquid discharge pipe (05). On the other hand, the gas swirls and rises in the annular swirl flow path (06), and the gas exhaust pipe (0
4) It is introduced inside and discharged outside the system. The rising speed of the gas flow in the annular swirling flow path (06) has a remarkable characteristic that the central part is fast and the peripheral part is slow due to the gas discharge pipe (04) installed in the central part of the tubular body (01). ..
【0005】[0005]
【発明が解決しようとする課題】前記のような気液分離
装置の流入ノズル(02)から筒体(01)の内部に噴
出する流れは、ノズル断面形状に応じた自由噴流とな
り、筒体内部に噴出後、流れは拡がり減速する。そし
て、この噴流の拡がり角度は、図10ないし図12に例
示されたような円形ノズル(02)からの噴流では片側
広がり角α0 が12度程度、また長方形ノズルからの噴
流(二次元噴流)では片側広がり角は16度程度であ
る。The flow ejected from the inflow nozzle (02) of the gas-liquid separation device into the inside of the cylinder (01) becomes a free jet according to the cross-sectional shape of the nozzle, and the inside of the cylinder is solved. After jetting out, the flow spreads and slows down. The divergence angle of the jet flow is such that the one-sided divergence angle α 0 is about 12 degrees in the jet flow from the circular nozzle (02) as illustrated in FIGS. 10 to 12, and the jet flow from the rectangular nozzle (two-dimensional jet flow). Then, the one-sided spread angle is about 16 degrees.
【0006】円形断面の流入ノズル(02)から流入す
る流体として、気液二相流が環状旋回流路(06)に流
入した場合、流入ノズル(02)の外側の流れ(図10
中のW011 )は、筒体(01)の内周壁に沿う形で環状
旋回流路(06)に滑らかに流入する。また中心部の流
れ(図10中のW012)の中の液滴も、環状旋回流路
(06)内を直進して筒体(01)の内周壁に衝突し、
大部分は壁面に付着して分離される。そして極く一部の
液滴が筒体内周壁に衝突後、環状旋回流路(06)内
(例えば図中W022 の方向)に再飛散する。ところがノ
ズル内側の流れ中の液滴は、環状旋回流路(06)内に
噴出した際に、気体上昇流速の速い筒体中心部を通って
W013 の方向に直進し、あるいはさらに広がって筒体中
心部に向かって(W014方向に)飛散する。そして筒体
(01)の内周壁あるいは気体排出管(04)の外周壁
に衝突し、一部液滴はこれら壁面に付着するが、残りの
液滴は衝突後再び環状旋回流路(06)内に再飛散す
る。When a gas-liquid two-phase flow flows into the annular swirl flow path (06) as a fluid flowing in from the inflow nozzle (02) having a circular cross section, the flow outside the inflow nozzle (02) (see FIG. 10).
W 011 ) therein smoothly flows into the annular swirl flow path (06) along the inner peripheral wall of the cylindrical body (01). Further, the liquid droplets in the flow in the central portion (W 012 in FIG. 10) also travel straight in the annular swirl flow path (06) and collide with the inner peripheral wall of the cylindrical body (01),
Most of them adhere to the wall surface and are separated. Then, after a very small part of the droplet collides with the peripheral wall of the cylinder, it re-scatters in the annular swirl flow path (06) (for example, in the direction of W 022 in the figure). However, when the droplet in the flow inside the nozzle jets into the annular swirl flow path (06), it goes straight in the direction of W 013 through the central portion of the tubular body where the gas rising velocity is fast, or spreads further and becomes a tubular tube. Scatter toward the center of the body (in the W 014 direction). Then, it collides with the inner peripheral wall of the cylindrical body (01) or the outer peripheral wall of the gas discharge pipe (04), and some droplets adhere to these wall surfaces, but the remaining droplets collide again with the annular swirling flow path (06). Re-scatter inside.
【0007】上記のように、ノズル内側の噴流中の液滴
は、噴出後、気体上昇速度の速い筒体中心部を通り、あ
るいは筒体中心部に向って広がり飛散する。そして筒体
内周壁あるいは気体排出管外周壁に衝突しても、壁面衝
突角度β0 が比較的大きいので、かなりの量の液滴がこ
れら壁面に付着せず、強く壁面衝突後無数の小液滴とな
って再飛散する。(例えば図10、図11中W013 ,W
014 ,W018 の方向に飛散し、W023 ,W024 ,W028
の方向に再飛散する。)これら飛散・再飛散した無数か
つ微小径の液滴は、環状旋回流路(06)内に浮遊し、
気体排出管(04)の上端開口に向かって上昇する気流
により搬送されて装置外に出てゆく。したがって気液分
離効率が著しく低下することになる。As described above, the droplets in the jet flow inside the nozzle, after being jetted, pass through the central portion of the cylinder having a high gas rising speed, or spread and scatter toward the central portion of the cylinder. Even if it collides with the inner wall of the cylinder or the outer wall of the gas discharge pipe, the wall surface collision angle β 0 is relatively large, so a considerable amount of droplets do not adhere to these wall surfaces, and a large number of small droplets after strong wall collision. And then scatter again. (For example, W 013 and W in FIGS.
Scatter in the directions of 014 , W 018 , and W 023 , W 024 , W 028
Re-scatter in the direction of. ) These numerous scattered and re-scattered droplets with a minute diameter float in the annular swirl flow path (06),
It is carried by the air flow rising toward the upper end opening of the gas discharge pipe (04) and goes out of the apparatus. Therefore, the gas-liquid separation efficiency is significantly reduced.
