[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0533816B2 - - Google Patents

Info

Publication number
JPH0533816B2
JPH0533816B2 JP61219475A JP21947586A JPH0533816B2 JP H0533816 B2 JPH0533816 B2 JP H0533816B2 JP 61219475 A JP61219475 A JP 61219475A JP 21947586 A JP21947586 A JP 21947586A JP H0533816 B2 JPH0533816 B2 JP H0533816B2
Authority
JP
Japan
Prior art keywords
plasma
frequency power
processing chamber
power source
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61219475A
Other languages
Japanese (ja)
Other versions
JPS6376434A (en
Inventor
Norio Nakazato
Fujitsugu Nakatsui
Seiichi Watanabe
Kimio Muramatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21947586A priority Critical patent/JPS6376434A/en
Publication of JPS6376434A publication Critical patent/JPS6376434A/en
Publication of JPH0533816B2 publication Critical patent/JPH0533816B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、プラズマ処理装置及びプラズマクリ
ーニング方法に係り、特にプラズマを利用して試
料の加工、改質或は試料への薄膜堆積を行うプラ
ズマ処理装置及びプラズマクリーニング方法に関
する。 〔従来の技術〕 真空下でガスをプラズマ化し、プラズマ構成種
の優れた特性を利用して試料の表面加工及び表面
改質、或は試料に反応物を薄膜堆積させる技術及
びその装置が種々の分野で実用化している。特に
プラズマ構成種が試料の微細加工に適しているこ
と、或はプラズマ化したある種のガスは反応性に
富んでいることの理由で半導体装置(VLSI)の
製造のドライエツチング及び気相成長による薄膜
堆積に採り入れられ今では不可欠の技術となつて
いる。 VLSIの高集積化のためそのパターンは益々微
細化し、例えば4M bit d−RAMでは最少加工
寸法は0.7〜0.8μmに到つている。かゝる超微細
な分野においては塵埃はVLSI製造の歩留りを支
配するもので大敵であり清浄な環境が要求され
る。 一方、特に半導体ウエハを加工するドライエツ
チング装置或はウエハに反応物を堆積する薄膜堆
積装置では、プラズマ化したガスからの反応重合
物、プラズマ化したガスとウエハ構成々分との反
応物、ウエハ或はプラズマに晒される物質からの
飛散物等が装置構成壁表面に堆積付着するのが実
情である。これらの堆積付着物はある時期に構成
壁からはく離し、ウエハ上に落下する塵埃とな
る。 従来は、上述の堆積物を除去(いわゆるクリー
ニング)するのに処理装置の蓋を開き、水、アル
コール或はアセトン等の薬液を浸した防塵布を用
い人手によつて拭き取つている。尚、この種の技
術としては、例えば、飯田、“RIEにおけるチヤ
ンバ内および試料汚染”、セミコンダクタワール
ド、P127〜132(1984.11)に論じられてる。 〔発明が解決しようとする問題点〕 クリーニングの頻度は、試料の材質及び加工寸
法によつて異なるが、多いものは数回のプラズマ
処理毎に実施する必要がある。 上記従来技術では、このクリーニング作業は第
1に処理装置を停止し装置の真空を破つて大気に
開放するため、処理装置の構成材料が大気のガス
及び水分を吸着したり、薬液の湿分を吸着するた
め、再度真空状態を得るのに長時間を要し、処理
装置の稼動率を引き下げ、第2に装置構成材料へ
の吸着成分が微妙に処理特性を狂わせ処理性の再
現性を悪くするといつた問題を有している。 本発明の目的は、稼動率を低下させず、かつ、
処理性の再現性を良好に保持してクリーニングを
行うことができるプラズマ処理装置及びプラズマ
クリーニング方法を提供することにある。 〔問題点を解決するための手段〕 上記目的は、プラズマ処理装置を、減圧可能に
構成された処理室と、該処理室内に試料処理用ガ
スもしくはクリーニング用ガスを導入する手段
と、前記処理室内に設けられた一対の対向する電
極と、プラズマ生成用の高周波電源と、前記両電
極と高周波電源を接続する手段とを具備したもの
とし、また、プラズマクリーニング方法を、減圧
可能に構成され試料が内部でプラズマ処理される
処理室内にクリーニング用ガスを導入する工程
と、前記処理室内に設けられた一対の対向する電
極の双方と高周波電源とを接続し、プラズマを生
成することにより前記処理室内部をクリーニング
する工程とを有する方法とすることにより、達成
される。 〔作用〕 高周波電力の印加によるグロー放電によつて生
じるプラズマの中には電気的に中性な分子及び活
性な状態にあるラジカル種と、電子と通常は正に
帯電したイオン種が存在する。ドライエツチング
は主としてこのラジカル種とイオン種の反応作用
によるもので、特にイオン種が活性な分子域は原
子のイオンである場合をReactive Ion Etching
と呼んでいる。ガスがプラズマ化すると電子とイ
オンの移動度の相異によつて高周波電力を印加し
た電極に負の直流電圧が発生する。正に帯電した
イオンは負の直流電圧の作る電界によつて加速さ
れる。したがつてReactive Ion Etchingでは負
の直流電圧が生じる高周波電力を印加する電極側
に試料であるウエハを設置してラジカル種の反応
とともにイオン種の照射・反応を利用する。 エツチングにおいては上記ラジカル種及びイオ
ンの作用によるエツチングとともに、供給された
ガスからの反応重合物、及び試料であるウエハと
の反応生成物の堆積作用も行われている。エツチ
ングは、ウエハ上で堆積作用よりもエツチング作
用が優勢になるごとくしたものであるが、実際の
エツチングにおいてはプラズマと接するウエハ以
外の領域に堆積物が認められる。これら堆積物は
イオン照射の少い場所に発生し、イオン照射の多
い場所では殆ど認められない。 上記の現象はエツチングとともに生じる堆積物
はイオンに絶えず照射されスパツタ分解されるた
め(イオンの堆積物分解作用)と考えられてい
る。例えば高周波電力を印加した電極表面は前述
した負の直流電圧の発生のためイオン照射が多く
堆積物は極めて少いが、イオン照射の少い対向電
極及び処理室構成壁には多くみられる。 本発明の概要は前記したイオン照射による堆積
物分解作用を積極的に活用したもので、高周波電
源と電極との接続を任意のモードに切り替え得る
手段に設け、エツチング或は薄膜堆積のプラズマ
処理後に高周波電源と電極との接続を切り替えて
プラズマを発生させ堆積物を分解除去することで
ある。 〔実施例〕 本発明の一実施例を第1図〜第4図により説明
する。第1図はエツチング装置の断面構造と電気
系統を示す図である。上蓋1−a、側壁1−b、
下蓋1−cにより減圧可能に構成されたエツチン
グ室1はエツチングのためのガス供給ノズル2
と、減圧のための排気ノズル3を有し、内部に一
対の対向する電極4,5をそれぞれ気密及び電気
的絶縁機構6,7を介して内設する。エツチング
装置はさらに高周波電源8とマツチング回路9と
継電器10とを有する。継電器10は4個の接点
A,B,C,Dを有し、各接点間の接続及び切断
ができる機能を有する。接点Aには対向電極のう
ち上部電極4が、接点Bには下部電極5が接続さ
れ、接点Cには高周波電源8がマツチング回路9
を介して接続され、接点Dはアースに接続され
る。ここで継電器10は下表の接続モードが可能
である。
[Industrial Application Field] The present invention relates to a plasma processing apparatus and a plasma cleaning method, and more particularly to a plasma processing apparatus and a plasma cleaning method that utilize plasma to process, modify, or deposit a thin film on a sample. . [Prior art] There are various techniques and devices for turning gas into plasma under vacuum and utilizing the excellent properties of the plasma constituent species to process and modify the surface of a sample, or to deposit a thin film of a reactant on the sample. It has been put into practical use in the field. In particular, dry etching and vapor phase growth are used in the production of semiconductor devices (VLSI) because the plasma constituent species are suitable for microfabrication of samples, or because certain gases that have been turned into plasma are highly reactive. It has been adopted for thin film deposition and has now become an indispensable technology. Due to the high integration of VLSI, its patterns are becoming increasingly finer, and for example, the minimum processing size for 4M bit d-RAM has reached 0.7 to 0.8 μm. In such ultra-fine fields, dust is the enemy that controls the yield of VLSI manufacturing, and a clean environment is required. On the other hand, in dry etching equipment that processes semiconductor wafers or thin film deposition equipment that deposits reactants on wafers, reaction polymers from plasma gas, reaction products between plasma gas and wafer constituents, and wafer Alternatively, the actual situation is that debris etc. from substances exposed to plasma accumulate and adhere to the surface of the walls of the device. These deposits peel off from the component walls at some point and become dust that falls onto the wafer. Conventionally, in order to remove (so-called cleaning) the above-mentioned deposits, the lid of the processing apparatus is opened and the dust-proof cloth soaked in a chemical solution such as water, alcohol, or acetone is used to manually wipe off the deposits. This type of technology is discussed, for example, in Iida, "Chamber and Sample Contamination in RIE," Semiconductor World, pp. 127-132 (November 1984). [Problems to be Solved by the Invention] The frequency of cleaning varies depending on the material and processing dimensions of the sample, but in most cases it is necessary to perform it every several plasma treatments. In the above-mentioned conventional technology, this cleaning operation first involves stopping the processing equipment, breaking the vacuum of the equipment, and opening it to the atmosphere, so that the constituent materials of the processing equipment may adsorb atmospheric gases and moisture, or absorb moisture from the chemical solution. Because of the adsorption, it takes a long time to re-establish a vacuum state, reducing the operating rate of the processing equipment.Secondly, the adsorbed components on the equipment's constituent materials may slightly disturb the processing characteristics and impair the reproducibility of processing performance. I have a problem. The purpose of the present invention is to not reduce the operating rate, and
It is an object of the present invention to provide a plasma processing apparatus and a plasma cleaning method that can perform cleaning while maintaining good reproducibility of processing performance. [Means for solving the problem] The above object is to provide a plasma processing apparatus with a processing chamber configured to be able to reduce pressure, a means for introducing a sample processing gas or a cleaning gas into the processing chamber, and a means for introducing a sample processing gas or a cleaning gas into the processing chamber. The plasma cleaning method includes a pair of opposing electrodes provided in the sample, a high frequency power source for plasma generation, and means for connecting the two electrodes to the high frequency power source. A step of introducing a cleaning gas into a processing chamber which is internally subjected to plasma processing, and a step of connecting both of a pair of opposing electrodes provided in the processing chamber to a high frequency power source to generate plasma to clean the inside of the processing chamber. This can be achieved by using a method that includes a step of cleaning. [Operation] Electrically neutral molecules and radical species in an active state, electrons, and normally positively charged ion species are present in the plasma generated by glow discharge caused by the application of high-frequency power. Dry etching is mainly due to the reaction between radical species and ionic species, and is called reactive ion etching, especially when the active molecular region of the ionic species is an atomic ion.
It is called. When gas becomes plasma, a negative DC voltage is generated at the electrode to which high-frequency power is applied due to the difference in mobility between electrons and ions. Positively charged ions are accelerated by the electric field created by the negative DC voltage. Therefore, in Reactive Ion Etching, a wafer (sample) is placed on the electrode side to which high-frequency power is applied that generates a negative DC voltage, and the irradiation and reaction of ion species are utilized in addition to the reaction of radical species. In etching, in addition to etching due to the action of the radical species and ions, reaction polymers from the supplied gas and reaction products with the wafer as a sample are also deposited. Etching is a process in which the etching action is more dominant than the deposition action on the wafer, but in actual etching, deposits are observed in areas other than the wafer that are in contact with the plasma. These deposits occur in areas with little ion irradiation and are hardly observed in areas with high ion irradiation. The above phenomenon is thought to be due to the fact that deposits generated during etching are constantly irradiated with ions and are decomposed by spatter (deposit decomposition action of ions). For example, the surface of the electrode to which high-frequency power is applied is exposed to a large amount of ion irradiation due to the generation of the above-mentioned negative DC voltage, and there are very few deposits, but a lot of deposits are found on the counter electrode and processing chamber constituent walls, which are exposed to less ion irradiation. The outline of the present invention is to make active use of the deposit decomposition effect by ion irradiation described above, and to provide means for switching the connection between the high frequency power source and the electrode to any mode, and to remove the deposit after plasma processing for etching or thin film deposition. This involves switching the connection between the high-frequency power source and the electrode to generate plasma and decompose and remove the deposits. [Example] An example of the present invention will be described with reference to FIGS. 1 to 4. FIG. 1 is a diagram showing the cross-sectional structure and electrical system of the etching apparatus. Top lid 1-a, side wall 1-b,
An etching chamber 1 configured to be depressurized by a lower lid 1-c has a gas supply nozzle 2 for etching.
It has an exhaust nozzle 3 for pressure reduction, and a pair of opposing electrodes 4 and 5 are installed inside through airtight and electrical insulation mechanisms 6 and 7, respectively. The etching apparatus further includes a high frequency power source 8, a matching circuit 9, and a relay 10. The relay 10 has four contacts A, B, C, and D, and has a function of connecting and disconnecting each contact. The upper electrode 4 of the opposing electrodes is connected to the contact A, the lower electrode 5 is connected to the contact B, and the high frequency power source 8 is connected to the matching circuit 9 to the contact C.
The contact D is connected to ground. Here, the relay 10 is capable of the connection modes shown in the table below.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、処理装置を大気に開放
することなしにドライ状態でクリーニングできる
ので、装置の稼動率を高めることができ、かつ、
処理特性の再現性を良好に保持できるという効果
がある。特に、上下電極のみならず、エツチング
室内壁面の堆積物についてもクリーニング速度が
向上する効果がある。
As described above, according to the present invention, since the processing equipment can be cleaned in a dry state without being exposed to the atmosphere, the operating rate of the equipment can be increased, and
This has the effect of maintaining good reproducibility of processing characteristics. In particular, the cleaning speed is improved not only for the upper and lower electrodes but also for deposits on the walls of the etching chamber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示すエツチング
装置の構成図、第2図〜第4図は、第1図の装置
での継電器の接続モード図、第5図〜第7図は、
本発明の他の実施例を示すエツチング装置の構成
図である。 1……処理室、4,5……電極、8……高周波
電源、10……継電器。
FIG. 1 is a configuration diagram of an etching device showing an embodiment of the present invention, FIGS. 2 to 4 are connection mode diagrams of a relay in the device of FIG. 1, and FIGS. 5 to 7 are:
FIG. 3 is a configuration diagram of an etching apparatus showing another embodiment of the present invention. 1... Processing chamber, 4, 5... Electrode, 8... High frequency power supply, 10... Relay.

Claims (1)

【特許請求の範囲】 1 減圧可能に構成された処理室と、該処理室内
に試料処理用ガスもしくはクリーニング用ガスを
導入する手段と、前記処理室内に設けられた一対
の対向する電極と、プラズマ生成用の高周波電源
と、前記一対の電極の双方を前記高周波電源に接
続する手段とを具備したことを特徴とするプラズ
マ処理装置。 2 前記接続手段が、前記一対の電極の双方を前
記高周波電源に接続する状態と、前記一対の電極
の一方を接地し、他方を前記高周波電源に接続す
る状態のいずれかに切り替え可能な切り替え手段
を有することを特徴とする特許請求の範囲第1項
に記載のプラズマ処理装置。 3 減圧可能に構成され試料が内部でプラズマ処
理される処理室内にクリーニング用ガスを導入す
る工程と、前記処理室内に設けられた一対の対向
する電極の双方と高周波電源とを接続し、プラズ
マを生成することにより前記処理室内部をクリー
ニングする工程とを有することを特徴とするプラ
ズマクリーニング方法。
[Scope of Claims] 1. A processing chamber configured to be able to reduce pressure, means for introducing sample processing gas or cleaning gas into the processing chamber, a pair of opposing electrodes provided in the processing chamber, and a plasma A plasma processing apparatus comprising: a high-frequency power source for generation; and means for connecting both of the pair of electrodes to the high-frequency power source. 2. A switching means in which the connecting means can switch between a state in which both of the pair of electrodes are connected to the high frequency power source, and a state in which one of the pair of electrodes is grounded and the other is connected to the high frequency power source. A plasma processing apparatus according to claim 1, characterized in that it has the following. 3. Introducing a cleaning gas into a processing chamber that is configured to be able to reduce pressure and in which a sample is subjected to plasma treatment, and connecting both a pair of opposing electrodes provided in the processing chamber to a high frequency power source to generate plasma. and cleaning the inside of the processing chamber by generating plasma.
JP21947586A 1986-09-19 1986-09-19 Plasma treatment equipment Granted JPS6376434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21947586A JPS6376434A (en) 1986-09-19 1986-09-19 Plasma treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21947586A JPS6376434A (en) 1986-09-19 1986-09-19 Plasma treatment equipment

Publications (2)

Publication Number Publication Date
JPS6376434A JPS6376434A (en) 1988-04-06
JPH0533816B2 true JPH0533816B2 (en) 1993-05-20

Family

ID=16736016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21947586A Granted JPS6376434A (en) 1986-09-19 1986-09-19 Plasma treatment equipment

Country Status (1)

Country Link
JP (1) JPS6376434A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760819B2 (en) * 1987-10-29 1995-06-28 古河電気工業株式会社 Cleaning method for plasma CVD apparatus
JP2684381B2 (en) * 1988-05-24 1997-12-03 株式会社半導体エネルギー研究所 Plasma gas phase reaction method
JP2680065B2 (en) * 1988-09-22 1997-11-19 株式会社日立製作所 Plasma cleaning method
US5228939A (en) * 1991-12-30 1993-07-20 Cheng Chu Single wafer plasma etching system
JPH07142444A (en) * 1993-11-12 1995-06-02 Hitachi Ltd Microwave plasma processing system and method
US5585012A (en) * 1994-12-15 1996-12-17 Applied Materials Inc. Self-cleaning polymer-free top electrode for parallel electrode etch operation
JP4931548B2 (en) * 2006-10-27 2012-05-16 津田駒工業株式会社 Tilting table device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615044A (en) * 1979-07-18 1981-02-13 Toshiba Corp Plasma cleaning method
JPS5812347A (en) * 1981-07-15 1983-01-24 Toshiba Corp Semiconductor wafer
JPS5846639A (en) * 1981-09-14 1983-03-18 Hitachi Ltd Cleaning method for plasma processor and its plasma processor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615044A (en) * 1979-07-18 1981-02-13 Toshiba Corp Plasma cleaning method
JPS5812347A (en) * 1981-07-15 1983-01-24 Toshiba Corp Semiconductor wafer
JPS5846639A (en) * 1981-09-14 1983-03-18 Hitachi Ltd Cleaning method for plasma processor and its plasma processor

Also Published As

Publication number Publication date
JPS6376434A (en) 1988-04-06

Similar Documents

Publication Publication Date Title
TW410240B (en) Method for cleaning etch by-product from plasma chamber surfaces
KR100403114B1 (en) Self-cleaning method and apparatus for polymer-free upper electrodes for parallel electrode etching
KR940010866A (en) Microwave Plasma Treatment System and Processing Method
KR960002537A (en) How to clean electrostatic chuck in plasma reactor
CA2222620A1 (en) Method and apparatus for cleaning surfaces with a glow discharge plasma at one atmosphere of pressure
JPH0533816B2 (en)
JPH10321604A (en) Plasma treatment device
JPH0555184A (en) Cleaning method
JPS6218030A (en) Ion beam etching equipment
JP2656467B2 (en) Plasma processing method
JPH04271122A (en) Plasma processing equipment
JPH0822980A (en) Plasma processing equipment
JPH11293468A (en) Plasma cvd device and cleaning method therefor
JPH07106307A (en) Plasma treatment equipment and plasma treatment method
JPS63253628A (en) Plasma treatment apparatus
JP3207638B2 (en) Semiconductor manufacturing apparatus cleaning method
JPS61216327A (en) