JPH05332385A - Energy absorbing member - Google Patents
Energy absorbing memberInfo
- Publication number
- JPH05332385A JPH05332385A JP4137198A JP13719892A JPH05332385A JP H05332385 A JPH05332385 A JP H05332385A JP 4137198 A JP4137198 A JP 4137198A JP 13719892 A JP13719892 A JP 13719892A JP H05332385 A JPH05332385 A JP H05332385A
- Authority
- JP
- Japan
- Prior art keywords
- load
- energy absorbing
- absorbing member
- energy
- tubular body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Superstructure Of Vehicle (AREA)
- Vibration Dampers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は自動車に装備されるバン
パの支持部材やヘリコプターの床下部などに使用される
エネルギー吸収部材に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy absorbing member used for a supporting member of a bumper mounted on an automobile or a lower floor of a helicopter.
【0002】[0002]
【従来の技術】自動車には衝突時における車体及び搭乗
者の保護のため、一般に車体の前後に衝突時の衝撃エネ
ルギーを吸収するバンパが取り付けられている。バンパ
は自動車が障害物と衝突した際に加わる大きな負荷に対
して非可逆的にエネルギーを吸収する必要がある。そし
て、吸収エネルギーを大きくするため、従来からバンパ
本体を支持する支持部材の材質や構造の改良が種々なさ
れている。2. Description of the Related Art In order to protect a vehicle body and an occupant at the time of a collision, an automobile is generally provided with a bumper in front of and behind the vehicle body for absorbing impact energy at the time of a collision. The bumper needs to irreversibly absorb energy against a large load applied when the vehicle collides with an obstacle. In order to increase the absorbed energy, various improvements have been made to the material and structure of the support member that supports the bumper body.
【0003】又、ヘリコプターの座席床下部にも不慮の
故障で機体が着地する際の衝撃を少しでも和らげ、特に
搭乗者への影響を軽減するために、軽量でエネルギー吸
収機能の高い部材が求められている。In addition, a member that is lightweight and has a high energy absorbing function is required in order to soften the impact when the aircraft lands on the lower floor of the seat of a helicopter due to an accidental accident, and especially to reduce the influence on passengers. Has been.
【0004】例えば、1988年2月18日公開のドイ
ツ特許(3626150)には、繊維強化プラスチック
から成る弾性変形可能な減衰成形体を介してバンパを車
体のステイに取り付けたものが開示されている。減衰成
形体は実質的にリング状に形成され、減衰成形体を形成
する繊維強化プラスチックの強化繊維は周方向に配列さ
れている。そして、減衰成形体はその側面から衝撃力が
加わる状態、すなわち衝撃力が加わる方向に対して減衰
成形体の軸が直交する状態で使用される。For example, German Patent (3626150) published on February 18, 1988 discloses a bumper attached to a stay of a vehicle body through an elastically deformable damping molded body made of fiber reinforced plastic. .. The damping molded body is formed in a substantially ring shape, and the reinforcing fibers of the fiber-reinforced plastic forming the damping molded body are arranged in the circumferential direction. The damping molded body is used in a state where an impact force is applied from its side surface, that is, in a state where the axis of the damping molded body is orthogonal to the direction in which the impact force is applied.
【0005】又、特開昭57−124142号公報には
バンパに使用する衝撃保護用構造材として、図10に示
すように繊維複合材料(例えばエポキシ樹脂含浸ガラス
繊維)製の条帯21からなる網状組織で円筒状に形成さ
れた構造体22が提案されている。構造体22は筒の軸
方向に圧縮負荷が加わる状態で使用され、構造体22に
軸方向の荷重が作用すると網状組織の対向する結節点2
3において層間剥離を起こし、剪断降伏が繊維とマトリ
ックスとの界面で生ずることによりエネルギーを段階的
に吸収するようになっている。条帯21は構造体22の
長手方向軸線に対して30〜60度の傾斜角をもって傾
斜されている。又、各結節点23は約10層の繊維複合
材料製の条帯21で形成されている。Further, in Japanese Patent Laid-Open No. 57-124142, an impact protection structural material used for a bumper is a strip 21 made of a fiber composite material (eg, epoxy resin-impregnated glass fiber) as shown in FIG. A structure 22 formed of a mesh structure and having a cylindrical shape has been proposed. The structure 22 is used in a state in which a compressive load is applied in the axial direction of the cylinder, and when an axial load acts on the structure 22, the nodes 2 of the reticulated tissue which face each other are opposed.
3 causes delamination, and shear yield occurs at the interface between the fiber and the matrix to absorb energy stepwise. The strip 21 is inclined at an inclination angle of 30 to 60 degrees with respect to the longitudinal axis of the structure 22. Further, each knot 23 is formed by about 10 layers of the strip 21 made of a fiber composite material.