【0008】[0008]
【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、竪型円筒状の筒体と、その筒体の
側面に接線方向に取付けられた流入ノズルと、上記筒体
内に同軸に配され、上端が上記筒体内の上部に開口する
気体排出管と、上記筒体の下部に開口する液体排出管と
を備えた気液分離装置において、上記流入ノズルが上記
筒体内に延長され、その筒内延長部は、断面積が下流に
向かって小さくならず、底面が下流に向かって低くなる
よう傾斜しており、かつその幅が流れに沿って一定かま
たは先細りであり、ノズル出口では上記筒体と上記気体
排出管との間に形成される環状旋回流路の幅よりも狭い
ことを特徴とする気液分離装置を提案するものである。In order to solve the above-mentioned conventional problems, the present invention provides a vertical cylindrical tube body, an inflow nozzle tangentially attached to the side surface of the tube body, and the tube. In a gas-liquid separation device, which is coaxially arranged in the body and has a gas discharge pipe having an upper end opened to an upper part in the cylinder body, and a liquid discharge pipe opened to a lower part of the cylinder body, wherein the inflow nozzle is the cylinder body. The in-cylinder extension is inclined so that the cross-sectional area does not decrease toward the downstream side and the bottom surface decreases toward the downstream side, and its width is constant or tapered along the flow. The present invention proposes a gas-liquid separation device characterized in that the width at the nozzle outlet is narrower than the width of an annular swirl flow path formed between the cylindrical body and the gas discharge pipe.
【0009】[0009]
【作用】上記のように筒体内に延長された流入ノズルを
設置することによって、環状旋回流路に流入する気液二
相流は筒体周壁側および筒底部へと方向づけられて、気
体排出管に衝突することがなくなり、かつ環状旋回流路
内の旋回流れが流入噴流で乱されることなくスムーズに
流れる。また、液滴が周壁に衝突する角度が小さく保た
れるので、殆んど全ての液滴が筒体の周壁に衝突付着し
て、衝突後の再飛散が殆んど防止される。そしてまた、
液滴の底部への流下が促される。こうして気液分離装置
の気液分離効率が格段に向上する。By installing the inflow nozzle extended in the cylinder as described above, the gas-liquid two-phase flow flowing into the annular swirl flow path is directed to the cylinder peripheral wall side and the cylinder bottom, and the gas discharge pipe. And the swirling flow in the annular swirling flow passage smoothly flows without being disturbed by the inflowing jet flow. Further, since the angle at which the droplets collide with the peripheral wall is kept small, almost all the droplets collide and adhere to the peripheral wall of the cylindrical body, and re-scattering after the collision is almost prevented. and again,
The drop is allowed to flow to the bottom. In this way, the gas-liquid separation efficiency of the gas-liquid separator is significantly improved.
【0010】[0010]
【第1実施例】図1は、本発明の第1の実施例として、
矩形断面ノズルが設けられた場合を示す水平横断面図
(図2のI−I断面)、図2は図1のII−II縦断側面
図、図3は図1のIII −III 縦断正面図である。First Embodiment FIG. 1 shows a first embodiment of the present invention.
A horizontal cross-sectional view (II cross section of FIG. 2) showing a case where a rectangular cross-section nozzle is provided, FIG. 2 is a II-II vertical side view of FIG. 1, and FIG. 3 is a III-III vertical front view of FIG. is there.
【0011】これらの図において、(11)は竪型円筒
状の分離器本体(筒体)、(12)は同筒体(11)の
側面に接線方向に取付けられた流入ノズル、(13)は
同流入ノズルに接続された入口管である。(14)は気
体排出管であって、上記筒体(11)内に同軸に配さ
れ、上端が上記筒体(11)内の上部に開口している。
(15)は上記筒体(11)の下部に開口する液体排出
管である。In these figures, (11) is a vertical cylindrical separator main body (cylindrical body), (12) is an inflow nozzle tangentially attached to the side surface of the cylindrical body (11), and (13). Is an inlet pipe connected to the inflow nozzle. Reference numeral (14) is a gas discharge pipe, which is coaxially arranged in the cylindrical body (11) and has an upper end opened to an upper part in the cylindrical body (11).
Reference numeral (15) is a liquid discharge pipe that opens at the bottom of the cylindrical body (11).
【0012】本実施例の流入ノズル(12)は、接続ノ
ズル(12a)と矩形ノズル(12b)とから構成され
ている。接続ノズル(12a)は、円形断面の入口管
(13)と矩形断面の矩形ノズル(12b)を接続する
異形継手である。矩形ノズル(12b)は、筒体(1
1)の内部まで延長され、気液分離装置への気液二相流
の流入口を形成する。The inflow nozzle (12) of this embodiment comprises a connecting nozzle (12a) and a rectangular nozzle (12b). The connecting nozzle (12a) is a deformed joint that connects the inlet pipe (13) having a circular cross section and the rectangular nozzle (12b) having a rectangular cross section. The rectangular nozzle (12b) has a cylindrical body (1
It extends to the inside of 1) and forms an inlet for the gas-liquid two-phase flow to the gas-liquid separator.
【0013】接続ノズル(12a)は、その出口幅B
12a が筒体(11)と気体排出管(14)との間に形成
される環状旋回流路(16)の幅B16の約半分となるよ
うに、内側壁面が外側に傾斜している。またその底面
は、下流に向かって低くなるよう角度θ1aで傾斜してお
り、その出口高さが入口高さ(入口管径)D13からH1a
まで増加して、接続ノズル(12a)の出口断面積が入
口断面積(入口管(13)の断面積)よりも小さくなら
ないようになっている。矩形ノズル(12b)の底面
も、接続ノズル(12a)と同様に下流に向かって低く
なるよう、角度θ1b(=θ1a)で傾斜しており、その出
口高さは、入口高さH1aからH1bまで増加する。そして
この矩形ノズル(12b)の幅B12b は、流れ方向に一
定(すなわち接続ノズル(12a)の出口幅B12a と同
じ)である。したがって矩形ノズル(12b)の断面積
は、下流に向かって拡大している。The connecting nozzle (12a) has an outlet width B
The inner wall surface is inclined outward so that 12a is about half the width B 16 of the annular swirl flow path (16) formed between the tubular body (11) and the gas discharge pipe (14). Further, the bottom surface is inclined at an angle θ 1a so as to decrease toward the downstream side, and the outlet height is from the inlet height (inlet pipe diameter) D 13 to H 1a.
Until the outlet cross-sectional area of the connecting nozzle (12a) becomes smaller than the inlet cross-sectional area (cross-sectional area of the inlet pipe (13)). The bottom surface of the rectangular nozzle (12b) is also inclined at an angle θ 1b (= θ 1a ) so that it becomes lower toward the downstream like the connection nozzle (12a), and its outlet height is the inlet height H 1a. To H 1b . The width B 12b of the rectangular nozzle (12b) is constant in the flow direction (that is, the same as the outlet width B 12a of the connecting nozzle (12a)). Therefore, the cross-sectional area of the rectangular nozzle (12b) is enlarged downstream.
【0014】このような気液分離装置において、入口管
(13)から流入ノズル(12)、すなわち接続ノズル
(12a)と矩形ノズル(12b)を経て筒体(11)
内の環状旋回流路(16)に流入する気液二相流は、そ
の流向が筒体外周壁および低部の方に向かい、筒体中央
の気体流出管(14)に衝突する流れやそれに近い流れ
がなくなる。また、筒体内に延長して設けた矩形ノズル
(12b)の筒内側延長ダクト壁によって、環状旋回流
路内(16)の旋回流れが整流され、乱れのないスムー
ズな旋回流れが保たれる。さらにこの望ましい旋回流れ
と噴流が筒体(11)の内周壁へ衝突する角度が小さく
なるので、噴流が周壁に衝突した後の水滴の再飛散は殆
どなくなる。こうして、従来の気液分離装置において環
状旋回流路に飛散あるいは再飛散し上昇気流で浮遊上昇
して気体流出管から搬送排出されていたような、浮遊液
滴が殆んどなくなり、殆んど全ての液滴が筒体内周壁に
衝突付着するので、気液分離効率は大幅に向上する。本
実施例ではまた、矩形ノズル(12b)の出口幅B12b
を接続ノズル(12a)の出口幅B12a と同等とすると
ともに、矩形ノズル(12b)の底面傾斜角θ1bを接続
ノズル(12a)の底面傾斜角θ1aと同角度に保って、
矩形ノズル(12b)の出口面積を接続ノズル(12
a)の出口面積よりも大きく(したがって入口管(1
3)の断面積よりも大きく)したことにより、流入ノズ
ル(12)の静圧損失を小さくすることができる。すな
わち、本実施例では、分離効率の向上と静圧損失回復の
二重の効果が発揮される。In such a gas-liquid separation device, the tubular body (11) is passed from the inlet pipe (13) through the inflow nozzle (12), that is, the connecting nozzle (12a) and the rectangular nozzle (12b).
The gas-liquid two-phase flow flowing into the annular swirl flow path (16) in the inside has a flow direction toward the outer peripheral wall and the lower part of the cylindrical body and collides with the gas outflow pipe (14) at the center of the cylindrical body or close thereto. There is no flow. Further, the swirling flow in the annular swirling flow path (16) is rectified by the inward-cylinder extending duct wall of the rectangular nozzle (12b) provided extending in the cylindrical body, and a smooth swirling flow without turbulence is maintained. Further, since the angle at which the desired swirling flow and the jet flow collide with the inner peripheral wall of the cylindrical body (11) becomes small, re-scattering of water drops after the jet flow collides with the peripheral wall is almost eliminated. In this way, in the conventional gas-liquid separation device, almost no floating droplets, which are scattered or re-scattered in the annular swirl flow path, floated up by the ascending air current, and are conveyed and discharged from the gas outflow pipe, are almost eliminated. Since all the droplets collide with and adhere to the peripheral wall of the cylinder, the gas-liquid separation efficiency is significantly improved. In this embodiment, the outlet width B 12b of the rectangular nozzle (12b) is also used.
Is equal to the outlet width B 12a of the connection nozzle (12a), and the bottom surface inclination angle θ 1b of the rectangular nozzle (12b) is maintained at the same angle as the bottom surface inclination angle θ 1a of the connection nozzle (12a),
Connect the outlet area of the rectangular nozzle (12b) to the connecting nozzle (12
larger than the exit area of (a) (and therefore the inlet pipe (1
By making it larger than the cross-sectional area of 3), the static pressure loss of the inflow nozzle (12) can be reduced. That is, in this embodiment, the dual effects of improving the separation efficiency and recovering the static pressure loss are exhibited.
【0015】図1および図2において、W112 ,
W113 ,W115 ,W116 は流入ノズル(12)のそれぞ
れ図示の位置から筒体(11)内に流入する二相噴流中
の液滴の主体的な流れ方向、W114 は液滴の拡がり流れ
方向、W122 ないしW126 は筒体内周壁に衝突した液滴
が再飛散すると仮定したときの液滴の主体的な跳ね返り
飛散方向を示す。またW110 およびW120 は、流入ノズ
ルが筒体内に延長されていない場合における二相流噴流
中の拡がり液滴の流れ方向、およびこれが筒体内周壁に
衝突した時に再飛散する液滴の主体的跳ね返り方向であ
って、それぞれ上記実施例における流れ方向W114 およ
び再飛散方向W124 と比較するために示したものであ
る。In FIGS. 1 and 2, W 112 ,
W 113 , W 115 , and W 116 are the main flow directions of the liquid droplets in the two-phase jet flowing into the cylindrical body (11) from the illustrated positions of the inflow nozzle (12), and W 114 is the spread of the liquid droplets. The flow directions, W 122 to W 126, represent the main rebounding and scattering directions of the liquid droplets when it is assumed that the liquid droplets that have collided with the peripheral wall of the cylinder re-scatter. W 110 and W 120 are the flow directions of the spreading liquid droplets in the two-phase flow jet when the inflow nozzle is not extended into the cylinder, and the main components of the liquid droplets re-scattered when they collide with the peripheral wall of the cylinder. The bounce direction, which is shown for comparison with the flow direction W 114 and the re-scattering direction W 124 in the above embodiment, respectively.
【0016】上記のとおり本実施例においては、流入ノ
ズル(12)の底面が下流に向かって低くなるよう傾斜
していることによって、筒体(11)内に流入して筒体
内周壁に衝突した気液二相流が壁面に沿って上昇するの
が抑制され、特に飛散ミストの上昇高さの軽減に効果が
発揮されて、上昇気体流による液体粒子の同伴流出が少
なくなり、分離効率が改善される。この改善に対する傾
斜角θ1a,θ1bの影響を述べると、傾斜角が増すに伴っ
て良好になるが、角度が10ないし15°程度で最良、
更に角度が増すと効果が徐々に減少し、30°を超える
と逆効果となる。傾斜が30°を超える領域では、筒体
(11)内に延長して設けた流入ノズル(12)から筒
体内に流入した二相流の一部が、筒体(11)の底面域
に溜められた液面に衝突し、これに誘発されて液面から
液滴が飛散するようになるからである。したがって、水
平面に対する流入ノズル(12)(すなわち、接続ノズ
ル(12a)および矩形ノズル(12b))の底面傾斜
角θ1a,θ1bは、30°以下にするのが望ましい。な
お、傾斜角θ1a,θ1bは、0°から僅かに大きくなって
も効果は顕著である。これは、流入ノズルの底面側を多
く流れている液膜流が面の傾斜で流れ易くなり、この液
膜流表面からの気体流によるエントレイメントが急激に
減少することに起因している。As described above, in this embodiment, since the bottom surface of the inflow nozzle (12) is inclined so as to become lower toward the downstream side, it flows into the cylindrical body (11) and collides with the peripheral wall of the cylindrical body. The gas-liquid two-phase flow is suppressed from rising along the wall surface, and in particular it is effective in reducing the rising height of the scattered mist, and the entrainment and outflow of liquid particles due to the rising gas flow is reduced, improving the separation efficiency. To be done. The effect of the tilt angles θ 1a and θ 1b on this improvement will be improved as the tilt angle increases, but the best angle is about 10 to 15 °,
When the angle is further increased, the effect gradually decreases, and when it exceeds 30 °, the opposite effect is obtained. In the region where the inclination exceeds 30 °, a part of the two-phase flow that has flowed into the cylindrical body from the inflow nozzle (12) extended in the cylindrical body (11) is accumulated in the bottom surface region of the cylindrical body (11). This is because the liquid droplets collide with the generated liquid surface and are triggered by the liquid surface to scatter the liquid droplets from the liquid surface. Therefore, it is desirable that the bottom surface inclination angles θ 1a and θ 1b of the inflow nozzle (12) (that is, the connection nozzle (12a) and the rectangular nozzle (12b)) with respect to the horizontal plane be 30 ° or less. It should be noted that the effects of the inclination angles θ 1a and θ 1b are significant even if the inclination angles θ 1a and θ 1b are slightly increased from 0 °. This is because the liquid film flow that is flowing largely on the bottom surface side of the inflow nozzle tends to flow due to the inclination of the surface, and the entrainment due to the gas flow from the surface of the liquid film flow is sharply reduced.
【0017】次に流入ノズル(12)の長さ(すなわ
ち、接続ノズル(12a)の入口から筒体(11)内に
延長して設けた矩形ノズル(12b)の出口までの長
さ)L1 は、同入口管(13)の内径D13(すなわち流
入ノズル(12)の入口径)の3倍程度以上であること
が望ましい。これは、流入ノズル(12)を水平面から
屈曲(平均角度θ/2)させた場合、内部の流れが流入
ノズル出口(筒体流入端)で屈曲角度(θ/2)の方向
に向かうのに必要な助走距離に対応する。すなわち、管
路が屈曲すると一般に流れは屈曲部外側に偏流するが、
流下するに伴って徐々に一様分布へと是正され、特に気
液二相流で液膜流が屈曲の内側(本案では流入ノズル底
面側)に戻る距離が、管径のほぼ3倍程度となるからで
ある。Next, the length of the inflow nozzle (12) (that is, the length from the inlet of the connecting nozzle (12a) to the outlet of the rectangular nozzle (12b) provided in the tubular body (11)) L 1 Is preferably about 3 times or more of the inner diameter D 13 of the inlet pipe (13) (that is, the inlet diameter of the inflow nozzle (12)). This is because when the inflow nozzle (12) is bent from the horizontal plane (average angle θ / 2), the internal flow is directed toward the bending angle (θ / 2) at the inflow nozzle outlet (cylindrical inflow end). Corresponding to the required approach distance. That is, when the conduit bends, the flow generally drifts to the outside of the bend,
As it flows down, it is gradually corrected to a uniform distribution, and the distance that the liquid film flow returns to the inside of the bend (in this case, the bottom surface side of the inflow nozzle) is about 3 times the pipe diameter, especially in the gas-liquid two-phase flow. Because it will be.
【0018】なお、流入ノズル(12)の筒体内延長部
は、長方形断面のほか台形断面等とすることもできる。The in-cylinder extension of the inflow nozzle (12) may have a trapezoidal cross section as well as a rectangular cross section.
【0019】[0019]
【第2実施例】図4は、本発明の第2の実施例として、
前記第1の実施例と形状寸法の若干異なる矩形断面ノズ
ルが設けられた場合を示す、水平横断面図(図5のIV−
IV断面)、図5は図4のV−V縦断側面図、図6は図4
のVI−VI縦断正面図である。これらの図において、前記
図1ないし図3により説明した第1の実施例と同様の部
分については、冗長になるのを避けるため、図1ないし
図3中の符号(サフィックスを含む)の頭の1を2に代
えた符号を付け、詳しい説明を省く。[Second Embodiment] FIG. 4 shows a second embodiment of the present invention.
A horizontal cross-sectional view (IV- in FIG. 5) showing a case where a rectangular cross-section nozzle having a shape slightly different from that of the first embodiment is provided.
IV cross section), FIG. 5 is a vertical cross-sectional side view of VV in FIG. 4, and FIG.
FIG. 6 is a vertical sectional view of VI-VI in FIG. In these figures, the parts similar to those of the first embodiment described with reference to FIGS. 1 to 3 are indicated by the reference numerals (including suffixes) in FIGS. 1 to 3 in order to avoid redundancy. A reference numeral in which 1 is replaced with 2 is given, and detailed description is omitted.
【0020】本実施例においても、流入ノズル(22)
の前半部を形成する接続ノズル(22a)の出口幅B
22a が環状旋回流路(26)の幅B26の約半分となるよ
うに側壁面を狭め、また接続ノズル(22a)の出口面
積が入口管(23)の断面積よりも小さくならないよう
にノズル高さを維持しながらその底面を下方に傾斜させ
た点は、前記第1の実施例と同じである。本実施例にお
いては、接続ノズル(22a)の幅を狭めるのに、内外
両壁面が等しく狭められている。すなわち接続ノズル
(22a)の形状は左右対称である。また、筒体(2
1)内に延長して設けられた矩形ノズル(22b)は、
接続ノズル(22a)の底面傾斜θ2aと同じ底面傾斜θ
2b(=θ2a)を持ち、かつ矩形ノズル(22b)の出口
断面積を接続ノズル(22a)の出口断面積と同等とす
るため、矩形ノズル(22b)の出口幅B22b が接続ノ
ズル(22a)の出口幅B22a よりも更に狭められてい
る。流入ノズル(22)(すなわち接続ノズル(22
a)と矩形ノズル(22b)の合計)の長さL2 は、前
記第1の実施例と同じく、入口管径D23の3倍程度以上
となっている。Also in this embodiment, the inflow nozzle (22)
Width B of the connecting nozzle (22a) forming the first half of the
The side wall surface is narrowed so that 22a is about half the width B 26 of the annular swirl flow path (26), and the outlet area of the connecting nozzle (22a) is not smaller than the cross-sectional area of the inlet pipe (23). The point that the bottom surface is inclined downward while maintaining the height is the same as in the first embodiment. In this embodiment, both the inner and outer wall surfaces are narrowed to narrow the width of the connecting nozzle (22a). That is, the shape of the connection nozzle (22a) is symmetrical. In addition, the cylinder (2
The rectangular nozzle (22b) extended in 1) is
The same bottom inclination θ 2a as the bottom inclination θ 2a of the connecting nozzle (22a)
2b (= θ 2a ) and the outlet cross-sectional area of the rectangular nozzle (22b) is made equal to the outlet cross-sectional area of the connecting nozzle (22a), the outlet width B 22b of the rectangular nozzle (22b) is equal to the connecting nozzle (22a). ) The exit width B 22a is further narrowed. Inflow nozzle (22) (ie connecting nozzle (22
The length L 2 of (a) and the rectangular nozzle (22b)) is about 3 times the inlet pipe diameter D 23 or more, as in the first embodiment.
【0021】本実施例は、矩形ノズルの形状寸法が前記
第1の実施例と異なる。すなわち本実施例では、第1の
実施例に比べて更に高い分離効率を得るため、矩形ノズ
ル(22b)の断面積を入口管(23)の断面積および
接続ノズル(22a)の断面積と同等に保持しつつ筒体
(21)内に延長し、その出口幅B22b をさらに狭めた
ものである。その効果として、液滴の飛散と再飛散およ
びこれによる液滴の浮遊が殆ど全くなくなり、分離効率
が格段に向上する。その代り、第1の実施例の効果の一
つであった静圧損失減少は期待されない。The present embodiment is different from the first embodiment in the shape and size of the rectangular nozzle. That is, in this embodiment, the cross-sectional area of the rectangular nozzle (22b) is equal to the cross-sectional area of the inlet pipe (23) and the cross-sectional area of the connecting nozzle (22a) in order to obtain a higher separation efficiency than in the first embodiment. The width B 22b of the outlet is further narrowed while being extended to the inside of the tubular body (21) while being held at. As an effect thereof, the scattering and re-scattering of the liquid droplets and the floating of the liquid droplets caused thereby are almost completely eliminated, and the separation efficiency is remarkably improved. Instead, the static pressure loss reduction, which is one of the effects of the first embodiment, is not expected.
