[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0535141B2 - - Google Patents

Info

Publication number
JPH0535141B2
JPH0535141B2 JP27995985A JP27995985A JPH0535141B2 JP H0535141 B2 JPH0535141 B2 JP H0535141B2 JP 27995985 A JP27995985 A JP 27995985A JP 27995985 A JP27995985 A JP 27995985A JP H0535141 B2 JPH0535141 B2 JP H0535141B2
Authority
JP
Japan
Prior art keywords
acid
reaction
substituted maleimide
water
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27995985A
Other languages
Japanese (ja)
Other versions
JPS62138468A (en
Inventor
Mikiro Nakazawa
Shigeo Miki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIN NIPPON RIKA KK
Original Assignee
SHIN NIPPON RIKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIN NIPPON RIKA KK filed Critical SHIN NIPPON RIKA KK
Priority to JP27995985A priority Critical patent/JPS62138468A/en
Publication of JPS62138468A publication Critical patent/JPS62138468A/en
Publication of JPH0535141B2 publication Critical patent/JPH0535141B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrrole Compounds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はABS、MMA、PVC等の樹脂の耐熱
性改良剤や医薬、農薬の中間原料として有用なN
−置換マレイミドの改良された製造法に関する。 [従来の技術] 従来、無水マレイン酸と第1アミンからジカル
ホン酸モノアミドを経てN−置換マレイミドを製
造する方法として、後半の脱水反応について、(1)
無水酢酸等の脱水剤を作用させる方法(例えば、
特公昭46−29140、USP2444536)、(2)塩基を触媒
とし、生成水を溶媒と共沸脱水させる方法(例え
ば、特公昭47−24024)、(3)酸を触媒とし生成水を
溶媒と共沸脱水する方法(例えば、特公昭55−
46394、特開昭60−100554、特開昭60−112758)
等が知られている。しかし、(1)の方法は、生成水
に対し等モル量の脱水剤を消費し、経済的に不利
であり、(2)の方法は一般に高温を要し、収率や品
質が不十分である。一方、(3)の方法として、溶媒
にN,N−ジメチルアセトアミド、N−メチルピ
ロリドン等の非プロトン性極性溶媒を用いたり、
特定の構造を有するオニウム塩を添加して(特願
昭60−213154号=特開昭62−72663号)、触媒や中
間体であるジカルボン酸モノアミドの溶解性を改
善し、反応を円滑に進める方法が試みられ、比較
的高収率で目的のN−置換マレイミドが得られて
いる。しかし、得られた反応物から高純度のN−
置換マレイミドを収率良く分離精製する点につい
ては必ずしも十分ではない。 N−置換マレイミドの分離精製技術としては、
例えば反応物を大量の水に添加して結晶として析
出させる方法があるが、溶媒やN−置換マレイミ
ドの損失が大きい。反応物をそのまま、又は溶媒
の全量若しくはその一部を蒸留除去した後、冷却
し、析出した結晶を濾別する方法では反応液中に
残存する触媒、未反応のジカルボン酸モノアミド
及び種々の副反応物等の結晶への付着、混入が避
けられず、高純度品を得るには新しい溶媒による
再結晶等煩雑な工程が必要となる。更に反応物を
蒸留精製する方法も報告されている(特開昭60−
112758号)。この方法は、リン系の脱水剤を用い
て反応後、溶媒の大部分を蒸発させてから分液し
てリン化合物の溶液相を分離し、次にN−置換マ
レイミドを蒸留する方法であるが、単に分液のみ
ではリン酸等の強酸性リン化合物が残存するた
め、装置の腐蝕防止の点から材質上の制限を受け
る。更に反応物中に中間体のジカルボン酸モノア
ミドが存在する場合、残存するリン酸等の酸性化
合物が存在すると蒸留中に無水マレイン酸等の分
解生成物が発生し、目的とするN−置換マレイミ
ドの純度が著しく低下する等の不利があり、工業
的に必ずしも満足できる方法ではない。 [発明が解決しようとする問題点] 本発明者らは、酸、又は水と反応して酸を生成
する化合物(以下、「酸触媒等」という)の存在
下、ジカルボン酸モノアミドを脱水してN−置換
マレイミドを製造する方法に関し、前記の欠点を
改善し、簡単な工程で高純度のN−置換マレイミ
ドが収率良く得られ、かつ反応中間体のジカルボ
ン酸モノアミドが残存しても品質上の障害となら
ない等、より有利な方法を見出すべく検討した。
この結果、反応物中に残存する酸性物質を水酸化
ナトリウムや水酸化カリウム等のアルカリ金属化
合物で中和後、蒸留した場合には蒸留中にN−置
換マレイミドが重合し著しく収率が低下するのに
対し、アルカリ土類金属の水酸化物等の添加又は
アルカリ土類金属の水酸化物等で中和処理して蒸
留すると、アルカリ金属化合物の場合のような重
合反応が生じず、更に蒸留原料中にジガルボン酸
モノアミドが共存しても無水マレイン酸等の不純
物が発生しないため、極めて高純度のN−置換マ
レイミドが高収率で得られることを見出し、本願
発明を完成するに至つた。即ち、本発明は無水マ
レイン酸と第1アミンから得られるジカルボン酸
モノアミドを酸触媒等の存在下、脱水反応させて
得られるN−置換マレイミドを分離精製するに際
し、残存する酸性物質を特定の塩基性物質と蒸留
前及び/又は蒸留中に接蝕させて精製することを
特徴とする、簡単な工程で極めて高純度のN−置
換マレイミドが収率良く得られる方法を提供する
ことを目的とする。 [問題点を解決するための手段] 本発明で適用される第1アミンとは下記一般式
で示される化合物が推奨される。 RNH2 (式中、Rはアルキル基、ハロゲン原子、アルコ
キシ基、カルボキシル基、ニトロ基若しくはヒド
ロキシル基等の置換基を有していてもよい炭素数
1〜20のアルキル基、シクロアルキル基、フエニ
ル基又はナフチル基を表わす) 具体的にはメチルアミン、エチルアミン、n−
ブチルアミン、n−オクチルアミン、2−エチル
ヘキシルアミン、n−ドデシルアミン、n−オク
タデシルアミン、シクロヘキシルアミン、アニリ
ン、トリイジン、キシリジン、エチルアニリン、
イソプロピルアニリン、ドデシルアニリン、p−
クロロアニリン、2,4−ジクロロアニリン、ア
ニシジン、フエネチジン、アミノ安息香酸、ニト
ロアニリン、アミノフエノール等が例示できる。 本発明に係る反応で用いられる酸触媒等として
は、硫酸、リン酸、亜リン酸、次亜リン酸、メタ
リン酸、ピロリン酸、トリポリリン酸、ポリリン
酸等の無機酸や、メタンスルホン酸、p−トルエ
ンスルホン酸、ベンゼルスルホン酸、ナフタレン
スルホン酸等の有機酸及び五酸化リン、三二酸化
リン、三酸化イオウ、二酸化イオウ等の酸化物が
例示される。 以下の酸触媒等は、トリメチルドデシルアンモ
ニウムブロミド、ベンジルトリメチルアンモニウ
ムクロリド等で例示されるオニウム化合物や第3
級アミン類を助触媒として用いることが更に好ま
しい場合もある。上記の化合物の具体例は特願昭
60−213154号(特開昭62−72663号)に詳しい。 反応物からN−置換マレイミドを分散精製する
に際して用いられる塩基性物質はアルカリ土類金
属の酸化物、その水酸化物又はその炭酸塩であ
り、特に限定されないが、これらのうちマグネシ
ウム、カルシウム若しくはバリウムの酸化物、水
酸化物又は炭酸塩が好ましい。これらの塩基性物
質は単独又は任意の2種以上の混合物で使用でき
る。 これらの塩基性物質の使用量は、蒸留原料中酸
性物質に対し0.5〜100倍当量が好ましい。0.5倍
当量以下では蒸留して得られるN−置換マレイミ
ドの品質が劣り、酸性物質による腐蝕を防止する
効果も不十分となる。逆に100倍当量以上用いて
も経済的に不利となるのみで工業上の利点は認め
られない。但し、この上限は、例えば充填塔に前
記塩基性物質の成形品や砕片を充填し、蒸溜原料
を通液するような処理を行なう場合にはこの限り
でない。 塩基性物質を適用するに際し、水が共存すると
蒸留原料中の酸性物質との反応が促進され好まし
い。この場合の水の添加量は蒸留原料に対し1〜
50重量%が好ましい。 反応に用いられる溶媒として、炭化水素、含ハ
ロゲン炭化水素又は非プロトン性極性溶媒のいず
れも使用できる。具体的にはトルエン、キシレ
ン、エチルベンゼン、クメン、ヘキサン、オクタ
ン、デカン、シクロヘキサン、メチルシクロヘキ
サン、エチルシクロヘキサン、軽油、クロルベン
ゼン、ジクロルエタン、トリクロルエタン、パー
クロルエタン、N,N−ジメチルホルムアミド、
N,N−ジエチルホルムアミド、N,N−ジメチ
ルアセトアミド、N−メチルピロリドン、N−メ
チルカプロラクタム、テトラメチル尿素、N,N
−ジメチルピペリジノン、ジメチルスルホキシ
ド、スルホラン、メチルイソブチルケトン、ヘキ
サメチルホスホロアミド、1,3−ジメチル−2
−イミダゾリジノン等が単独又は任意の2種以上
の混合物で使用できる。 本発明の一般的実施方法を以下に述べる。 前記の溶媒の存在下、無水マレイン酸と第1ア
ミンを150℃以下、好ましくは20〜80℃で反応さ
せて相当するジカルボン酸モノアミドを生成さ
せ、次いで得られた反応混合物に酸触媒等を加
え、90〜150℃好ましくは100〜140℃で撹拌加熱
し、反応生成水を除去しつつ反応を行なうのが一
般的ではある。しかしジカルボン酸モノアミドの
脱水反応と異なる溶媒、例えばアセトン中で無水
マレイン酸と第1アミンを反応させ、中間体のジ
カルボン酸モノアミドを一旦分離してから、前記
の溶媒中で脱水イミド化反応を行なうこともでき
る。又、溶媒に炭化水素や含ハロゲン炭化水素等
の非極性溶媒のみを用いる場合は酸触媒等と前記
のオニウム化合物及び/又は第3アミンを併用す
ることが好ましい。 次に蒸溜原料を前記の特定の塩基性物質と接触
させるが、その方法としては種々の方法が採用で
きる。例えば当該塩基性物質を単独で、又は水と
ともに反応生成物に添加し、直接蒸留することが
できるが、蒸留前に塩基性物質を加え、室温乃至
150℃以下の温度で加熱撹拌後、蒸留あるいは更
に未反応の塩基性物質を濾別してから蒸留するこ
ともできる。又、当該塩基性物質の成形品や砕片
を充填した塔に蒸溜原料を通液処理することもで
きる。これらの場合にも水を添加することが好ま
しい。 用いる酸触媒、溶媒及び原料第1アミン等の種
類にもよるが、反応液を冷却すると酸性物質が分
液できる場合がある。この場合は酸性物質を分液
除去してから前記の塩基性物質が添加すれば少量
の塩基性物質で充分な効果が得られることから特
に好ましい。更に非極性溶媒のみ又は非極性溶媒
を主体とする反応混合物を充分に冷却するとN−
置換マレイミドが結晶として析出する場合があ
る。この場合にも濾別した結晶を塩基性物質によ
り処理するのが好ましい。 蒸留は、減圧下200℃以下の液温で行なうのが
好ましい。200℃以上の温度では生成物が劣化し、
収率や品質が低下する。 [実施例] 以下に実施例を掲げ、本発明を詳説する。 実施例 1 水分離器付冷却管、滴下ロート、温度計及び撹
拌機を備えた四つ口フラスコに無水マレイン酸
47.5g(0.50モル)、キシレン145g、トルエン27
g及びn−オクタン35gを仕込み、反応温度50℃
で撹拌しつつアニリン44.7g(0.48モル)を少量
ずつ1時間で滴下し、同温度でさらに30分間反応
させた。得られた反応混合物に硫酸2.5gとベン
ジルトリメチルアンモニウムクロリド0.9gを加
え撹拌しながら還流温度(125〜135℃)で加熱
し、生成水を除去しながら約3時間反応させた。 反応終了後、冷却して下層に分層した酸性化合
物を分離し、上層に水酸化カリシウム2.8g(残
存する酸性物質に対して2.0倍当量)、水6.5gを
加え80℃で1時間撹拌した。次に70℃で過剰の水
酸化カルシウム等の固形物を濾別し、水層を分液
して油層を500mlの枝付クライゼンフラスコに移
し、減圧蒸溜した。その結果、75.6g(仕込みア
ニリンに対し収率91%)の黄色結晶性の生成物が
得られた。このものは融点91〜91.5℃、GPCによ
るN−フエニルマレイミドの純度99%以上、酸価
0.1以下と極めて高純度のものであつた。 実施例 2 実施例1と同様の反応器に無水マレイン酸47.5
g(0.05モル)をトルエン200g及びN−メチル
ピロリドン20gを仕込み、反応温度40℃で撹拌し
つつアニリン44.7g(0.48モル)を少量つず1時
間で滴下し、同温度で更に30分反応させた。得ら
れた反応混合物にリン酸7.0gを加え撹拌しなが
ら110℃で生成水を除きつつ2.5時間反応させた。
反応終了後冷却して下層の酸性物質を分離し、上
層に水酸化マグネシウム5.0g(酸性成分に対し
6倍当量)、水10.0gを加え、70℃で1時間撹拌
した。次に過剰の水酸化マグネシウム等の固形物
を濾別したのを実施例1と同様の操作で減圧蒸溜
した。この結果、融点90.5〜91.5℃、GPC純度99
%以上、酸価0.2のN−フエニルマレイミド78.0
g(対アニリン収率94%)を得た。 実施例 3 実施例1と同様の反応器に無水マレイン酸47.5
g(0.05モル)及びトルエン109g及びキシレン
108gを仕込み、反応温度50℃で撹拌しつつアニ
リン44.7g(0.48モル)を少量づつ1時間で滴下
し、同温度で更に30分間反応させた。得られた反
応混合物に五酸化リン6.8g及びジメチルステア
リルアミン1.5gを加え撹拌しながら120〜130℃
で生成水を除きつつ5時間反応させた。反応終了
後冷却し、炭酸バリウム6.9g(蒸留原料中の酸
性成分に対し3.0倍当量)及び水15gと共に実施
例1と同様に蒸溜した。この結果、融点89.5〜
90.5℃、GPC純度99%以上、酸価0.3のN−フエ
ニルマレイミド74.7g(対アニリン収率90%)を
得た。 実施例 4〜7 実施例1においてアニリンの代りに表−1に示
す各種の第1アミンを0.48モル、塩基性化合物を
5.0g用いる以外は実施例1と同様に反応し蒸留
した。得られたN−フエニルマレイミドの収率及
び分析結果を表−1に示す。 比較例 1 塩基性化合物を添加せずに実施例1と同様の操
作を行なつた。得られたN−フエニルマレイミド
の対アニリン収率は91%であつたが、融点84.5〜
86.5℃、GPCによる純度95.5%、酸価6.3と品質が
劣つていた。 比較例 2 実施例1において水酸化カルシウムの代りに水
酸化ナトリウム3.1g(残存する酸性物質に対し
2.0倍当量)を加え、80℃で1時間撹拌後静置し、
70℃で分液した油層を蒸留したところ途中で重合
が起こり、このため目的のN−フエニルマレイミ
ドは10%以下の低収率であつた。 [発明の効果] 蒸留時におけるジカルボン酸モノアミドの分解
及びN−置換マレイミドの重合を防ぐことができ
るため、極めて高純度のN−置換マレイミドを簡
単な操作で高収率で得ることができる。又、蒸留
原料中に残存する酸性化合物を中和するため、蒸
留時の装置の腐蝕の心配もない。 【表】
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides N, which is useful as a heat resistance improver for resins such as ABS, MMA, and PVC, and as an intermediate raw material for pharmaceuticals and agricultural chemicals.
- An improved method for producing substituted maleimides. [Prior Art] Conventionally, as a method for producing N-substituted maleimide from maleic anhydride and a primary amine via dicarphonic acid monoamide, the latter half of the dehydration reaction was (1)
A method of applying a dehydrating agent such as acetic anhydride (for example,
(Japanese Patent Publication No. 46-29140, USP 2444536), (2) A method in which a base is used as a catalyst and the produced water is azeotropically dehydrated with a solvent (for example, Japanese Patent Publication No. 47-24024), (3) An acid is used as a catalyst and the produced water is dehydrated with a solvent. Boiling dehydration method (e.g.,
46394, JP-A-60-100554, JP-A-60-112758)
etc. are known. However, method (1) consumes an equimolar amount of dehydrating agent with respect to the produced water, which is economically disadvantageous, and method (2) generally requires high temperatures and has insufficient yield and quality. be. On the other hand, as method (3), an aprotic polar solvent such as N,N-dimethylacetamide or N-methylpyrrolidone is used as the solvent,
Adding an onium salt with a specific structure (Japanese Patent Application No. 60-213154 = JP-A No. 62-72663) improves the solubility of the catalyst and intermediate dicarboxylic acid monoamide, allowing the reaction to proceed smoothly. The process has been tried and the desired N-substituted maleimides have been obtained in relatively high yields. However, high purity N-
It is not always sufficient to separate and purify substituted maleimides with good yield. Separation and purification techniques for N-substituted maleimides include:
For example, there is a method in which a reactant is added to a large amount of water to precipitate it as crystals, but this method results in a large loss of solvent and N-substituted maleimide. In a method in which the reactant is used as it is, or all or part of the solvent is distilled off, cooled, and the precipitated crystals are filtered out, catalyst remaining in the reaction solution, unreacted dicarboxylic acid monoamide, and various side reactions are removed. The adhesion and contamination of substances to the crystals is unavoidable, and complicated steps such as recrystallization using a new solvent are required to obtain a high-purity product. Furthermore, a method of purifying the reactants by distillation has also been reported (Japanese Patent Application Laid-Open No. 1989-1999).
112758). In this method, after the reaction using a phosphorus-based dehydrating agent, most of the solvent is evaporated, the solution phase of the phosphorus compound is separated by liquid separation, and the N-substituted maleimide is then distilled. However, if only liquid separation is used, strong acidic phosphorus compounds such as phosphoric acid remain, so there are limitations regarding the material used to prevent corrosion of the equipment. Furthermore, if the intermediate dicarboxylic acid monoamide is present in the reaction product, and residual acidic compounds such as phosphoric acid are present, decomposition products such as maleic anhydride will be generated during distillation, resulting in the formation of the desired N-substituted maleimide. This method has disadvantages such as a significant decrease in purity, and is not necessarily an industrially satisfactory method. [Problems to be Solved by the Invention] The present inventors dehydrated dicarboxylic acid monoamide in the presence of an acid or a compound that reacts with water to produce an acid (hereinafter referred to as "acid catalyst etc."). Regarding the method for producing N-substituted maleimide, the above-mentioned drawbacks are improved, high-purity N-substituted maleimide can be obtained in good yield through a simple process, and the quality can be improved even if dicarboxylic acid monoamide, which is a reaction intermediate, remains. We investigated ways to find more advantageous methods, such as those that do not become a hindrance.
As a result, if the acidic substance remaining in the reaction product is distilled after neutralizing it with an alkali metal compound such as sodium hydroxide or potassium hydroxide, the N-substituted maleimide will polymerize during the distillation and the yield will drop significantly. On the other hand, when an alkaline earth metal hydroxide is added or neutralized with an alkaline earth metal hydroxide and then distilled, the polymerization reaction does not occur as in the case of alkali metal compounds, and further distillation The present inventors have discovered that even when digalboxylic acid monoamide coexists in the raw materials, impurities such as maleic anhydride are not generated, so that extremely pure N-substituted maleimides can be obtained in high yields, leading to the completion of the present invention. That is, in the present invention, when separating and purifying the N-substituted maleimide obtained by dehydrating dicarboxylic acid monoamide obtained from maleic anhydride and a primary amine in the presence of an acid catalyst, the remaining acidic substance is treated with a specific base. The purpose of the present invention is to provide a method for obtaining N-substituted maleimide of extremely high purity in a high yield through a simple process, which is characterized by purifying the N-substituted maleimide by contacting it with a sexual substance before and/or during distillation. . [Means for Solving the Problems] As the primary amine applied in the present invention, a compound represented by the following general formula is recommended. RNH 2 (wherein R is an alkyl group, a halogen atom, an alkoxy group, a carboxyl group, an alkyl group having 1 to 20 carbon atoms which may have a substituent such as a nitro group or a hydroxyl group, a cycloalkyl group, phenyl or naphthyl group) Specifically, methylamine, ethylamine, n-
Butylamine, n-octylamine, 2-ethylhexylamine, n-dodecylamine, n-octadecylamine, cyclohexylamine, aniline, triidine, xylidine, ethylaniline,
Isopropylaniline, dodecylaniline, p-
Examples include chloroaniline, 2,4-dichloroaniline, anisidine, phenetidine, aminobenzoic acid, nitroaniline, and aminophenol. Acid catalysts used in the reaction of the present invention include inorganic acids such as sulfuric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, metaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, polyphosphoric acid, methanesulfonic acid, p - Organic acids such as toluenesulfonic acid, benzelsulfonic acid, and naphthalenesulfonic acid, and oxides such as phosphorus pentoxide, phosphorus sesquioxide, sulfur trioxide, and sulfur dioxide are exemplified. The following acid catalysts include onium compounds such as trimethyldodecyl ammonium bromide, benzyltrimethylammonium chloride, etc.
In some cases, it may be even more preferable to use grade amines as cocatalysts. Specific examples of the above compounds are provided by Tokuhan Sho.
Learn more about No. 60-213154 (Japanese Unexamined Patent Publication No. 62-72663). The basic substance used in dispersing and purifying N-substituted maleimide from the reactant is an oxide of an alkaline earth metal, a hydroxide thereof, or a carbonate thereof, and among these, magnesium, calcium, or barium is used, but is not particularly limited. The oxides, hydroxides or carbonates of are preferred. These basic substances can be used alone or in a mixture of two or more. The amount of these basic substances to be used is preferably 0.5 to 100 times equivalent to the acidic substance in the distillation raw material. If the amount is less than 0.5 times equivalent, the quality of the N-substituted maleimide obtained by distillation will be poor, and the effect of preventing corrosion by acidic substances will be insufficient. On the other hand, if 100 times the equivalent or more is used, it will only be economically disadvantageous and no industrial advantage will be observed. However, this upper limit does not apply, for example, when a packed column is filled with molded articles or crushed pieces of the basic substance and a process is performed in which the distillation raw material is passed therethrough. When a basic substance is used, it is preferable that water coexist with the basic substance, as this will promote the reaction with the acidic substance in the distillation raw material. In this case, the amount of water added is 1 to 1
50% by weight is preferred. As the solvent used in the reaction, any of hydrocarbons, halogen-containing hydrocarbons, and aprotic polar solvents can be used. Specifically, toluene, xylene, ethylbenzene, cumene, hexane, octane, decane, cyclohexane, methylcyclohexane, ethylcyclohexane, light oil, chlorobenzene, dichloroethane, trichloroethane, perchloroethane, N,N-dimethylformamide,
N,N-diethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, N-methylcaprolactam, tetramethylurea, N,N
-dimethylpiperidinone, dimethylsulfoxide, sulfolane, methylisobutylketone, hexamethylphosphoramide, 1,3-dimethyl-2
-Imidazolidinone etc. can be used alone or in a mixture of two or more. A general method of carrying out the invention is described below. In the presence of the above-mentioned solvent, maleic anhydride and a primary amine are reacted at 150° C. or lower, preferably at 20 to 80° C. to produce the corresponding dicarboxylic acid monoamide, and then an acid catalyst or the like is added to the resulting reaction mixture. Generally, the reaction is carried out by stirring and heating at 90 to 150°C, preferably 100 to 140°C, and removing water produced by the reaction. However, maleic anhydride and a primary amine are reacted in a different solvent than the dehydration reaction of dicarboxylic acid monoamide, such as acetone, the intermediate dicarboxylic acid monoamide is once separated, and then the dehydration imidization reaction is performed in the above solvent. You can also do that. Furthermore, when only a nonpolar solvent such as a hydrocarbon or a halogen-containing hydrocarbon is used as a solvent, it is preferable to use an acid catalyst or the like together with the above-mentioned onium compound and/or tertiary amine. Next, the distillation raw material is brought into contact with the above-mentioned specific basic substance, and various methods can be employed for this purpose. For example, the basic substance can be added alone or together with water to the reaction product and distilled directly.
After heating and stirring at a temperature of 150° C. or lower, distillation may be performed, or further, unreacted basic substances may be filtered off and then distilled. Alternatively, the distillation raw material can be passed through a tower filled with molded products or crushed pieces of the basic substance. It is preferable to add water in these cases as well. Depending on the type of acid catalyst, solvent, primary amine used, etc., the acidic substance may be separated by cooling the reaction solution. In this case, it is particularly preferable to add the basic substance after separating and removing the acidic substance, since a sufficient effect can be obtained with a small amount of the basic substance. Furthermore, if the reaction mixture containing only a non-polar solvent or a non-polar solvent is sufficiently cooled, N-
Substituted maleimide may precipitate as crystals. In this case as well, it is preferable to treat the filtered crystals with a basic substance. Distillation is preferably carried out under reduced pressure at a liquid temperature of 200° C. or less. At temperatures above 200℃, the product deteriorates,
Yield and quality will decrease. [Example] The present invention will be explained in detail with reference to Examples below. Example 1 Maleic anhydride was placed in a four-necked flask equipped with a condenser with a water separator, a dropping funnel, a thermometer, and a stirrer.
47.5g (0.50mol), xylene 145g, toluene 27
Charge 35g of g and n-octane, and set the reaction temperature to 50°C.
While stirring, 44.7 g (0.48 mol) of aniline was added dropwise little by little over 1 hour, and the reaction was continued for an additional 30 minutes at the same temperature. To the resulting reaction mixture were added 2.5 g of sulfuric acid and 0.9 g of benzyltrimethylammonium chloride, heated at reflux temperature (125 to 135° C.) with stirring, and reacted for about 3 hours while removing produced water. After the reaction was completed, the acidic compound was cooled and separated into a lower layer, and 2.8 g of potassium hydroxide (2.0 times equivalent to the remaining acidic substance) and 6.5 g of water were added to the upper layer and stirred at 80°C for 1 hour. . Next, excess solids such as calcium hydroxide were filtered off at 70°C, the aqueous layer was separated, and the oil layer was transferred to a 500 ml Claisen flask with a side arm and distilled under reduced pressure. As a result, 75.6 g (yield 91% based on the charged aniline) of a yellow crystalline product was obtained. This product has a melting point of 91-91.5℃, a purity of N-phenylmaleimide of 99% or more by GPC, and an acid value.
It had extremely high purity of less than 0.1. Example 2 In a reactor similar to Example 1, 47.5% maleic anhydride was added.
(0.05 mol) was charged with 200 g of toluene and 20 g of N-methylpyrrolidone, and while stirring at a reaction temperature of 40°C, 44.7 g (0.48 mol) of aniline was added dropwise in small portions over 1 hour, and the reaction was continued for an additional 30 minutes at the same temperature. Ta. 7.0 g of phosphoric acid was added to the resulting reaction mixture, and the mixture was stirred and reacted at 110° C. for 2.5 hours while removing produced water.
After the reaction was completed, the mixture was cooled to separate the acidic substance in the lower layer, and 5.0 g of magnesium hydroxide (6 times equivalent to the acidic component) and 10.0 g of water were added to the upper layer, followed by stirring at 70°C for 1 hour. Next, excess solids such as magnesium hydroxide were filtered off, and the mixture was distilled under reduced pressure in the same manner as in Example 1. As a result, melting point 90.5-91.5℃, GPC purity 99
% or more, N-phenylmaleimide with acid value 0.2 78.0
g (94% yield based on aniline) was obtained. Example 3 In a reactor similar to Example 1, 47.5% maleic anhydride was added.
g (0.05 mol) and toluene 109 g and xylene
108 g of aniline was charged, and while stirring at a reaction temperature of 50° C., 44.7 g (0.48 mol) of aniline was added dropwise little by little over 1 hour, and the reaction was continued at the same temperature for an additional 30 minutes. Add 6.8 g of phosphorus pentoxide and 1.5 g of dimethylstearylamine to the resulting reaction mixture and heat to 120-130°C with stirring.
The reaction was continued for 5 hours while removing the produced water. After the reaction was completed, the mixture was cooled and distilled in the same manner as in Example 1 together with 6.9 g of barium carbonate (3.0 times equivalent to the acidic component in the distillation raw material) and 15 g of water. As a result, the melting point is 89.5~
74.7 g of N-phenylmaleimide (yield based on aniline: 90%) was obtained at 90.5°C, with a GPC purity of 99% or more and an acid value of 0.3. Examples 4 to 7 In Example 1, 0.48 mol of various primary amines shown in Table 1 and a basic compound were used instead of aniline.
The reaction and distillation were carried out in the same manner as in Example 1 except that 5.0g was used. The yield and analysis results of the obtained N-phenylmaleimide are shown in Table 1. Comparative Example 1 The same operation as in Example 1 was carried out without adding any basic compound. The yield of the obtained N-phenylmaleimide based on aniline was 91%, but the melting point was 84.5~
The quality was poor, at 86.5°C, with a purity of 95.5% by GPC and an acid value of 6.3. Comparative Example 2 In Example 1, 3.1 g of sodium hydroxide was used instead of calcium hydroxide (based on the remaining acidic substances).
2.0 times equivalent) was added, stirred at 80℃ for 1 hour, and left to stand.
When the oil layer separated at 70°C was distilled, polymerization occurred during the distillation, resulting in a low yield of less than 10% of the target N-phenylmaleimide. [Effects of the Invention] Since the decomposition of dicarboxylic acid monoamide and the polymerization of N-substituted maleimide during distillation can be prevented, extremely high purity N-substituted maleimide can be obtained in high yield with simple operations. Furthermore, since the acidic compounds remaining in the distillation raw material are neutralized, there is no fear of corrosion of the equipment during distillation. 【table】

Claims (1)

【特許請求の範囲】 1 無水マレイン酸と第1アミンから得られるジ
カルボン酸モノアミドを酸、又は水と反応して酸
を生成する化合物の存在下、脱水反応させて得ら
れるN−置換マレイミドを精製するに際し、残存
する酸性物質をアルカリ土類金属の酸加物、水酸
化物及び炭酸塩からなる群から選ばれる1種若し
くは2種以上の塩基性物質と蒸留前及び/又は蒸
留中に接触させて精製することを特徴とする高純
度N−置換マレイミドの製造法。 2 残存する酸性物質と塩基性物質とを水の存在
下で接触させることを特徴とする特許請求の範囲
第1項記載の高純度N−置換マレイミドの製造
法。
[Claims] 1. Purification of an N-substituted maleimide obtained by dehydrating a dicarboxylic acid monoamide obtained from maleic anhydride and a primary amine in the presence of an acid or a compound that generates an acid by reacting with water. When distilling, the remaining acidic substance is brought into contact with one or more basic substances selected from the group consisting of alkaline earth metal acid additions, hydroxides, and carbonates before and/or during distillation. 1. A method for producing a highly pure N-substituted maleimide, the method comprising purifying it by: 2. The method for producing a high purity N-substituted maleimide according to claim 1, which comprises bringing the remaining acidic substance and basic substance into contact in the presence of water.
JP27995985A 1985-12-11 1985-12-11 Production of n-substituted maleimide Granted JPS62138468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27995985A JPS62138468A (en) 1985-12-11 1985-12-11 Production of n-substituted maleimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27995985A JPS62138468A (en) 1985-12-11 1985-12-11 Production of n-substituted maleimide

Publications (2)

Publication Number Publication Date
JPS62138468A JPS62138468A (en) 1987-06-22
JPH0535141B2 true JPH0535141B2 (en) 1993-05-25

Family

ID=17618308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27995985A Granted JPS62138468A (en) 1985-12-11 1985-12-11 Production of n-substituted maleimide

Country Status (1)

Country Link
JP (1) JPS62138468A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904803A (en) * 1988-02-25 1990-02-27 Nitto Chemical Industry Co., Ltd. Process for producing N-substituted maleimides
JP3463813B2 (en) * 1992-01-30 2003-11-05 株式会社日本触媒 Method for producing maleimide compound
DE69334126T2 (en) * 1992-01-30 2008-01-03 Nippon Shokubai Co. Ltd. PROCESS FOR PREPARING MALEIMIDE COMPOUND WITH IMPROVED STORAGE STABILITY
JP4757049B2 (en) * 2006-02-09 2011-08-24 株式会社リコー LIGHTING DEVICE, IMAGE READING DEVICE, AND IMAGE FORMING DEVICE
JP2007214472A (en) * 2006-02-13 2007-08-23 Matsushita Electric Ind Co Ltd Edgelight and method of manufacturing same
JP2007214474A (en) * 2006-02-13 2007-08-23 Matsushita Electric Ind Co Ltd Edgelight and method of manufacturing same
JP6555792B1 (en) * 2018-05-10 2019-08-07 ユニチカ株式会社 Method for producing maleimide

Also Published As

Publication number Publication date
JPS62138468A (en) 1987-06-22

Similar Documents

Publication Publication Date Title
JPH0535141B2 (en)
KR910004790B1 (en) Process for producing n-substituted maleimide
JPH0140028B2 (en)
US5175309A (en) Preparation process of n-substituted maleimides
EP0403240B1 (en) Preparation process of N-substituted maleimides
US6630595B2 (en) Method for producing maleimides
US4169851A (en) Process for the manufacture of acetoacetyl-aminobenzenes
JPS61229862A (en) Method of purifying maleimide
CN110418783B (en) Process for purifying N-substituted maleimides
JPH0774195B2 (en) Process for producing N-substituted-α, β-unsaturated dicarboxylic acid cyclic imide
JPS6160647A (en) Preparation of n-substituted monomaleimide
JPH0774197B2 (en) Method for purifying N-substituted maleimides
JPH01283264A (en) Production of n-substituted maleimides
JPH0774199B2 (en) Method for producing aromatic cyclic polyimide
JPS6263562A (en) Production of maleimide
JPS60132933A (en) Manufacture of nitrodiarylamine
JPH0339503B2 (en)
JP3085610B2 (en) Method for producing bismaleimides
JPH0312056B2 (en)
JPS60112759A (en) Production of n-phenylmaleimide
JPH0369342B2 (en)
JP2954336B2 (en) Production method of maleimides
JPS6263561A (en) Production of maleimide
SU212158A1 (en) METHOD OF OBTAINING N-SUBSTITUTED IMIDES OF MALEIC ACID
JPS6335560A (en) Production of maleimide compound