【0006】[0006]
【発明が解決しようとする課題】ところが、前記ドイツ
特許に開示されたような実質的にリング状の繊維強化プ
ラスチックに、その側面から外力を加えて破壊すると、
変形部位は荷重と同方向の部位のみで破壊され、外力に
対して直角方向の部位は実質的に元のままの形状を残し
破壊されない。従って、部材に荷重を加えた際の圧縮変
形過程で発生する応力と変形量の積(具体的には圧縮荷
重−変位量曲線と変位量を表す軸との間の面積)で表さ
れるエネルギー吸収量が極めて小さく、部材重量当たり
の効率が悪いという問題がある。However, when a substantially ring-shaped fiber-reinforced plastic as disclosed in the above-mentioned German Patent is destroyed by applying an external force from its side,
The deformed portion is destroyed only in the portion in the same direction as the load, and the portion in the direction perpendicular to the external force remains substantially in its original shape and is not destroyed. Therefore, the energy represented by the product of the stress and the deformation amount (specifically, the area between the compression load-displacement amount curve and the axis representing the displacement amount) generated in the compressive deformation process when a load is applied to the member. There is a problem that the absorption amount is extremely small and the efficiency per member weight is poor.
【0007】一方、特開昭57−124142号公報に
開示された筒状の衝撃保護用構造材は、筒の軸方向から
圧縮荷重が加わるようにバンパを支持した状態で使用さ
れる。従って、圧縮荷重を加えて破壊を行った場合は全
ての部位が破壊されるため、側方から圧縮荷重が加わっ
た場合に比較して部材重量当たりのエネルギー吸収効率
を高めることができる。しかし、条帯21の交差角が3
0〜60度の網目組織で構成されているため、軸方向の
圧縮荷重が作用すると網目組織の変形により筒状体が小
荷重で容易に圧縮変形するという問題がある。又、バン
パ支持部材のように人体への衝撃を小さくするという条
件がある場合には、荷重の最大値を人体への影響の低い
レベルに抑える必要があり、荷重変動の激しい場合には
全体としてのエネルギー吸収量が小さくなる。従って、
人体への衝撃を小さく、しかも変形時のエネルギー吸収
量を大きくするという要求を満たすためには、突発的な
荷重の発生を防止し、圧縮荷重−変位量曲線をできるだ
け荷重変動の少ない平坦なレベルに保つことが重要とな
る。しかし、この衝撃保護用構造材は変位量の増加に伴
って荷重が逐次低下していくため、エネルギー吸収量が
大きくなり難いという問題がある。On the other hand, the tubular impact protection structural material disclosed in JP-A-57-124142 is used in a state in which the bumper is supported so that a compressive load is applied from the axial direction of the tube. Therefore, when a compressive load is applied for destruction, all parts are destroyed, so that the energy absorption efficiency per member weight can be increased as compared with the case where a compressive load is applied from the side. However, the crossing angle of the strip 21 is 3
Since it is composed of a mesh structure of 0 to 60 degrees, there is a problem that when a compressive load in the axial direction acts, the cylindrical structure is easily compressed and deformed by a small load due to the deformation of the mesh structure. In addition, if there is a condition to reduce the impact on the human body like a bumper support member, it is necessary to suppress the maximum value of the load to a level that has a low effect on the human body. The energy absorption amount of becomes smaller. Therefore,
In order to meet the requirements of reducing the impact on the human body and increasing the amount of energy absorption during deformation, the sudden load is prevented from occurring and the compression load-displacement amount curve is set to a flat level with minimal load fluctuation. It is important to keep However, this impact protection structural material has a problem that the amount of energy absorbed is difficult to increase because the load is gradually reduced as the amount of displacement increases.
【0008】本発明は前記の問題点に鑑みてなされたも
のであって、その目的は自動車の衝突時やヘリコプター
のローター故障による着地時の衝撃を和らげ、搭乗者へ
の影響を軽減するため、衝突変形時に突発的な荷重を発
生せず、斜め方向からの荷重に対しても高い衝撃吸収能
力を持ち、しかも部材重量当たりのエネルギー吸収効率
が良いエネルギー吸収部材を提供することにある。The present invention has been made in view of the above problems, and its purpose is to soften the impact at the time of landing due to a collision of an automobile or a rotor failure of a helicopter, and to reduce the influence on passengers. It is an object of the present invention to provide an energy absorbing member which does not generate a sudden load at the time of collision deformation, has a high impact absorbing ability even against a load from an oblique direction, and has a high energy absorbing efficiency per member weight.
【0009】[0009]
【課題を解決するための手段】前記の目的を達成するた
め本発明においては、強化繊維が少なくとも周方向に巻
回され、マトリックスで充填された繊維強化複合材料で
筒状に形成し、筒状体の一方の端部の面積が完全な筒状
部の断面積の2/3以下となるように、かつ断面積が軸
方向に連続的に変化するように斜めに切り取った形状と
した。In order to achieve the above object, in the present invention, a reinforcing fiber is wound at least in the circumferential direction, and is formed into a tubular shape from a fiber-reinforced composite material filled with a matrix. The shape was cut obliquely so that the area of one end of the body was ⅔ or less of the cross-sectional area of the complete tubular portion, and the cross-sectional area continuously changed in the axial direction.
【0010】[0010]
【作用】本発明のエネルギー吸収部材は筒部の軸方向か
ら圧縮荷重を受けるように取り付けられる。エネルギー
吸収部材の軸方向に荷重がかかると面積の小さな側の端
部から徐々に破壊が始まる。そして、破壊によって起こ
る強化繊維に沿った円周方向の層間剥離が、逐次完全な
円筒部にも伝播していき、層間剥離の発生による荷重変
動を示すが、全体的にほぼ一定の荷重レベルを保って変
化し、その間に大きなエネルギーを吸収する。又、エネ
ルギー吸収部材が軸方向から圧縮荷重を受けて破壊され
る場合、筒状体の全周にわたって全ての部位で座屈破壊
を起こしてエネルギーを吸収する。従って、部材重量当
たりのエネルギー吸収効率が良くなる。The energy absorbing member of the present invention is attached so as to receive a compressive load from the axial direction of the tubular portion. When a load is applied to the energy absorbing member in the axial direction, the fracture starts gradually from the end portion having the smaller area. Then, the delamination in the circumferential direction along the reinforced fiber caused by the fracture propagates to the complete cylindrical part one after another, and the load fluctuation due to the occurrence of delamination is shown. It keeps changing and absorbs large amounts of energy in the meantime. When the energy absorbing member receives a compressive load from the axial direction and breaks, buckling failure occurs in all parts of the tubular body and the energy is absorbed. Therefore, the energy absorption efficiency per member weight is improved.
【0011】[0011]
【実施例】以下、本発明を具体化した一実施例を図1〜
図8に従って説明する。図1に示すように、エネルギー
吸収部材1は、断面が円形の筒状体の一端を斜めに切り
取った形状に形成されている。切り取り箇所は2か所設
けられ、軸と直交する面に対して所定の角度をなす傾斜
面2が対称に2個形成されている。エネルギー吸収部材
1は合成樹脂を長繊維(フィラメント)で補強したFR
P(繊維強化プラスチック)で形成され、フィラメント
が周方向に巻き付けられた状態に形成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment embodying the present invention will now be described with reference to FIGS.
This will be described with reference to FIG. As shown in FIG. 1, the energy absorbing member 1 is formed in a shape in which one end of a cylindrical body having a circular cross section is obliquely cut. Two cutouts are provided, and two inclined surfaces 2 that form a predetermined angle with respect to a surface orthogonal to the axis are formed symmetrically. The energy absorbing member 1 is an FR made of synthetic resin reinforced with long fibers (filaments).
It is made of P (fiber reinforced plastic) and is formed in a state in which filaments are wound in the circumferential direction.
【0012】エネルギー吸収部材1はガラス繊維(フィ
ラメント)に樹脂を付着しながらマンドレル上に巻き付
けた後、樹脂を加熱硬化させるフィラメントワインディ
ング法によりFRP円筒を形成し、その一端を所定の角
度で裁断加工することにより形成される。The energy absorbing member 1 is formed by winding a glass fiber (filament) around a mandrel while adhering the resin thereto, and then forming a FRP cylinder by a filament winding method in which the resin is heated and cured, and one end thereof is cut at a predetermined angle. It is formed by
【0013】このエネルギー吸収部材1は軸方向から圧
縮荷重を受ける状態で、バンパの支持部材としてあるい
は、直接荷重が作用する衝撃保護部材として使用され
る。このように強化繊維が周方向に巻回された筒状体に
軸方向の荷重を加えて圧縮破壊すると、筒状体は筒状体
の全周にわたって全ての部位で座屈破壊を起こしてエネ
ルギーを吸収する。従って、筒状体を構成する材料の重
量が小さいにも拘らず、大きなエネルギーを吸収し、極
めて効率のよい優れたエネルギー吸収部材となる。The energy absorbing member 1 is used as a support member for a bumper or as a shock protection member to which a load is directly applied while receiving a compressive load from the axial direction. When an axial load is applied to the tubular body in which the reinforcing fibers are wound in the circumferential direction in this manner to cause compressive fracture, the tubular body causes buckling fracture at all parts over the entire circumference of the tubular body, resulting in energy loss. Absorbs. Therefore, although the weight of the material forming the tubular body is small, it absorbs a large amount of energy and becomes an excellent energy absorbing member with extremely high efficiency.
【0014】繊維の巻回方向が筒状体の軸に直角な周方
向に近い程、全層の繊維が互いに平行に配列され、繊維
相互の錯綜による繊維間の空隙が減少し、繊維の充填率
が高められる。筒状体に外部から加えられる荷重を支え
るのは主に繊維であり、繊維充填率の高い程、大きな荷
重を担うことができ、吸収エネルギーも増大する。As the winding direction of the fibers is closer to the circumferential direction perpendicular to the axis of the tubular body, the fibers of all layers are arranged in parallel with each other, and the voids between the fibers due to the interlacing of the fibers are reduced, thereby filling the fibers. The rate is increased. The fibers mainly support the load applied to the tubular body from the outside, and the higher the fiber filling rate, the larger the load can be carried and the absorbed energy also increases.
【0015】繊維の配列が平行に揃っていると、それに
直角な荷重により繊維相互の横擦れ的な変位が多くの部
分で発生し、細かい円輪状の細片となって細分化されつ
つ崩壊するため、同じ重量でも多くのエネルギーを吸収
することができる。If the fibers are arranged in parallel, lateral rubbing displacement of the fibers occurs in many portions due to a load perpendicular to the fibers, and they become fine circular ring-shaped strips that are fragmented and collapsed. Therefore, a large amount of energy can be absorbed even with the same weight.
【0016】繊維の配列が軸方向に立っていくと軸対称
の配列により、交差角度が大きくなり、平行度の乱れか
ら生じる間隙も大きくなって網目状となる。この状態で
軸方向の圧縮荷重が作用すると、組織の変形により小荷
重で容易に筒状体が圧縮変形し、吸収エネルギーも小さ
くなって好ましくない。従って、筒状体の周方向に巻回
される繊維はできるだけ軸に直角な配列であることが好
ましい。When the fiber array stands in the axial direction, the crossing angle becomes large due to the axially symmetric array, and the gap caused by the disturbance of the parallelism also becomes large to form a mesh. When a compressive load in the axial direction acts in this state, the tubular body is easily compressed and deformed by a small load due to the deformation of the tissue, and the absorbed energy becomes small, which is not preferable. Therefore, it is preferable that the fibers wound in the circumferential direction of the tubular body be arranged as perpendicular to the axis as possible.
【0017】筒状体の断面積が軸方向に沿って一定の場
合、軸方向から圧縮荷重を受けると、全荷重が筒状体の
全断面に均等に作用し、筒状体が一つの剛体として挙動
し、平均荷重以上の大きな荷重に耐える。しかし、筒状
体の最弱点部に層間剥離が起こり、剪断破壊が発生する
と、亀裂が一挙に拡大して筒状態が崩壊し、荷重は瞬時
に大幅な低下を示す。しかし、その後、次第に荷重が増
加し始めて筒状体の断面積固有の荷重レベルに上昇し
て、その荷重を維持しつつ変形が進行し、その間に破壊
エネルギーを吸収する。しかし、吸収エネルギーは変位
×荷重によって算出され、一旦崩壊した後の低荷重レベ
ルのため、全吸収エネルギーは極めて小さい値となる。When the cross-sectional area of the tubular body is constant along the axial direction, when a compressive load is applied from the axial direction, the total load acts evenly on the entire cross section of the tubular body, and the tubular body forms one rigid body. It behaves as and withstands a large load above the average load. However, when delamination occurs at the weakest point of the tubular body and shear fracture occurs, the cracks expand at once and the tubular state collapses, and the load instantaneously shows a drastic decrease. However, thereafter, the load gradually increases and rises to a load level specific to the cross-sectional area of the tubular body, and the deformation progresses while maintaining the load, and the fracture energy is absorbed during that time. However, the absorbed energy is calculated by the displacement x load, and the total absorbed energy becomes an extremely small value because of the low load level after once collapsed.
【0018】これに対して、本発明のエネルギー吸収部
材1は筒状体の一端側が斜めに裁断された形状であり、
筒状体の断面積は一端側から軸方向に連続的に変化し、
途中から他端の面積と同じとなっている。このような筒
状体に軸方向の圧縮荷重がかかると、断面積の小さな側
から徐々に破壊を始め、破壊によって起こる繊維の配列
方向(円周方向)に沿った層間剥離が、逐次完全な筒状
部分にも伝播していく。そして、層間剥離の発生による
荷重変動を示すものの、全体的にはほぼ一定の荷重レベ
ルを保って変化し、その間に大きなエネルギーを吸収で
きる。On the other hand, the energy absorbing member 1 of the present invention has a shape in which one end side of a tubular body is cut obliquely,
The cross-sectional area of the tubular body changes continuously from the one end side in the axial direction,
It is the same as the area of the other end from the middle. When an axial compressive load is applied to such a tubular body, it gradually begins to break from the side with a smaller cross-sectional area, and the delamination along the fiber array direction (circumferential direction) that occurs due to the breakage is successively completed. It also propagates to the tubular part. Although the load changes due to the occurrence of delamination, the load changes while maintaining a substantially constant load level, and a large amount of energy can be absorbed during the change.
【0019】一方、図2に示すようにFRP円筒の先端
にテーパ部3aを形成したエネルギー吸収部材3の場合
も、筒状体の破壊初期に見られる突発的な荷重変動を避
けることはできる。しかし、このように筒状体の先端に
テーパ部3aを設けることは、筒状体の端部が全周にわ
たって肉薄になる。その結果、正面からの圧縮荷重に対
しては端部の全面積が有効に働くため支障はないが、筒
状体の軸に対して斜め方向からの圧縮荷重(斜め荷重)
に対しては、その一部しか寄与せず、荷重レベルが低下
し、吸収エネルギーが小さくなる。又、端部にテーパ部
を形成することは先端が肉薄の鋭利な面を形成するた
め、衝突時に前方の物体に切傷を与える危険性も含んで
いる。On the other hand, even in the case of the energy absorbing member 3 having the tapered portion 3a formed at the tip of the FRP cylinder as shown in FIG. 2, it is possible to avoid the sudden load fluctuation which is seen at the initial stage of breakage of the tubular body. However, by providing the tapered portion 3a at the tip of the tubular body in this way, the end portion of the tubular body becomes thin over the entire circumference. As a result, the whole area of the end works effectively against the compressive load from the front side, but there is no problem, but the compressive load from the diagonal direction with respect to the axis of the tubular body (oblique load)
However, the load level decreases and the absorbed energy decreases. Further, forming the taper portion at the end portion forms a sharp surface with a thin tip, and therefore involves a risk of cutting an object in front at the time of collision.
【0020】しかし、筒状体の肉厚を全長にわたって均
一とし、一端側に傾斜面2を設けたエネルギー吸収部材
1の場合は、斜め荷重に対し、傾斜面2のある端部のど
の方向より荷重が付加されても、変位の生じる点での筒
状体の断面積はテーパ部3aに比較して大きい。従っ
て、吸収エネルギーも増大する。又、テーパ部と異な
り、肉薄の鋭利な面がなく、安全性にも優れている。However, in the case of the energy absorbing member 1 in which the wall thickness of the tubular body is uniform over the entire length and the inclined surface 2 is provided on one end side, the direction of the end portion having the inclined surface 2 from which direction the oblique load is applied. Even if a load is applied, the cross-sectional area of the tubular body at the point of displacement is larger than that of the tapered portion 3a. Therefore, the absorbed energy also increases. Also, unlike the tapered portion, it has no thin and sharp surface and is excellent in safety.
【0021】エネルギー吸収部材1の先端面の面積及び
傾斜面2の筒状体軸に対する傾斜角度は、圧縮変形時に
許容される最大荷重と荷重速度によって決定される。発
生する最大荷重を小さくするためには主に先端面の面積
を小さくする。又、傾斜角度は5°以上が好ましく、荷
重速度が大きい場合には傾斜角度を大きくとる方が好ま
しい。先端面の面積を小さくする程、初期圧縮荷重の突
発を小さくすることができるが、先端面の面積を極度に
小さくすると、先端が竹槍の様な形状となる上、その部
位の吸収エネルギーが減少するため面積の大きい方が好
ましく、その限度は円筒面積の2/3とすべきである。
図3は端部面積と円筒面積の比によって破壊初期の最大
荷重がどのように変化するかをプロットしたもので、最
大荷重は、端部面積が減少する程直線的に低下し、筒状
体が端部から安定的に破壊する時に示す筒状体固有の破
壊荷重(のピーク値=1)の線と交わる。データのバラ
ツキを考慮して端部面積は筒状体面積の2/3以下であ
れば初期破壊荷重が安定破壊荷重を超えることなく、従
って衝突時のショックを緩和しつつ、大きなエネルギー
吸収効果が得られるのである。よって筒状体の先端面の
面積は当該筒状体の完全な筒状部の断面積の2/3以下
とする必要がある。The area of the tip end surface of the energy absorbing member 1 and the inclination angle of the inclined surface 2 with respect to the axis of the cylindrical body are determined by the maximum load and the load speed allowed during compression deformation. In order to reduce the maximum load generated, the area of the tip surface is mainly reduced. Further, the inclination angle is preferably 5 ° or more, and it is preferable to increase the inclination angle when the loading speed is high. The smaller the area of the tip surface, the smaller the burst of the initial compression load.However, if the area of the tip surface is extremely small, the tip becomes a bamboo spear-like shape and the absorbed energy at that part decreases. Therefore, the larger area is preferable, and the limit should be 2/3 of the cylindrical area.
Fig. 3 is a plot of how the maximum load at the initial stage of fracture changes depending on the ratio of the end area to the cylindrical area. The maximum load decreases linearly as the end area decreases, and Intersects with the line of (the peak value = 1) of the breakage load peculiar to the tubular body shown at the time of stable breakage from the end. Considering the variation of data, if the end area is 2/3 or less of the area of the tubular body, the initial breaking load does not exceed the stable breaking load. Therefore, a large energy absorption effect can be obtained while alleviating the shock at the time of collision. You can get it. Therefore, the area of the tip surface of the tubular body needs to be 2/3 or less of the cross-sectional area of the complete tubular portion of the tubular body.
【0022】エネルギー吸収部材1を自動車等の移動体
において、バンパ等を介さずにエネルギー吸収部材1が
直接荷重を受ける状態で使用する場合、最も荷重が加わ
り易い方向にエネルギー吸収部材1の先端が向かうよう
に設置するのが好ましい。すなわち、移動体の前部又は
後部の中央寄りに設置する場合はエネルギー吸収部材1
を前進又は後進方向と平行に設置し、側部に設置する場
合は先端が斜め前方あるいは斜め後方に向かうように設
置するのが好ましい。When the energy absorbing member 1 is used in a moving body such as an automobile in a state where the energy absorbing member 1 directly receives a load without a bumper or the like, the tip of the energy absorbing member 1 is placed in the direction in which the load is most easily applied. It is preferable to install them so that they face each other. That is, when the moving body is installed near the center of the front portion or the rear portion, the energy absorbing member 1
Is installed parallel to the forward or backward direction, and when installed on the side, it is preferable to install so that the tip faces diagonally forward or diagonally backward.
【0023】次にフィラメントとして直径13μmのガ
ラス繊維(2310 tex)を、合成樹脂としてエポキシ樹脂を
それぞれ使用して製造したエネルギー吸収部材につい
て、より具体的に説明する。Next, the energy absorbing member manufactured by using glass fiber (2310 tex) having a diameter of 13 μm as a filament and epoxy resin as a synthetic resin will be described more specifically.
【0024】エポキシ樹脂に硬化剤を配合した液を付着
しながら、直径50mmの金属円筒(マンドレル)上に
ガラス繊維をほぼフープ状に巻付けて厚さ4mmの円筒
とした。次に熱風炉中に8時間入れて樹脂を硬化させた
後、マンドレルから外して、繊維充填率65%のFRP
円筒を得た。このFRP円筒を加工して2個の傾斜面2
を有する本発明のエネルギー吸収部材1と、先端にテー
パ部3aを有する比較例としてのエネルギー吸収部材3
とを形成した。While adhering a liquid containing a curing agent to an epoxy resin, glass fibers were wound in a substantially hoop shape on a metal cylinder (mandrel) having a diameter of 50 mm to form a cylinder having a thickness of 4 mm. Next, after putting it in the hot air oven for 8 hours to cure the resin, remove it from the mandrel and use FRP with a fiber filling rate of 65%.
A cylinder was obtained. This FRP cylinder is processed into two inclined surfaces 2
Energy absorbing member 1 of the present invention having the above, and energy absorbing member 3 as a comparative example having a tapered portion 3a at the tip.
And formed.
【0025】比較例のエネルギー吸収部材3は、先端に
軸線に対してほぼ30°の角度を有するテーパ部3aが
形成されている。テーパ部3aは先端の厚さが1mmと
なるように切削加工で形成した。一方、本発明のエネル
ギー吸収部材1は先端面の面積が、前記比較例のエネル
ギー吸収部材3の先端面の面積と同一となり、かつ傾斜
面2と先端面との成す角度がほぼ19°となるように2
か所で裁断されている。傾斜面2の角度の設定は、テー
パ部3aの長さL1 と、傾斜面2の長さL2 とが一致す
るようにした。The energy absorbing member 3 of the comparative example has a tapered portion 3a formed at the tip thereof and having an angle of approximately 30 ° with respect to the axis. The tapered portion 3a is formed by cutting so that the thickness of the tip is 1 mm. On the other hand, the area of the tip surface of the energy absorbing member 1 of the present invention is the same as the area of the tip surface of the energy absorbing member 3 of the comparative example, and the angle between the inclined surface 2 and the tip surface is approximately 19 °. Like 2
It has been cut in places. The angle of the inclined surface 2 is set so that the length L1 of the tapered portion 3a and the length L2 of the inclined surface 2 match.
【0026】前記両エネルギー吸収部材1に対して、軸
方向からの圧縮荷重を加えた場合の圧縮荷重と変位量と
の関係を測定した結果を図5,6に示す。又、両エネル
ギー吸収部材1に対して、斜め30°の方向からの圧縮
荷重を加えた場合の圧縮荷重と変位量との関係を測定し
た結果を図7,8に示す。なお、斜め荷重を加える場合
は、図4に示すようにエネルギー吸収部材1,3を所定
の角度に傾けた状態でその基端を治具4で固定し、矢印
方向から荷重を加えた。5 and 6 show the results of measuring the relationship between the compressive load and the amount of displacement when a compressive load is applied to both energy absorbing members 1 in the axial direction. 7 and 8 show the results of measuring the relationship between the compressive load and the displacement amount when a compressive load is applied to both energy absorbing members 1 from an oblique 30 ° direction. When an oblique load is applied, the energy absorbing members 1 and 3 are tilted at a predetermined angle as shown in FIG. 4, the base ends of the energy absorbing members 1 and 3 are fixed by a jig 4, and the load is applied in the direction of the arrow.
【0027】軸圧縮の場合は、本発明のエネルギー吸収
部材1と比較例のエネルギー吸収部材3とでその挙動に
あまり差が見られず、エネルギー吸収量も殆ど同じであ
る。一方、斜め圧縮の場合は、本発明のエネルギー吸収
部材1の方が明らかに荷重の立ち上がりが早く、吸収エ
ネルギーが大きい。すなわち、前述のことが裏付けられ
る。In the case of axial compression, there is little difference in the behavior between the energy absorbing member 1 of the present invention and the energy absorbing member 3 of the comparative example, and the energy absorption amount is almost the same. On the other hand, in the case of oblique compression, the energy absorbing member 1 of the present invention obviously has a faster rise of load and a larger absorbed energy. That is, the above is supported.
【0028】なお、本発明は前記各実施例に限定される
ものではなく、例えば、図9(a)に示すように傾斜面
2の数を1個にしたり、あるいは3個以上にしてもよ
い。傾斜面2の少ない方が斜め荷重に対するエネルギー
吸収能からも、又、加工工数を少なくしてコスト低減を
図る上でも好ましい。しかし、エネルギー吸収部材1の
圧縮挙動の軸に対する方向性を無くすことが求められる
場合は、傾斜面の数を多くして先端形状のバランスをと
ってやる方がよい。又、筒状体の一部を切り取る際に図
9(b)に示すように切り口が周面と直角になるように
してもよい。又、エネルギー吸収部材1を構成する筒状
体は、製作容易性の点からは円筒体が好ましいが、多面
筒体でもよい。しかし、多面筒体とする場合には、面と
面との接合部が角部となって異常な応力集中が生じるの
を防止するため、接合部を曲面として周方向の繊維間に
発生した層間亀裂が円滑に伝播するようにするのが好ま
しい。又、素材のFRPを構成する樹脂はエポキシ樹脂
に限らずフェノール樹脂、不飽和ポリエステルなどの熱
硬化性樹脂の他、ポリエステル、ポリイミド等の熱可塑
性樹脂を使用してもよい。又、強化繊維としてガラス繊
維に代えてカーボン繊維、アラミド繊維等の高強度の物
性をもった各種の機能繊維を使用してもよい。又、エネ
ルギー吸収部材をバンパの支持部材として使用する他
に、直接衝撃荷重を受ける衝撃吸収部材やヘリコプター
の座席床下部に適用してもよい。The present invention is not limited to the above embodiments, and for example, the number of inclined surfaces 2 may be one as shown in FIG. 9 (a), or may be three or more. .. It is preferable that the number of the inclined surfaces 2 is small in terms of energy absorption capability against an oblique load, and also from the viewpoint of reducing the number of processing steps and cost reduction. However, when it is required to eliminate the directionality of the compression behavior of the energy absorbing member 1 with respect to the axis, it is better to increase the number of inclined surfaces to balance the tip shape. Further, when cutting off a part of the cylindrical body, the cut may be made perpendicular to the peripheral surface as shown in FIG. 9B. Further, the cylindrical body forming the energy absorbing member 1 is preferably a cylindrical body from the viewpoint of easy manufacturing, but may be a polyhedral cylinder. However, in the case of a polyhedral cylinder, in order to prevent abnormal stress concentration from being formed at the joints between the faces as corners, the joints are formed as curved faces and the interlayer generated between fibers in the circumferential direction is prevented. It is preferable that the crack propagates smoothly. Further, the resin forming the FRP of the material is not limited to the epoxy resin, but thermosetting resins such as phenol resin and unsaturated polyester, as well as thermoplastic resins such as polyester and polyimide may be used. Further, as the reinforcing fibers, various functional fibers having high strength physical properties such as carbon fibers and aramid fibers may be used instead of glass fibers. In addition to using the energy absorbing member as a support member for the bumper, the energy absorbing member may be applied to a shock absorbing member that directly receives a shock load or a seat floor of a helicopter.
【0029】[0029]
【発明の効果】以上詳述したように本発明のエネルギー
吸収部材は、破壊される際に筒状体の面積の小さな側の
端部から徐々に破壊が始まり、全体的にほぼ一定の荷重
レベルを保って変化し、しかもエネルギー吸収部材の全
ての部位で座屈破壊を起こしてエネルギーを吸収するの
で、エネルギー吸収量が大きくなるとともに部材重量当
たりのエネルギー吸収効率が良くなる。As described above in detail, the energy absorbing member of the present invention, when broken, gradually starts to break from the end of the tubular body having the smaller area, and the load level is generally constant. The energy absorption amount is increased and the energy absorption efficiency per member weight is improved because the energy is absorbed and the energy is absorbed by buckling and breaking at all parts of the energy absorption member.
【図1】本発明のエネルギー吸収部材の概略斜視図であ
る。FIG. 1 is a schematic perspective view of an energy absorbing member of the present invention.
【図2】比較例のエネルギー吸収部材の概略斜視図であ
る。FIG. 2 is a schematic perspective view of an energy absorbing member of a comparative example.
【図3】端部面積と円筒面積の比を変化させた場合の筒
状体の端部面積と破壊初期の最大荷重との関係を示した
図である。FIG. 3 is a diagram showing the relationship between the end area of a tubular body and the maximum load at the initial stage of fracture when the ratio of the end area and the cylindrical area is changed.
【図4】エネルギー吸収部材に斜め圧縮荷重を加える際
の支持状態を示す正面図である。FIG. 4 is a front view showing a supporting state when an oblique compression load is applied to the energy absorbing member.
【図5】本発明のエネルギー吸収部材に軸方向荷重を加
えた場合の圧縮荷重−変位量曲線である。FIG. 5 is a compression load-displacement amount curve when an axial load is applied to the energy absorbing member of the present invention.
【図6】比較例のエネルギー吸収部材に軸方向荷重を加
えた場合の圧縮荷重−変位量曲線である。FIG. 6 is a compression load-displacement amount curve when an axial load is applied to the energy absorbing member of the comparative example.
【図7】本発明のエネルギー吸収部材に30°斜め荷重
を加えた場合の圧縮荷重−変位量曲線である。FIG. 7 is a compression load-displacement amount curve when a 30 ° oblique load is applied to the energy absorbing member of the present invention.
【図8】比較例のエネルギー吸収部材に30°斜め荷重
を加えた場合の圧縮荷重−変位量曲線である。FIG. 8 is a compression load-displacement amount curve when a 30 ° oblique load is applied to the energy absorbing member of the comparative example.
【図9】(a)は変更例のエネルギー吸収部材を示す概
略斜視図、(b)は別の変更例のエネルギー吸収部材を
示す正面図である。FIG. 9A is a schematic perspective view showing an energy absorbing member of a modified example, and FIG. 9B is a front view showing an energy absorbing member of another modified example.
【図10】従来の衝撃保護用構造材を示す概略斜視図で
ある。FIG. 10 is a schematic perspective view showing a conventional structural member for impact protection.
1…エネルギー吸収部材、2…傾斜面。 1 ... Energy absorbing member, 2 ... Inclined surface.
Claims (1)
れ、マトリックスで充填された繊維強化複合材料で筒状
に形成し、筒状体の一方の端部の面積が完全な筒状部の
断面積の2/3以下となるように、かつ断面積が軸方向
に連続的に変化するように斜めに切り取った形状とした
エネルギー吸収部材。1. Reinforcement fibers are wound at least in the circumferential direction and formed into a tubular shape from a fiber-reinforced composite material filled with a matrix, and one end portion of the tubular body has a complete tubular section. An energy-absorbing member having a shape that is cut diagonally so that the cross-sectional area continuously changes in the axial direction so as to be ⅔ or less of the area.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4137198A JPH05332385A (en) | 1992-05-28 | 1992-05-28 | Energy absorbing member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4137198A JPH05332385A (en) | 1992-05-28 | 1992-05-28 | Energy absorbing member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05332385A true JPH05332385A (en) | 1993-12-14 |
Family
ID=15193090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4137198A Pending JPH05332385A (en) | 1992-05-28 | 1992-05-28 | Energy absorbing member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05332385A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7846540B2 (en) | 2004-08-03 | 2010-12-07 | Mitsubishi Heavy Industries, Ltd. | Impact-absorbing composite structure |
-
1992
- 1992-05-28 JP JP4137198A patent/JPH05332385A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7846540B2 (en) | 2004-08-03 | 2010-12-07 | Mitsubishi Heavy Industries, Ltd. | Impact-absorbing composite structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3144054B2 (en) | Energy absorbing material | |
JP3246041B2 (en) | Energy absorbing material | |
US5035307A (en) | Energy absorbing device | |
JP5791676B2 (en) | Shock absorber | |
JP5797713B2 (en) | Shock absorber | |
JPS6349097B2 (en) | ||
US20010051544A1 (en) | Shock absorbing tube | |
JPH05332385A (en) | Energy absorbing member | |
JP3837818B2 (en) | FRP thick energy absorber | |
JP3141570B2 (en) | Energy absorbing material | |
US4062994A (en) | Energy absorbing composite structures | |
JP3544994B2 (en) | Fiber reinforced composite material and energy absorbing member | |
JP3141569B2 (en) | Energy absorbing material | |
JPS6217438A (en) | Compression energy absorbing member | |
JP4247038B2 (en) | Shock-absorbing composite structure, manufacturing method thereof, and traveling body or navigation body using the same | |
JP2000240706A (en) | Energy absorbing member and manufacture thereof | |
JP3218892B2 (en) | Propeller shaft | |
JP6560568B2 (en) | Energy absorbing structure | |
JP3528290B2 (en) | Energy absorber with local reinforcement jig | |
JP4092478B2 (en) | Shock-absorbing component integrated with connecting member and method of manufacturing the same | |
JP2975443B2 (en) | Energy absorbing member | |
JPH0960676A (en) | Shock relaxing material and manufacture thereof | |
JP2931119B2 (en) | Energy absorbing member | |
JP2892854B2 (en) | Energy absorbing material | |
WO1991007315A1 (en) | Aircraft seats |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20050125 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20070829 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20070904 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080108 |