【0022】[0022]
【第3実施例】図7は、本発明の第3の実施例として、
円形断面のノズルが設けられた場合を示す水平横断面図
(図8のVII −VII 断面)、図8は図7のVIII−VIII縦
断側面図、図9は図7のIX−IX縦断正面図である。これ
らの図においても、前記第1および第2の実施例と同様
の部分については、図1ないし図6中の符号(サフィッ
クスを含む)の頭の1または2を3に代えた符号を付
け、詳しい説明を省く。[Third Embodiment] FIG. 7 shows a third embodiment of the present invention.
A horizontal cross-sectional view (VII-VII cross section of FIG. 8) showing a case where a nozzle having a circular cross section is provided, FIG. 8 is a vertical side view of VIII-VIII of FIG. 7, and FIG. 9 is a front view of IX-IX of FIG. 7. Is. Also in these drawings, the same parts as those of the first and second embodiments are denoted by reference numerals in which the heads 1 or 2 of the reference numerals (including suffixes) in FIGS. 1 to 6 are replaced with 3. Omit detailed explanation.
【0023】この第3の実施例において、筒体(31)
の側面の接平面に沿って筒内に延長して設けられた流入
ノズル(32)は、径D32が環状旋回流路(36)の幅
B36よりも小さい円形のノズルで、筒体(31)の中心
線(37)位置附近まで筒体(31)内に延長され、か
つ筒外部と筒内部を合わせて合計長さL3 の直線部を有
し、この直線部が、流れ方向へ向かって低くなるよう、
水平に対し角度θ3 だけ傾斜して設けられている。ここ
に図7および図8中の矢印Wは噴流の方向を示すもの
で、W311 〜W313 およびW315 〜W317 はおのおの図
示の噴出位置から噴出する主噴流の方向を示し、
W314 ,W318 は噴流の拡がり噴出方向(拡がり角度α
31,α32)を示す。また、矢印W322 〜W324 およびW
325 〜W328 は、周壁に衝突後、液滴が跳返り再飛散す
るとした場合の跳返り主方向を典型的に例示する。In the third embodiment, the cylindrical body (31)
The inflow nozzle (32) extending in the cylinder along the tangential plane of the side surface of the is a circular nozzle having a diameter D 32 smaller than the width B 36 of the annular swirl flow path (36), and has a cylindrical body ( The center line (37) of (31) is extended into the cylindrical body (31) to a position close to the center line (37), and a straight portion having a total length L 3 including the outside and the inside of the barrel is provided, and the straight portion extends in the flow direction. To get lower
It is provided at an angle of θ 3 with respect to the horizontal. Here, the arrow W in FIGS. 7 and 8 indicates the direction of the jet flow, and W 311 to W 313 and W 315 to W 317 respectively indicate the directions of the main jets ejected from the illustrated ejection positions,
W 314 and W 318 are the divergent jet direction (divergent angle α
31 and α 32 ). Also, arrows W 322 to W 324 and W
325 to W 328 typically exemplify the main direction of bounce when the droplet bounces and re-spatters after colliding with the peripheral wall.
【0024】このような円筒竪型気水分離器において、
流入ノズル(32)によって筒体(31)内に導入され
た気液二相噴流中の液滴主流は、図示流線W311 〜W
313 ,W315 〜W317 のように筒体(31)の内周壁に
向かって流入ノズル軸方向に直進し、たとえ図示流線W
314 のようにノズル壁近辺から角度α31(拡がり角12
°程度)で拡がり流入しても、気体排出管(34)に衝
突することはない。また、液滴主流は流入ノズルの軸方
向でノズル底面に沿う形で降下するので、たとえ図示流
線W318 のようにノズル後端上面近辺から角度α32(拡
がり角12程度)で拡がる液滴流があって、それが筒体
(31)の内周壁へ衝突して上方へ跳上っても、その跳
上る高さは低く、かつ量も少なくなって、気体排出管
(34)に向かう上昇気体流に同伴される浮遊液滴は殆
どなくなり、気液の分離効率が向上する。更に筒体内壁
に運ばれた液滴が壁面を降下(流下)するのが流入時の
下向流(底面傾斜角θ3 )によって助長される。このよ
うに、流入ノズル(32)が下流に向かって低くなって
いることが、液滴の再飛散防止は勿論、液の流下にも有
効に作用し、気液分離効率の向上に寄与する。In such a cylindrical vertical steam separator,
The main stream of liquid droplets in the gas-liquid two-phase jet introduced into the cylindrical body (31) by the inflow nozzle (32) is shown in the flow lines W 311 to W 3.
As indicated by 313 and W 315 to W 317 , the straight line advances in the axial direction of the inflow nozzle toward the inner peripheral wall of the cylindrical body (31), even if the illustrated streamline W
As indicated by 314, the angle α 31 (divergence angle 12
Even if it spreads and flows in at about (°), it does not collide with the gas discharge pipe (34). Further, since the main stream of droplets drops along the bottom surface of the nozzle in the axial direction of the inflow nozzle, the droplets spread at an angle α 32 (divergence angle of about 12) from the vicinity of the upper surface of the rear end of the nozzle, as shown by the streamline W 318. Even if there is a flow and it collides with the inner peripheral wall of the tubular body (31) and jumps upward, the height of the jump is small and the amount is small, and it goes toward the gas discharge pipe (34). The floating droplets entrained in the rising gas flow are almost eliminated, and the gas-liquid separation efficiency is improved. Furthermore, the downward flow (bottom surface inclination angle θ 3 ) at the time of inflow promotes that the droplets carried to the inner wall of the cylinder descend (fall down) on the wall surface. As described above, the lowering of the inflow nozzle (32) toward the downstream side not only prevents re-scattering of droplets but also effectively acts on the flow of the liquid and contributes to the improvement of gas-liquid separation efficiency.
【0025】この実施例においても、水平面に対する流
入ノズル(32)の下向き取付角度θ3 は30°以下に
するのが望ましく、10ないし15°程度とすれば最良
である。また、流入ノズル(32)の傾斜した直線部の
長さL3 も、前記第1の実施例の説明中で述べた理由か
ら、入口管(33)の内径D33(すなわち流入ノズル
(32)の内径D32)の3倍程度以上であることが望ま
しい。なお、流入ノズル(32)の断面形状は、長円形
でもよい。Also in this embodiment, the downward mounting angle θ 3 of the inflow nozzle (32) with respect to the horizontal plane is preferably 30 ° or less, and the best setting is about 10 to 15 °. Further, the length L 3 of the inclined straight portion of the inflow nozzle (32) is also the inner diameter D 33 of the inlet pipe (33) (that is, the inflow nozzle (32) for the reason described in the description of the first embodiment. It is desirable that the inner diameter D 32 ) is about 3 times or more. The cross-sectional shape of the inflow nozzle (32) may be oval.
【0026】[0026]
【発明の効果】本発明においては、流入ノズルから筒体
内に流入した気液二相流中の液滴が、殆ど全て筒体の内
周壁に衝突付着し、飛散・再飛散およびこれによる液滴
浮遊が殆ど全くなくなる。また環状旋回流路内の旋回流
れが乱れなくスムーズに流れる。こうして気液の分離効
率が格段に向上する。According to the present invention, almost all of the liquid droplets in the gas-liquid two-phase flow that has flowed into the cylinder from the inflow nozzle collide with and adhere to the inner peripheral wall of the cylinder, causing scattering / re-scattering and the resulting droplets. Almost no floating. In addition, the swirling flow in the annular swirling flow path is not disturbed and flows smoothly. In this way, the gas-liquid separation efficiency is significantly improved.
【図面の簡単な説明】[Brief description of drawings]
【図1】図1は本発明の第1の実施例を示す水平横断面
図(図2のI−I断面)である。FIG. 1 is a horizontal cross-sectional view (cross section I-I in FIG. 2) showing a first embodiment of the present invention.
【図2】図2は図1のII−II縦断側面図である。FIG. 2 is a vertical sectional side view taken along the line II-II of FIG.
【図3】図3は図1のIII −III 縦断正面図である。FIG. 3 is a vertical sectional front view taken along line III-III in FIG.
【図4】図4は本発明の第2の実施例を示す水平横断面
図(図5のIV−IV断面)である。FIG. 4 is a horizontal cross-sectional view (IV-IV cross section in FIG. 5) showing a second embodiment of the present invention.
【図5】図5は図4のV−V縦断側面図である。5 is a vertical cross-sectional side view taken along line VV of FIG.
【図6】図6は図4のVI−VI縦断正面図である。6 is a vertical sectional front view of VI-VI in FIG. 4.
【図7】図7は本発明の第3の実施例を示す水平横断面
図(図8のVII −VII 断面)である。FIG. 7 is a horizontal cross-sectional view (cross section VII-VII of FIG. 8) showing a third embodiment of the present invention.
【図8】図8は図7のVIII−VIII縦断側面図である。FIG. 8 is a vertical cross-sectional side view of VIII-VIII of FIG. 7.
【図9】図9は図7のIX−IX縦断正面図である。9 is a vertical cross-sectional front view taken along line IX-IX of FIG. 7.
【図10】図10は従来の気液分離装置の一例を示す水
平横断面図(図11のX−X断面)である。FIG. 10 is a horizontal cross-sectional view (X-X cross section of FIG. 11) showing an example of a conventional gas-liquid separator.
【図11】図11は図10のXI−XI縦断側面図である。11 is a vertical sectional side view taken along line XI-XI of FIG.
【図12】図12は図10のXII −XII 縦断正面図であ
る。12 is a vertical cross-sectional front view taken along the line XII-XII of FIG.
(01),(11),(21),(31) 筒体 (02),(12),(22),(32) 流入ノズル (12a),(22a) 接続ノズル (12b),(22b) 矩形ノズル (03),(13),(23),(33) 入口管 (04),(14),(24),(34) 気体排出管 (05),(15),(25),(35) 液体排出管 (06),(16),(26),(36) 環状旋回流
路 (37) 筒体中心線(01), (11), (21), (31) Cylindrical body (02), (12), (22), (32) Inflow nozzle (12a), (22a) Connection nozzle (12b), (22b) Rectangular nozzles (03), (13), (23), (33) Inlet pipes (04), (14), (24), (34) Gas discharge pipes (05), (15), (25), ( 35) Liquid discharge pipe (06), (16), (26), (36) Circular swirl flow path (37) Cylindrical center line
Claims (1)
接線方向に取付けられた流入ノズルと、上記筒体内に同
軸に配され、上端が上記筒体内の上部に開口する気体排
出管と、上記筒体の下部に開口する液体排出管とを備え
た気液分離装置において、上記流入ノズルが上記筒体内
に延長され、その筒内延長部は、断面積が下流に向かっ
て小さくならず、底面が下流に向かって低くなるよう傾
斜しており、かつその幅が流れに沿って一定かまたは先
細りであり、ノズル出口では上記筒体と上記気体排出管
との間に形成される環状旋回流路の幅よりも狭いことを
特徴とする気液分離装置。1. A vertical cylindrical tubular body, an inflow nozzle tangentially attached to a side surface of the tubular body, a gas coaxially arranged in the tubular body, and an upper end of which is opened to an upper portion of the tubular body. In a gas-liquid separation device including a discharge pipe and a liquid discharge pipe that opens at the bottom of the cylinder, the inflow nozzle is extended into the cylinder, and the extension in the cylinder has a cross-sectional area toward the downstream. It does not become smaller, the bottom surface is inclined so that it becomes lower toward the downstream side, and its width is constant or tapered along the flow, and it is formed between the cylinder body and the gas discharge pipe at the nozzle outlet. A gas-liquid separation device characterized in that it is narrower than the width of the annular swirling flow path.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19653591A JPH0538408A (en) | 1991-08-06 | 1991-08-06 | Gas-liquid separation apparatus |
NZ23958191A NZ239581A (en) | 1990-09-13 | 1991-08-29 | Gas-liquid separator with tangential inflow nozzle to cylindrical body with central discharge pipe |
EP91114857A EP0475252A1 (en) | 1990-09-13 | 1991-09-03 | Gas-liquid separator |
MX9101058A MX9101058A (en) | 1990-09-13 | 1991-09-12 | GAS AND LIQUID SEPARATOR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19653591A JPH0538408A (en) | 1991-08-06 | 1991-08-06 | Gas-liquid separation apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0538408A true JPH0538408A (en) | 1993-02-19 |
Family
ID=16359359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19653591A Withdrawn JPH0538408A (en) | 1990-09-13 | 1991-08-06 | Gas-liquid separation apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0538408A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6322601B1 (en) * | 1999-01-18 | 2001-11-27 | Abb Alstom Power Combustion | Cyclone separator smoke inlet trunking |
JP2006341180A (en) * | 2005-06-08 | 2006-12-21 | Takeo Yoshida | Cyclone separator |
JP2011247575A (en) * | 2010-04-26 | 2011-12-08 | Nichirei Kogyo Kk | Gas-liquid separator, and refrigerating device including the same |
JP2013245836A (en) * | 2012-05-23 | 2013-12-09 | Daikin Industries Ltd | Refrigerating system |
US9273706B2 (en) | 2010-11-05 | 2016-03-01 | Etablissements Caillau | Hinged clamping collar |
JP2021028064A (en) * | 2019-08-13 | 2021-02-25 | 富士電機株式会社 | Oil separator |
CN114950319A (en) * | 2022-05-31 | 2022-08-30 | 刘金平 | Take exhaust structure's chemical industry reation kettle |
-
1991
- 1991-08-06 JP JP19653591A patent/JPH0538408A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6322601B1 (en) * | 1999-01-18 | 2001-11-27 | Abb Alstom Power Combustion | Cyclone separator smoke inlet trunking |
JP2006341180A (en) * | 2005-06-08 | 2006-12-21 | Takeo Yoshida | Cyclone separator |
JP2011247575A (en) * | 2010-04-26 | 2011-12-08 | Nichirei Kogyo Kk | Gas-liquid separator, and refrigerating device including the same |
US9273706B2 (en) | 2010-11-05 | 2016-03-01 | Etablissements Caillau | Hinged clamping collar |
JP2013245836A (en) * | 2012-05-23 | 2013-12-09 | Daikin Industries Ltd | Refrigerating system |
JP2021028064A (en) * | 2019-08-13 | 2021-02-25 | 富士電機株式会社 | Oil separator |
CN114950319A (en) * | 2022-05-31 | 2022-08-30 | 刘金平 | Take exhaust structure's chemical industry reation kettle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4270576A (en) | Self-contained fluid jet-mixing apparatus and method therefor | |
US6540802B2 (en) | Air intake system including a water separator with an inner pipe projecting into an outer pipe | |
JP6529296B2 (en) | Liquid discharge device and liquid discharge head | |
US4755194A (en) | Method for introducing a mixture of gas and liquid into a separator vessel | |
JP2578901B2 (en) | Centrifugal type gas mist containing paint mist | |
KR20010015705A (en) | Wet type flue gas desulfurization equipment | |
NZ239581A (en) | Gas-liquid separator with tangential inflow nozzle to cylindrical body with central discharge pipe | |
RU2666414C1 (en) | Separator centrifugal gas-liquid yugas (cgs) | |
JPS6141602B2 (en) | ||
JP4141006B2 (en) | High pressure cleaning spray nozzle | |
JPH0538408A (en) | Gas-liquid separation apparatus | |
US9327228B2 (en) | Venturi scrubber for wet dedusting and having an insert body | |
JP2930451B2 (en) | Steam-water separator | |
CN102405321B (en) | Foamed-water generating plug | |
JP6667905B2 (en) | Air lift device | |
US11072920B2 (en) | Flush toilet | |
JPH10160211A (en) | Negative ion generating device | |
EP1406731B1 (en) | Apparatus for gas/liquid contacting | |
JP4873797B2 (en) | Negative ion generator | |
JP6545846B1 (en) | Shower nozzle | |
JP2662750B2 (en) | Temperature control tower | |
JPH07232021A (en) | Gas-liquid separator | |
JP4116110B2 (en) | Water flow oil recovery device | |
SU997756A1 (en) | Gas cleaning apparatus | |
JPS6274425A (en) | Gas liquid separation apparatus for water seal type vacuum pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981112 |