[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05345181A - Method and apparatus for setting exchange rate of reverse osmosis membrane - Google Patents

Method and apparatus for setting exchange rate of reverse osmosis membrane

Info

Publication number
JPH05345181A
JPH05345181A JP4181673A JP18167392A JPH05345181A JP H05345181 A JPH05345181 A JP H05345181A JP 4181673 A JP4181673 A JP 4181673A JP 18167392 A JP18167392 A JP 18167392A JP H05345181 A JPH05345181 A JP H05345181A
Authority
JP
Japan
Prior art keywords
reverse osmosis
membrane
exchange rate
osmosis membrane
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4181673A
Other languages
Japanese (ja)
Other versions
JP2789404B2 (en
Inventor
Toru Kaminari
徹 神成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP4181673A priority Critical patent/JP2789404B2/en
Publication of JPH05345181A publication Critical patent/JPH05345181A/en
Application granted granted Critical
Publication of JP2789404B2 publication Critical patent/JP2789404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To attempt to make exchange rate of a membrane proper assuming that a guaranteed quality of water is ensured in the operation of a reverse osmosis type sea water desalination apparatus. CONSTITUTION:Electrical conductivity of permeated water through a unit reverse osmosis membrane 1F is measured by means of a conductivity meter on an instrument rack through a sampling rack 101 and it is input into a personal computer control apparatus 107 by means of a field operation panel 105. Operating condition of a plant is also input and the electric conductivity is corrected to obtain individual data and an average value and a standard deviation of these data. Pressure densifying factor and membrane deterioration rate factor are obtd. from these data and the membrane exchange rate is obtd. in such a way that the estimated quality of water after exchanging of the membrane does not violate a guaranteed value as the time elapses assuming that exchanging of the membrane is performed at a specified rate every year. Therefore, a proper exchange rate of the membrane can efficiently be set on every reverse osmosis membrane type sea water desalination apparatus and exchanging of the membrane can reasonably be performed and decrease in expenditure of maintenance and control is attainable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電率の高い供給水を
逆浸透膜を通過させて導電率の低い透過水にする多数の
単位逆浸透膜を並列又は直列に設けて集合体として構成
した淡水製造装置に用いる逆浸透膜交換率設定方法及び
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a large number of unit reverse osmosis membranes arranged in parallel or in series so as to pass feed water having high conductivity through the reverse osmosis membrane to form permeate having low conductivity. The present invention relates to a reverse osmosis membrane exchange rate setting method and apparatus used in a fresh water producing apparatus.

【0002】[0002]

【従来の技術】多数の単位逆浸透膜を並列又は直列に結
合して構成したような淡水製造装置においては、逆浸透
膜が経時的に性能劣化を起こすので、装置の性能を維持
するためには、定期的に膜を交換する必要がある。この
膜交換率は、膜劣化速度係数及び初期性能によって求め
ることができるが、通常は膜メーカによって決定されて
いる。そして従来、実際の膜交換に当たっては、膜メー
カが指定する膜交換率を用いたり、各装置毎に独自に大
まかで根拠に乏しい膜交換率を用いて膜交換が行われて
いた。
2. Description of the Related Art In a fresh water producing apparatus constructed by connecting a number of unit reverse osmosis membranes in parallel or in series, the performance of the reverse osmosis membrane deteriorates with time. Require regular membrane replacement. This membrane exchange rate can be obtained from the membrane deterioration rate coefficient and the initial performance, but is usually determined by the membrane manufacturer. In the past, in actual membrane exchange, the membrane exchange rate specified by the membrane manufacturer was used, or the membrane exchange rate was individually used for each device by using a rough and poor basis.

【0003】しかしながら、膜メーカの数値は、どのプ
ラントにも適用可能なように一般化されているため、安
全性が高く過大な数値になっていた。そしてこのように
膜交換率が過大であれば、余寿命のある膜まで廃棄する
ことになり、膜が高価であるため維持管理費用が膨大に
なるのみならず、資源の浪費になる。このため、特に中
規模、大規模装置においては、膜交換率が過大になるこ
とによる維持管理費用の増大が問題になっていた。一
方、膜交換率として根拠の乏しい数値を用いることによ
り、これが適性値より低くなるときには、装置性能が維
持できないという問題が発生する。又、従来、装置の全
体性能で膜交換率を評価する方法を用いる場合もある
が、このような方法では、交換された膜性能がプラント
の全体性能に影響を及ぼし、次第に評価が不正確なもの
になってくるという問題がある。
However, the numerical value of the film manufacturer has been generalized so that it can be applied to any plant, so that the numerical value is high in safety and excessive. If the membrane exchange rate is too large, even the membrane having a remaining life is discarded, and the membrane is expensive, so that not only the maintenance cost becomes huge but also the resource is wasted. Therefore, particularly in medium-scale and large-scale equipment, the increase in maintenance cost due to the excessive membrane exchange rate poses a problem. On the other hand, the use of a poorly-valued value as the membrane exchange rate causes a problem that the device performance cannot be maintained when the value is lower than the appropriate value. Further, conventionally, there is also a case where a method of evaluating the membrane exchange rate by the overall performance of the apparatus is used, but in such a method, the exchanged membrane performance affects the overall performance of the plant, and the evaluation gradually becomes inaccurate. There is a problem of becoming a thing.

【0004】[0004]

【発明が解決しようとする課題】本発明は従来技術に於
ける上記問題を解決し、適正な膜交換率を設定すること
ができる逆浸透膜交換率設定方法及び装置を提供するこ
とを課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems in the prior art and to provide a reverse osmosis membrane exchange rate setting method and device capable of setting an appropriate membrane exchange rate. To do.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、請求項1の発明は、多数の単位逆浸透膜を
並列又は直列に設けて集合体として構成した淡水製造装
置に用いる逆浸透膜交換率設定方法において、前記単位
逆浸透膜毎に透過水の導電率を測定し、該導電率と前記
単位逆浸透膜の使用期間とを処理手段に入力し、入力し
たデータと逆浸透膜が圧密化する圧密化係数とにより逆
浸透膜の劣化速度係数を決定し、前記圧密化係数と前記
劣化速度係数とにより、前記淡水製造装置として予測さ
れる透過水の水質が常に所定値を越えないように、前記
淡水製造装置を構成している全逆浸透膜数に対して交換
する単位逆浸透膜数の比率である膜交換率を決定する、
ことを特徴とし、請求項2の発明は、多数の単位逆浸透
膜を並列又は直列に設けて集合体として構成した淡水製
造装置に用いる逆浸透膜交換率設定装置において、前記
単位逆浸透膜毎に透過水の導電率を測定する導電率測定
手段と、該測定した導電率と前記単位逆浸透膜の使用期
間とを処理手段に入力する入力手段と、入力したデータ
と逆浸透膜が圧密化する圧密化係数とにより逆浸透膜の
劣化速度係数を決定する前記処理手段と、前記圧密化係
数と前記劣化速度係数とにより計算される前記淡水製造
装置として予測される透過水の水質が、常に所定値を越
えないように、前記淡水製造装置を構成している全逆浸
透膜数に対して交換する単位逆浸透膜数の比率である膜
交換率を決定する膜交換率計算手段と、を有することを
特徴とする。
In order to solve the above-mentioned problems, the present invention is used in a fresh water producing apparatus in which a large number of unit reverse osmosis membranes are provided in parallel or in series to constitute an aggregate. In the reverse osmosis membrane exchange rate setting method, the conductivity of permeated water is measured for each of the unit reverse osmosis membranes, the conductivity and the period of use of the unit reverse osmosis membrane are input to the processing means, and the input data is reversed. The deterioration rate coefficient of the reverse osmosis membrane is determined by the consolidation coefficient by which the osmosis membrane is consolidated, and the water quality of the permeated water predicted as the fresh water producing apparatus is always a predetermined value by the consolidation coefficient and the degradation rate coefficient. The membrane exchange rate, which is the ratio of the number of unit reverse osmosis membranes to be exchanged with respect to the total number of reverse osmosis membranes constituting the fresh water producing apparatus, is determined so as not to exceed
According to a second aspect of the present invention, in the reverse osmosis membrane exchange rate setting device for use in a fresh water producing apparatus, which is configured as an aggregate by providing a large number of unit reverse osmosis membranes in parallel or in series, To the processing means, the conductivity measuring means for measuring the conductivity of the permeated water, the input means for inputting the measured conductivity and the period of use of the unit reverse osmosis membrane, and the input data and the reverse osmosis membrane are consolidated. The processing means for determining the deterioration rate coefficient of the reverse osmosis membrane by the consolidation coefficient and the water quality of the permeate water predicted as the fresh water production apparatus calculated by the consolidation coefficient and the degradation rate coefficient is always Membrane exchange rate calculation means for determining the membrane exchange rate which is the ratio of the number of unit reverse osmosis membranes to be exchanged with respect to the total number of reverse osmosis membranes constituting the fresh water producing apparatus so as not to exceed a predetermined value. It is characterized by having.

【0006】[0006]

【作 用】請求項1又は2の発明によれば、上記の如き
構成にするので、次のような作用が生ずる。まず、単位
逆浸透膜毎に透過水の導電率を測定する。この場合、導
電率測定手段は、定期的に自動測定するような装置であ
ってもよいし、人の操作によりシーケンシャルにもしく
は個々に測定する装置でもよい。次に、この測定した導
電率と膜の使用期間とを処理手段に入力するので、ここ
でこれらのデータが処理される。このときには、これら
のデータを位置付けるために、測定した当該単位逆浸透
膜名も入力する。この場合、入力手段は、個々の測定値
を、その使用期間と共に、又は当該逆浸透膜使用開始時
期を予め入力しておき測定日付と共に、人が入力するよ
うな形式のものであってもよいし、又は、自動入力手段
でもよい。処理手段では、膜劣化速度係数が計算される
が、その計算のために、これらの入力された一群の測定
値を統計的に処理したデータにすることが望ましい。こ
のデータは、最終的に膜交換率を計算するときに、安全
性も考慮して精度のある水質予測をするためのものであ
るから、例えば、最大値、最小値、平均値、標準偏差と
いう形のものにし、この中で、平均値に標準偏差の数倍
を加えた値や最大値等を後の計算に用いることができ
る。一方、逆浸透膜は高圧下で使用されることにより一
般にその使用時間に対応して圧密化し、塩透過率が減少
して通過水の導電率が低下する。このような塩透過率の
減少の指標である圧密化係数としては、例えば膜製造者
が推奨する値を用い、これを人の操作で処理手段に入力
するようにする。これにより、逆浸透膜の圧密化による
透過水の導電率への影響を修正することができる。但
し、圧密化係数入力手段を設け、前記推奨値又は予め実
験等で求めた膜使用期間に対する圧密化係数の表もしく
は曲線を処理手段にインプットしておいて、膜使用期間
からその値を計算させるような方法等を用いてもよい。
この場合、膜使用期間の入力は、入力手段でこれを直接
入力してもよいし、又は、予め当該逆浸透膜交換日を入
力しておいて測定時期から膜使用期間を計算させるよう
にしてもよい。処理手段では、更に、膜使用期間と膜劣
化速度係数との関係式等を組み込んでおくことにより、
圧密化係数と入力されたデータ及び膜使用期間から膜劣
化速度係数が計算される。このような膜劣化速度係数の
計算は、単位逆浸透膜毎に行ってもよいが、処理手段の
能力の点からは、測定した一群のデータを前述の如く統
計処理して1つのデータにし、一群の逆浸透膜を単位と
して行うのがよい。なお、データの集積が少ない段階で
は、膜性能として当初与えられた一定の数値を用いるよ
うにしてもよい。そして最終的に、膜交換率計算手段に
より、圧密化係数と膜劣化速度係数とから、淡水製造装
置として予測される膜交換後の水質が常に装置の要求性
能から定まる所定値を超えないような膜交換率を計算す
ることができる。ここで用いる膜劣化速度係数は、単位
逆浸透膜毎に計算した値や、統計処理したデータから計
算した値であるが、水質予測をするまでに複数回導電率
を測定する場合には、例えば各測定時におけるそれらの
値の平均値となる。なお、膜交換率の計算においては、
膜交換の期間を一定として計算してもよいし、この期間
を変化させて、膜交換率と交換期間の関係から最適の膜
交換率及び交換時期を定めるようにすることもできる。
又、特定期間内で最適の膜交換率を定めることもできる
し、常に膜交換率が一定になるように最適膜交換率を定
めることもできる。
According to the invention of claim 1 or 2, because of the above-mentioned structure, the following operation occurs. First, the conductivity of permeated water is measured for each unit reverse osmosis membrane. In this case, the conductivity measuring means may be a device that automatically measures periodically, or a device that sequentially or individually measures by human operation. The measured conductivity and the duration of use of the membrane are then input into the processing means, where these data are processed. At this time, in order to locate these data, the measured unit reverse osmosis membrane name is also input. In this case, the input means may be of a form in which a person inputs each measured value together with its usage period or the reverse osmosis membrane use start time in advance and together with the measurement date. Alternatively, it may be an automatic input means. In the processing means, the film deterioration rate coefficient is calculated, but for the calculation, it is desirable to make statistically processed data of the input group of measured values. Since this data is used to accurately predict water quality in consideration of safety when finally calculating the membrane exchange rate, it is called, for example, the maximum value, minimum value, average value, or standard deviation. The value obtained by adding a multiple of the standard deviation to the average value, the maximum value or the like can be used for the subsequent calculation. On the other hand, when the reverse osmosis membrane is used under high pressure, it generally becomes compacted in accordance with its use time, the salt permeability is reduced, and the conductivity of the passing water is lowered. As the consolidation coefficient, which is an index of such decrease in salt permeability, for example, a value recommended by the film manufacturer is used, and this value is manually input to the processing means. This can correct the influence of the consolidation of the reverse osmosis membrane on the conductivity of the permeated water. However, a compaction coefficient input means is provided, and the recommended value or a table or curve of the compaction coefficient for the membrane use period obtained in advance by experiments etc. is input to the processing means, and the value is calculated from the membrane use period. Such a method may be used.
In this case, the membrane use period may be directly input by the input means, or the reverse osmosis membrane exchange date may be input in advance so that the membrane use period is calculated from the measurement time. Good. In the processing means, by further incorporating a relational expression between the film use period and the film deterioration rate coefficient,
The film deterioration rate coefficient is calculated from the consolidation coefficient, the input data, and the film usage period. The calculation of the membrane deterioration rate coefficient may be performed for each unit reverse osmosis membrane, but from the viewpoint of the capacity of the processing means, the measured group of data is statistically processed into one data as described above, It is preferable to use a group of reverse osmosis membranes as a unit. It should be noted that at a stage where the amount of accumulated data is small, a constant numerical value initially given as the film performance may be used. And finally, by the membrane exchange rate calculation means, from the compaction coefficient and the membrane deterioration rate coefficient, the water quality after membrane exchange predicted as a fresh water production apparatus does not always exceed a predetermined value determined from the required performance of the apparatus. The membrane exchange rate can be calculated. The membrane deterioration rate coefficient used here is a value calculated for each unit reverse osmosis membrane or a value calculated from statistically processed data, but when the conductivity is measured a plurality of times before water quality prediction, for example, It is the average of those values at each measurement. In the calculation of the membrane exchange rate,
The calculation may be performed with the membrane exchange period being constant, or the period may be changed to determine the optimum membrane exchange rate and the exchange time from the relationship between the membrane exchange rate and the exchange period.
Further, the optimum membrane exchange rate can be set within a specific period, or the optimum membrane exchange rate can be set so that the membrane exchange rate is always constant.

【0007】請求項1又は2の逆浸透膜交換率設定方法
又は装置により膜交換をすれば、必要な余裕は考慮する
としても、過大な膜交換率になることがない。なお、以
上の処理手段、圧密化係数入力手段(圧密化係数を計算
させる場合)及び膜交換率計算手段としては、例えばマ
イクロコンピュータに組み込んだプログラムを用いるこ
とができる。
If the reverse osmosis membrane exchange rate setting method or apparatus of claim 1 or 2 is used for membrane exchange, the membrane exchange rate will not be excessive even if the necessary margin is taken into consideration. As the processing means, the consolidation coefficient input means (when the consolidation coefficient is calculated) and the membrane exchange rate calculation means, for example, a program incorporated in a microcomputer can be used.

【0008】なお、実際に得られる透過水の水質は装置
の運転条件に影響されるが、運転条件と透過水質には一
定の関係があるので、上記に加えて、淡水製造装置の運
転条件を入力する運転条件入力手段と、これにより入力
された運転条件を淡水製造装置の設計条件と比較してそ
の差異に対応して測定した導電率を補正する補正手段と
を設けるようにすれば、実際の運転条件が設計条件と異
なってきた場合でも、これらの手段を用いて膜交換率の
計算精度を維持することができる。
Although the quality of the permeated water actually obtained is influenced by the operating conditions of the apparatus, there is a certain relationship between the operating conditions and the quality of the permeated water. If the operating condition input means for inputting and the correcting means for comparing the operating condition input by this with the design condition of the fresh water producing apparatus and correcting the measured conductivity corresponding to the difference are actually provided, Even when the operating conditions of No. 1 are different from the design conditions, the calculation accuracy of the membrane exchange rate can be maintained by using these means.

【0009】[0009]

【実 施 例】図1は実施例の逆浸透膜交換率設定方法
を実行することができる装置の概略構成を示し、図2は
本方法及び装置を使用することができる淡水製造装置と
しての逆浸透膜式海水淡水化装置の逆浸透膜ユニットの
構成例を示す。これらの図によって、本装置の構成を説
明する。
[Examples] FIG. 1 shows a schematic configuration of an apparatus capable of carrying out the reverse osmosis membrane exchange rate setting method of the embodiment, and FIG. 2 shows a reverse apparatus as a fresh water producing apparatus in which the present method and apparatus can be used. The structural example of the reverse osmosis membrane unit of an osmosis membrane type seawater desalination apparatus is shown. The configuration of this device will be described with reference to these drawings.

【0010】図2において、海水淡水化装置は、海水を
逆浸透膜を透過させて導電率の低い透過水にする単位逆
浸透膜を多数備えた集合体により構成されるが、本実施
例では、A、B2系列の単位逆浸透膜の集合体をそれぞ
れ2段で構成し、第一段では、それぞれ1F(Fは給水
側を意味する)乃至65F及び1Br(Brはブライン
側を意味する)乃至65Brから成る合計130本の単
位逆浸透膜をA系列、B系列の2列の集合体とし、第二
段では、それぞれ1F´(F´は給水側を意味する)乃
至30F´及び1Br´(Br´はブライン側を意味す
る)乃至30Br´から成る合計60本の単位逆浸透膜
をA系列、B系列の2列の集合体として形成している。
このような構成の海水淡水化装置において、第一段で
は、図示しない高圧ポンプにより昇圧された供給水とし
て矢印イに示す方向から海水が供給され、矢印ロ方向か
ら導電率の低下した透過水である第一段脱塩水が送り出
される。そしてこの第一段脱塩水が供給水となって、再
度昇圧されて矢印ハ方向から第二段に供給され、第二段
で更に脱塩されて矢印ニ方向から透過水として第二段脱
塩水が送り出される。この第二脱塩水が図示しない装置
で更に処理された後、最終的に淡水が得られる。なお、
実施例の海水淡水化装置では、一段、二段の各段共、給
水側(F、F´側)の逆浸透膜モジュールには供給水が
直接供給されるが、ブライン側(Br、Br´側)に
は、モジュール内において濃縮された供給水が供給され
るようになっている。
In FIG. 2, the seawater desalination apparatus is composed of an assembly provided with a large number of unit reverse osmosis membranes for converting seawater into permeated water having low conductivity by passing through the reverse osmosis membranes. , A, B2 series of unit reverse osmosis membranes are each configured in two stages, and in the first stage, 1F (F means water supply side) to 65F and 1Br (Br means brine side), respectively. A total of 130 unit reverse osmosis membranes consisting of 65Br to 65Br are made into an assembly of two rows of A series and B series, and in the second stage, 1F '(F' means the water supply side) to 30F 'and 1Br' respectively. A total of 60 unit reverse osmosis membranes consisting of (Br 'means the brine side) to 30Br' are formed as an assembly of two rows of A series and B series.
In the seawater desalination apparatus having such a configuration, in the first stage, seawater is supplied as the supply water whose pressure is increased by a high-pressure pump (not shown) from the direction indicated by arrow a, and the permeated water whose conductivity has decreased from the direction indicated by arrow b. A certain first-stage demineralized water is sent out. Then, the first-stage demineralized water becomes the supply water, and the pressure is increased again to be supplied to the second stage from the arrow C direction, and further desalted in the second stage as the permeated water from the arrow D direction to the second-stage demineralized water. Is sent out. After this second demineralized water is further treated in a device not shown, finally fresh water is obtained. In addition,
In the seawater desalination apparatus of the embodiment, the feed water is directly supplied to the reverse osmosis membrane module on the feed water side (F, F ′ side) in both the first and second stages, but the brine side (Br, Br ′). The side) is supplied with the supply water concentrated in the module.

【0011】このような海水淡水化装置に用いられる逆
浸透膜交換率設定装置は、以下の諸装置を有する。図1
において、第一段及び第二段の単位逆浸透膜装置1F〜
65F、1Br〜65Br及び1F´〜30F´、1B
r´〜30Br´のそれぞれを通過した通過水の導電率
を測定できる導電率測定手段として、サンプリングラッ
ク101、102及び計器ラック103、104が設け
られる。
The reverse osmosis membrane exchange rate setting device used in such a seawater desalination apparatus has the following devices. Figure 1
In the unit reverse osmosis membrane device 1F
65F, 1Br to 65Br and 1F 'to 30F', 1B
Sampling racks 101 and 102 and instrument racks 103 and 104 are provided as conductivity measuring means capable of measuring the conductivity of the passing water that has passed through each of r ′ to 30 Br ′.

【0012】サンプリングラック101、102には、
手動弁101−1等及び102−1等が集合化して設け
られている。そして導電率を測定するときには、測定者
がこれらの弁を順次開閉操作することにより、第一段及
び第二段の各単位逆浸透膜1F、1Br等及び1F´、
1Br´等からこれらを通過した給水側及びブライン側
の第一段脱塩水及び第二段脱塩水をサンプル水として供
給する。但し、手動弁101−1等及び102−1等の
代わりに電磁弁のような自動弁を用い、所定時期に自動
開閉させるか又は人の操作によりシーケンシャルに開閉
させ、導電率測定の省力化を図るようにしてもよい。な
お、機側のサンプル元弁1F−1等及び1F´−1等
は、通常開にしておく。
The sampling racks 101 and 102 include
Manual valves 101-1 and 102-1 and the like are collectively provided. When measuring the conductivity, the measurer sequentially opens and closes these valves, whereby the unit reverse osmosis membranes 1F, 1Br, etc. of the first and second stages and 1F ′,
The 1st-stage demineralized water and the 2nd-stage demineralized water on the water supply side and the brine side that have passed through these from 1Br ′ etc. are supplied as sample water. However, instead of the manual valves 101-1 and 102-1 and the like, an automatic valve such as a solenoid valve is used to automatically open and close at a predetermined time or sequentially open and close by a human operation to save labor in conductivity measurement. It may be designed. The sample source valves 1F-1 and 1F'-1 and the like on the machine side are normally opened.

【0013】計器ラック103、104には導電率計1
03a、104aが設けられ、これらにより給水側及び
ブライン側の個々の逆浸透膜を透過して導入された脱塩
水の導電率が測定される。
A conductivity meter 1 is mounted on the instrument racks 103 and 104.
03a and 104a are provided to measure the conductivity of the demineralized water that has been introduced through the reverse osmosis membranes on the water supply side and the brine side.

【0014】入力手段としては現場操作盤105、10
6を備え、本実施例では、当該逆浸透膜名と測定した個
々の導電率を計測者がその日付と共に次に述べるパソコ
ン制御装置107に入力する。但し入力手段は、現場操
作盤105、106からパソコン制御装置107に自動
入力できる装置であってもよいし、パソコン制御装置1
07のCRT107aの表示画面とキーボード107b
とを用いて入力するような装置としてもよい。
On-site control panels 105 and 10 are used as input means.
In this embodiment, the operator inputs the name of the reverse osmosis membrane and each measured conductivity into the personal computer controller 107 described below together with the date. However, the input means may be a device that can automatically input to the personal computer control device 107 from the field operation panels 105 and 106, or the personal computer control device 1
07 CRT 107a display screen and keyboard 107b
A device for inputting by using and may be used.

【0015】又、本実施例の逆浸透膜交換率設定装置で
は、運転条件として、供給水圧力、脱塩され濃縮された
濃縮水圧力、脱塩水圧力、供給水流量、脱塩水流量、水
温、供給水導電率、供給水塩分濃度等の運転データを、
海水淡水化装置内に設置されているそれぞれの測定装置
から得るようにしている。そしてこれらのデータを、運
転条件入力手段の一例であるパソコン制御装置107の
CRT107a及びキーボード107bを用いてパソコ
ン制御装置本体に入力する。但し、運転条件入力手段と
して海水淡水化装置内に設けられるコンピュータ等を用
い、これからパソコン制御装置本体に自動入力するよう
にしてもよい。
Further, in the reverse osmosis membrane exchange rate setting device of this embodiment, operating conditions include supply water pressure, demineralized and concentrated concentrated water pressure, demineralized water pressure, supply water flow rate, demineralized water flow rate, water temperature, Operation data such as supply water conductivity, supply water salt concentration,
It is obtained from each measuring device installed in the seawater desalination system. Then, these data are input to the main body of the personal computer control device using the CRT 107a and the keyboard 107b of the personal computer control device 107 which is an example of the operating condition input means. However, a computer or the like provided in the seawater desalination apparatus may be used as the operating condition input means, and the data may be automatically input to the main body of the personal computer control apparatus.

【0016】パソコン制御装置107は、CRT107
a、キーボード107b、プリンタ107cを備え、処
理手段及び膜交換率決定手段と、更に本実施例では、運
転条件の補正手段とを有している。
The personal computer controller 107 is a CRT 107.
a, a keyboard 107b, a printer 107c, a processing means and a membrane exchange rate determining means, and in this embodiment, an operating condition correcting means.

【0017】補正手段は、測定され入力された供給水圧
力、濃縮水圧力、脱塩水圧力、供給水流量、脱塩水流
量、水温、供給水導電率及び供給水塩分濃度が、設計条
件と比較して差異があるときに、その差異とそれぞれの
運転条件ごとに予め定められた補正係数とから、測定し
た個々の導電率を補正する。この補正は、実際の運転条
件が設計条件と異なるときに、プラントが設計条件通り
で運転されていたとしたときの導電率を求めるために行
うものである。これにより、個々の膜性能の正しい評価
ができることになる。但し、常に設計条件に近い条件で
運転されるようなプラントに対しては、このような補正
手段を設けなくてもよい場合がある。
The correction means compares the measured and input feed water pressure, concentrated water pressure, demineralized water pressure, feed water flow rate, demineralized water flow rate, water temperature, feed water conductivity and feed water salt concentration with design conditions. If there is a difference, the measured individual conductivity is corrected from the difference and a correction coefficient predetermined for each operating condition. This correction is performed in order to obtain the electric conductivity when the plant is operating under the design conditions when the actual operating conditions are different from the design conditions. This allows a correct evaluation of individual membrane performance. However, such a correction unit may not be provided for a plant that is always operated under conditions close to the design conditions.

【0018】処理手段では、このように補正された個々
のデータから、最初に統計的処理として最大値、最小
値、平均値及び標準偏差を求める。本実施例では、CR
T107a及びキーボード107bを用い、膜交換当初
の圧密化係数を1.0、1年乃至3年後の圧密化係数を
0.65とし、この数値を制御装置107の本体部に入
力する。但し、このような条件を予め制御装置本体に組
み入れておくことにより、導電率を測定する時期従って
膜の使用時間から圧密化係数を計算するようにしてもよ
い。処理手段では、又、例えば初期塩透過率をSpo、測
定時までの経過時間をt、t時間経過後の塩透過率をS
pt、膜劣化速度係数をKspとしたとき、 Log(Spt/Spo)=Ksp・t0.65 なる実験式を用いて、膜劣化速度係数Kspが計算され
る。この場合、初期及びt時間経過後の塩透過率は、そ
れぞれ測定して運転条件により補正された導電率から得
られる。このような膜劣化速度係数を用いることによ
り、膜の性能を把握して合理的な膜交換率の決定が可能
になる。なお、経過時間tが短くデータの集積が少ない
段階では、逆浸透膜メーカから与えられた数値を使用し
てもよい。
The processing means first obtains the maximum value, the minimum value, the average value and the standard deviation as a statistical process from the individual data thus corrected. In this embodiment, CR
Using the T107a and the keyboard 107b, the consolidation coefficient at the beginning of the membrane exchange is set to 1.0, and the consolidation coefficient after 1 to 3 years is set to 0.65, and this numerical value is input to the main body of the control device 107. However, by preliminarily incorporating such conditions into the control device main body, the consolidation coefficient may be calculated from the time when the conductivity is measured, that is, the time when the film is used. In the processing means, for example, the initial salt permeability is Spo, the elapsed time until the measurement is t, and the salt permeability after the time t is S.
When the pt and the film deterioration rate coefficient are Ksp, the film deterioration rate coefficient Ksp is calculated using an empirical formula of Log (Spt / Spo) = Ksp · t 0.65 . In this case, the salt permeability at the initial stage and after the lapse of time t is obtained from the conductivity measured and corrected according to the operating conditions. By using such a membrane deterioration rate coefficient, it becomes possible to grasp the performance of the membrane and reasonably determine the membrane exchange rate. In addition, at the stage where the elapsed time t is short and the amount of data is small, the numerical value given by the reverse osmosis membrane manufacturer may be used.

【0019】膜交換率計算手段では、本実施例では、膜
交換を年1回とし、毎年一定の膜交換率で交換するもの
として、圧密化係数と膜劣化速度係数とから、集合体即
ち第一段及び第二段のそれぞれを単位として予測される
膜交換後の水質が常に所定の設計値を超えないという条
件で膜交換率が求められる。但し、本手段により、所定
の水質を維持するような膜交換率と膜交換時期との関係
を計算できるようにしてもよい。このようにすれば、最
適の膜交換時期及び膜交換率を求めることができる。
In the present embodiment, the membrane exchange rate calculation means assumes that the membrane exchange is performed once a year and is performed at a constant membrane exchange rate every year. The membrane exchange rate is obtained under the condition that the water quality after the membrane exchange predicted in each of the first and second stages does not always exceed a predetermined design value. However, the present means may be capable of calculating the relationship between the membrane exchange rate and the membrane exchange timing that maintains a predetermined water quality. By doing this, it is possible to obtain the optimum membrane exchange timing and membrane exchange rate.

【0020】図3は、このような逆浸透膜交換率設定装
置を用いて膜交換率を設定する操作及び処理フローを示
す。逆浸透膜(表では「RO膜」)単体毎の導電率を毎
月1回測定してパソコン制御装置107に入力する(S
1)。又、センサ類で検出した運転条件の記録も同装置
に入力する(S2)。このとき、各運転条件毎に導電率
を補正するための補正係数を自動計算して入力する(S
3)。これらにより、各逆浸透膜毎の水質の補正値を計
算して水質補正値表を作成する(S4)。導電率生デー
タ入力表及び水質補正値記録表の一部分をそれぞれ表1
及び表2に例示する。この水質補正には、同一段でも供
給水質が異なる給水側とブライン側との間の補正も含ま
れている。
FIG. 3 shows the operation and processing flow for setting the membrane exchange rate using such a reverse osmosis membrane exchange rate setting device. The conductivity of each reverse osmosis membrane (“RO membrane” in the table) is measured once a month and input to the personal computer controller 107 (S
1). Further, the record of the operating conditions detected by the sensors is also input to the same device (S2). At this time, a correction coefficient for correcting the conductivity is automatically calculated and input for each operating condition (S
3). From these, a water quality correction value is calculated for each reverse osmosis membrane to create a water quality correction value table (S4). Part of the raw conductivity data input table and the water quality correction value recording table are shown in Table 1 respectively.
And Table 2 illustrates. This water quality correction includes correction between the water supply side and the brine side where the water quality is different even in the same stage.

【0021】次に、本実施例では毎年1回膜交換をする
ので、その記録もパソコン制御装置107に入力する
(S5)。そして、各単位逆浸透膜が膜交換後に運転さ
れた時間を計算する(S6)。各逆浸透膜の補正水質及
び運転時間から、各系列毎の運転時間に対する補正水質
推移表を作成する(S7)。実際の表では全ての膜につ
いて毎月のデータを作っているが、その一部分を表3に
例示する。
Next, in this embodiment, since the membrane is changed once a year, the record is also input to the personal computer control device 107 (S5). Then, the time during which each unit reverse osmosis membrane is operated after the membrane exchange is calculated (S6). From the corrected water quality and operating time of each reverse osmosis membrane, a corrected water quality transition table for the operating time of each series is created (S7). In the actual table, monthly data is prepared for all the films, and a part of them is shown in Table 3.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0022】この補正水質推移表に基づき、第一段、第
二段毎に全体集計してプラントの使用開始後の経過月毎
の統計データをまとめ、圧密化係数、膜劣化速度係数を
計算し、これらから、年1回一定の膜交換率で膜交換を
行うものとして、経時的に変化する水質が設計性能を超
えないように膜交換率を計算する。そしてこれらを表に
まとめて、運転時間に対する水質表として表示する(S
8)。表4は、このような第一段脱塩水濃度推移集計表
の一部分を例示し、図4は、これをグラフ表示したもの
である。
Based on this corrected water quality transition table, the first stage and the second stage are collectively tabulated and statistical data for each elapsed month after the start of use of the plant are summarized to calculate a consolidation coefficient and a membrane deterioration rate coefficient. From these, it is assumed that the membrane exchange is performed once a year at a constant membrane exchange rate, and the membrane exchange rate is calculated so that the water quality that changes with time does not exceed the design performance. Then, these are summarized in a table and displayed as a water quality table for operating hours (S
8). Table 4 exemplifies a part of such a first stage desalination water concentration transition summary table, and FIG. 4 is a graph display thereof.

【表4】 [Table 4]

【0023】表4において、経過月数は逆浸透膜が交換
された後の月数を示し、毎月同じ経過月数の一群の膜の
データが記入されるが、表4では6月毎の数値のみを示
している。膜劣化速度係数は、測定され補正された一群
のデータの平均値に標準偏差の3倍を加えた水質により
毎月計算される。そして、膜交換率を一定として12月
毎に計算する水質の予想性能の計算においては、毎月計
算された膜劣化速度係数の12月分の平均値を用いる。
但し、データの集積が少ないため、当面表4の計算で
は、メーカから与えられた膜劣化速度係数を用いてい
る。又、圧密化係数も膜メーカの推奨値を使用してい
る。なお同表において、設計性能及び新予想性能欄は、
それぞれ当初の設計及び補正した実測値(ppm)に基
づいて、膜交換をしなかった場合の推移を示している。
この場合、設計性能としての保証水質は400ppmで
あり、装置の性能が設計性能通りであったすれば、36
月後は保証値を超えることになる。膜交換しない場合の
新予想性能及び膜交換したときの予想性能としては、前
述の如く補正実測値の平均値に標準偏差の3倍を考慮し
た安全な値を用いている。これをベースとして毎年一定
割合で膜交換した場合の性能推移を計算する。右欄の膜
交換時の予想推移(ppm)は、それぞれ7%、9%又
は18%の一定の膜交換率で膜交換したときの経過月数
に対する予想水質を示す。なお実際の計算は15年まで
行っているが、表4は72月(6年)までを例示してい
る。右欄の最初の7%の交換率は、膜交換率を2%ピッ
チで計算したときに、保証値400ppmを超えること
になる最大の膜交換率を示し、同表中には見られないが
9年(108月)経過後に予想性能が400ppmを超
えている。次の9%の交換率は、同様に計算して保証値
400ppmを超えない最低値を求めたものであり、こ
の膜交換率では12年(144月)経過後に水質が最も
400ppmに接近している。右端の18%の交換率は
自由に選定できる数値であり、データの集積度が十分に
なれば、中央の欄(この場合は9%)と一致してもよ
い。なお、表の交換率欄の数値は、運転開始後12ヵ月
毎に膜交換した場合にそれ以後の膜交換の効果を含めて
計算した値を示している。図4はこの結果をグラフ表示
したものである。交換時性能としては、交換率を7%
(交換時1)及び18%(交換時2)とした場合を示し
ている。
In Table 4, the number of elapsed months indicates the number of months after the reverse osmosis membrane has been replaced, and the data of a group of membranes having the same number of elapsed months is entered every month. Shows only. The membrane degradation rate coefficient is calculated monthly by the water quality obtained by adding three times the standard deviation to the average value of a group of measured and corrected data. Then, in the calculation of the expected performance of the water quality, which is calculated every December with the membrane exchange rate being constant, the average value of the membrane deterioration rate coefficient for December calculated for each month is used.
However, since the amount of data collected is small, the film deterioration rate coefficient given by the manufacturer is used in the calculation of Table 4 for the time being. Also, the consolidation coefficient uses the value recommended by the film manufacturer. In the table, the design performance and new predicted performance columns are
Based on the initially designed and corrected actual measurement values (ppm), the transitions when the membrane is not replaced are shown.
In this case, the guaranteed water quality as the design performance is 400 ppm, and if the performance of the device is as designed, then 36
After a month, it will exceed the guaranteed value. As the new predicted performance when the membrane is not replaced and the predicted performance when the membrane is replaced, as described above, a safe value is used in which the standard deviation is tripled in the average value of the corrected actual measurement values. Based on this, the performance transition is calculated when the membrane is replaced at a fixed rate every year. The expected transition (ppm) at the time of membrane exchange in the right column shows the expected water quality with respect to the number of months elapsed when membrane exchange was performed at a constant membrane exchange rate of 7%, 9% or 18%, respectively. The actual calculation is performed up to 15 years, but Table 4 exemplifies up to 7 February (6 years). The first 7% exchange rate in the right column shows the maximum membrane exchange rate that exceeds the guaranteed value of 400 ppm when the membrane exchange rate is calculated at a pitch of 2%, which is not seen in the table. After 9 years (August), expected performance exceeds 400 ppm. The next 9% exchange rate was calculated in the same way and the lowest value that did not exceed the guaranteed value of 400 ppm was obtained. With this membrane exchange rate, the water quality was closest to 400 ppm after 12 years (April). There is. The exchange rate of 18% at the right end is a freely selectable numerical value, and if the degree of data integration is sufficient, it may coincide with the central column (9% in this case). The numerical values in the exchange rate column of the table indicate the values calculated when the membrane was replaced every 12 months after the start of operation, including the effect of the subsequent membrane replacement. FIG. 4 is a graphical representation of this result. For replacement performance, the replacement rate is 7%
(1 at the time of replacement) and 18% (2 at the time of replacement) are shown.

【0024】表5は運転記録から入力した運転条件の集
計表の一例を示す。これらの運転諸元に基づいて実測値
が補正されている。又、単位逆浸透膜の指定経過月にお
ける脱塩水濃度分布及び各段、各系列毎にまとめた脱塩
水濃度推移をグラフ表示したものをそれぞれ図5及び図
6に例示する。表6は、逆浸透膜の運転時間を計算する
ための逆浸透膜交換記録表の例である。
Table 5 shows an example of a tabulation table of operating conditions input from the operating record. The measured values are corrected based on these operating specifications. 5 and 6 are graphs showing the desalinated water concentration distribution of the unit reverse osmosis membrane in the designated months and the changes in the desalinated water concentration summarized for each stage and series. Table 6 is an example of a reverse osmosis membrane exchange recording table for calculating the operating time of the reverse osmosis membrane.

【表5】 [Table 5]

【表6】 なお、以上のような諸計算、処理は、例えば市販の表計
算ソフト及びBASICの解析プログラムにより効率的
に行うことができる。
[Table 6] The various calculations and processes described above can be efficiently performed by, for example, a commercially available spreadsheet software and an analysis program of BASIC.

【0025】このような逆浸透膜交換率設定装置によ
り、従来用いられていたメーカの膜交換率推奨値が25
〜30%であるのに対して、15%又はそれ以下の膜交
換率を採用することが可能になり、プラントの経済性が
大幅に向上した。そして、採取データが次第に加算され
ることにより、性能予測の信頼性が増し、更に膜交換率
の低減が可能になる。又、プラントの全体性能の把握や
膜交換の記録等も同時に行うことができる。
With such a reverse osmosis membrane exchange rate setting device, the recommended value of the membrane exchange rate of the manufacturer that has been conventionally used is 25.
It is possible to adopt a membrane exchange rate of 15% or less, while it is ˜30%, and the economical efficiency of the plant is significantly improved. Then, by gradually adding the collected data, the reliability of the performance prediction increases, and the membrane exchange rate can be further reduced. Further, it is possible to grasp the overall performance of the plant and record the membrane exchange at the same time.

【0026】なお、逆浸透膜の種類によっては、水質よ
りも水量を主体として膜交換が実施される場合もある。
このような場合には、各単位逆浸透膜の水量を検出でき
るようにし、これをベースとして同様の処理により膜交
換率を決定することができる。又以上において、実際に
膜交換を行うときには、例えば微生物の影響その他の使
用条件の相違や個々の膜の特性の相違等により膜の劣化
する程度に差が生じることを考慮して、交換実施前の水
質補正値記録表において水質低下の大きい膜から順番に
所定本数を交換するようにすることが望ましい。
Depending on the type of the reverse osmosis membrane, the membrane exchange may be carried out mainly by the amount of water rather than the water quality.
In such a case, the amount of water in each unit reverse osmosis membrane can be detected, and the membrane exchange rate can be determined by the same process based on this. In addition, in the above, when actually performing the membrane replacement, consider that there is a difference in the degree of deterioration of the membrane due to, for example, the influence of microorganisms or other conditions of use, or the characteristics of individual membranes. In the water quality correction value recording table, it is desirable to replace a predetermined number of membranes in order from the one with the largest water quality deterioration.

【0027】[0027]

【発明の効果】以上の如く本発明によれば、適正な膜交
換率の設定が可能になり、海水淡水化装置の維持管理費
用の低減を図ることができる。
As described above, according to the present invention, an appropriate membrane exchange rate can be set, and the maintenance cost of the seawater desalination apparatus can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の逆浸透膜交換率設定装置の構成を示す
説明図である。
FIG. 1 is an explanatory diagram showing a configuration of a reverse osmosis membrane exchange rate setting device according to an embodiment.

【図2】上記装置が適用される海水淡水化装置の単位逆
浸透膜装置の配列を示す説明図である。
FIG. 2 is an explanatory diagram showing an arrangement of unit reverse osmosis membrane devices of a seawater desalination device to which the above device is applied.

【図3】上記装置で膜交換率を決定するときのフローチ
ャートである。
FIG. 3 is a flow chart when the membrane exchange rate is determined by the above apparatus.

【図4】脱塩水予想濃度推移を示すグラフである。FIG. 4 is a graph showing changes in expected concentration of desalinated water.

【図5】脱塩水濃度分布を示すグラフである。FIG. 5 is a graph showing a concentration distribution of demineralized water.

【図6】脱塩水濃度推移を示すグラフである。FIG. 6 is a graph showing changes in the concentration of demineralized water.

【符号の説明】[Explanation of symbols]

1F〜65F、1Br〜65Br 第一段単
位逆浸透膜 1F´〜30F´、1Br´〜30Br´ 第二段単
位逆浸透膜 101、102 サンプリングラック(導電率測定
手段) 103、104 計器ラック(導電率測定手段) 105、106 操作盤(入力手段) 107 制御装置(処理手段、膜交換率計
算手段、) 107a CRT(入力手段) 107b キーボード(入力手段)
1F-65F, 1Br-65Br 1st-stage unit reverse osmosis membrane 1F'-30F ', 1Br'-30Br' 2nd-stage unit reverse osmosis membrane 101,102 Sampling rack (conductivity measuring means) 103,104 Instrument rack (conductivity) Rate measuring means) 105, 106 Operation panel (input means) 107 Control device (processing means, membrane exchange rate calculation means) 107a CRT (input means) 107b Keyboard (input means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多数の単位逆浸透膜を並列又は直列に設
けて集合体として構成した淡水製造装置に用いる逆浸透
膜交換率設定方法において、 前記単位逆浸透膜毎に透過水の導電率を測定し、 該導電率と前記単位逆浸透膜の使用期間とを処理手段に
入力し、 入力したデータと逆浸透膜が圧密化する圧密化係数とに
より逆浸透膜の劣化速度係数を決定し、 前記圧密化係数と前記劣化速度係数とにより、前記淡水
製造装置として予測される透過水の水質が常に所定値を
越えないように、前記淡水製造装置を構成している全逆
浸透膜数に対して交換する単位逆浸透膜数の比率である
膜交換率を決定する、 ことを特徴とする逆浸透膜交換率設定方法。
1. A reverse osmosis membrane exchange rate setting method for use in a fresh water producing apparatus comprising a large number of unit reverse osmosis membranes arranged in parallel or in series as an aggregate, wherein the conductivity of permeated water is set for each unit reverse osmosis membrane. The conductivity and the period of use of the unit reverse osmosis membrane are input to the processing means, and the deterioration rate coefficient of the reverse osmosis membrane is determined by the input data and the consolidation coefficient by which the reverse osmosis membrane is consolidated. Due to the consolidation coefficient and the deterioration rate coefficient, the quality of permeated water predicted as the fresh water producing apparatus does not always exceed a predetermined value, with respect to the total number of reverse osmosis membranes constituting the fresh water producing apparatus. A method for setting a reverse osmosis membrane exchange rate characterized by determining a membrane exchange rate which is a ratio of the number of unit reverse osmosis membranes to be exchanged.
【請求項2】 多数の単位逆浸透膜を並列又は直列に設
けて集合体として構成した淡水製造装置に用いる逆浸透
膜交換率設定装置において、 前記単位逆浸透膜毎に透過水の導電率を測定する導電率
測定手段と、 該測定した導電率と前記単位逆浸透膜の使用期間とを処
理手段に入力する入力手段と、 入力したデータと逆浸透膜が圧密化する圧密化係数とに
より逆浸透膜の劣化速度係数を決定する前記処理手段
と、 前記圧密化係数と前記劣化速度係数とにより計算される
前記淡水製造装置として予測される透過水の水質が、常
に所定値を越えないように、前記淡水製造装置を構成し
ている全逆浸透膜数に対して交換する単位逆浸透膜数の
比率である膜交換率を決定する膜交換率計算手段と、 を有することを特徴とする逆浸透膜交換率設定装置。
2. A reverse osmosis membrane exchange rate setting device for use in a fresh water producing apparatus, comprising a large number of unit reverse osmosis membranes arranged in parallel or in series and configured as an assembly, wherein the conductivity of permeate of each unit reverse osmosis membrane is adjusted. Reversed by the conductivity measuring means to be measured, the input means for inputting the measured conductivity and the period of use of the unit reverse osmosis membrane to the processing means, and the input data and the consolidation coefficient by which the reverse osmosis membrane is consolidated. The treatment means for determining the deterioration rate coefficient of the osmosis membrane, and the water quality of the permeated water predicted as the fresh water manufacturing apparatus calculated by the consolidation coefficient and the deterioration rate coefficient, so that the water quality does not always exceed a predetermined value. And a membrane exchange rate calculation means for determining a membrane exchange rate which is a ratio of the number of unit reverse osmosis membranes to be exchanged with respect to the total number of reverse osmosis membranes constituting the fresh water producing apparatus. Permeation membrane exchange rate setting device.
JP4181673A 1992-06-15 1992-06-15 Reverse osmosis membrane exchange rate setting method and apparatus Expired - Fee Related JP2789404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4181673A JP2789404B2 (en) 1992-06-15 1992-06-15 Reverse osmosis membrane exchange rate setting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4181673A JP2789404B2 (en) 1992-06-15 1992-06-15 Reverse osmosis membrane exchange rate setting method and apparatus

Publications (2)

Publication Number Publication Date
JPH05345181A true JPH05345181A (en) 1993-12-27
JP2789404B2 JP2789404B2 (en) 1998-08-20

Family

ID=16104875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4181673A Expired - Fee Related JP2789404B2 (en) 1992-06-15 1992-06-15 Reverse osmosis membrane exchange rate setting method and apparatus

Country Status (1)

Country Link
JP (1) JP2789404B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7481917B2 (en) 2004-03-05 2009-01-27 Hydranautics Filtration devices with embedded radio frequency identification (RFID) tags
US7584061B2 (en) 2006-03-13 2009-09-01 Hydranautics Device for measuring permeate flow and permeate conductivity of individual reverse osmosis membrane elements
US7909997B2 (en) 2005-01-27 2011-03-22 Ecowater Systems, Llc Modular system for coupling water filter manifold heads
JP2011255355A (en) * 2010-06-11 2011-12-22 Panasonic Electric Works Co Ltd Electrolytic water generator
US8617397B2 (en) 2005-09-07 2013-12-31 Hydranautics Reverse osmosis filtration devices with RFID tag-powered flow and conductivity meters
CN104402091A (en) * 2014-11-26 2015-03-11 杭州水处理技术研究开发中心有限公司 Sea water desalination reverse osmosis device capable of operating in real time with variable load
WO2024190536A1 (en) * 2023-03-10 2024-09-19 東レ株式会社 Separation performance calculation method and calculation program for separation membrane

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7481917B2 (en) 2004-03-05 2009-01-27 Hydranautics Filtration devices with embedded radio frequency identification (RFID) tags
US7736495B2 (en) 2004-03-05 2010-06-15 Hydranautics Filtration devices with embedded radio frequency identification (RFID) tags
US7909997B2 (en) 2005-01-27 2011-03-22 Ecowater Systems, Llc Modular system for coupling water filter manifold heads
US7909998B2 (en) 2005-01-27 2011-03-22 Ecowater Systems, Llc Encapsulated water treatment system
US7964103B2 (en) 2005-01-27 2011-06-21 Ecowater Systems, Llc Computer-implemented method of monitoring the performance of a reverse osmosis membrane in a drinking water supply system
US8177973B2 (en) 2005-01-27 2012-05-15 Ecowater Systems, Llc Annular collar for encapsulated water treatment system
US8617397B2 (en) 2005-09-07 2013-12-31 Hydranautics Reverse osmosis filtration devices with RFID tag-powered flow and conductivity meters
US7584061B2 (en) 2006-03-13 2009-09-01 Hydranautics Device for measuring permeate flow and permeate conductivity of individual reverse osmosis membrane elements
JP2011255355A (en) * 2010-06-11 2011-12-22 Panasonic Electric Works Co Ltd Electrolytic water generator
CN104402091A (en) * 2014-11-26 2015-03-11 杭州水处理技术研究开发中心有限公司 Sea water desalination reverse osmosis device capable of operating in real time with variable load
WO2024190536A1 (en) * 2023-03-10 2024-09-19 東レ株式会社 Separation performance calculation method and calculation program for separation membrane

Also Published As

Publication number Publication date
JP2789404B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
CN105027010B (en) Control parameter method of adjustment and control parameter adjustment system
DE69032557T2 (en) METHOD AND SYSTEM FOR CONTROLLING A METHOD
EP2040775B1 (en) Method and device for predetermining treatment parameters for extra-corporal dialysis treatment
DE69930145T2 (en) Method and apparatus for determining the presence of leaks in a system of flowing fluid
DE102017011896A1 (en) Apparatus for estimating a tool life
CN103476711A (en) Method and system for controlling carbon source feed to denitrification filters
JP2789404B2 (en) Reverse osmosis membrane exchange rate setting method and apparatus
EP3177336B1 (en) Device and method for determining an optimum dialysate flow for an extracorporeal blood treatment with an extracorporeal blood treatment device
DE102013103816A1 (en) Method and device for determining an internal filtration in an extracorporeal blood treatment
JPH0839065A (en) Operation control device of water making plant
JP2021159870A (en) Water treatment system, operation and management support system for water treatment system, and operation method for water treatment system
EP1698360B1 (en) Dialysisapparatus with a device for determining the dialysis dosage
KR20120098251A (en) Membrane cleaning interval prediction method and system in membrane bioreactor
JP2013022543A (en) Membrane treatment device and method of operation of membrane module
BE1028316B1 (en) Adjustable hollow fiber ultrafiltration system
JP5638636B2 (en) Control device, control system, and control method
Isaev et al. System of prompter and virtual laboratory for chemical industry
EP2398345A1 (en) Method and device for monitoring a pasteurization installation
Johnson et al. Issues of operational integrity in membrane drinking water plants
CN117263374B (en) Aeration control method for membrane bioreactor, electronic equipment and medium
DE112020005880T5 (en) A WATER PURIFICATION DEVICE
Schneider Monitoring and quantifying the treatment performance of on-site wastewater treatment plants
DE102023211365A1 (en) Method for controlling a fuel cell system
CN118062921B (en) Self-correction method and system for garbage leachate concentrated solution treatment equipment
EP4272042B1 (en) Anomaly cause analysis based on simulated symptoms

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees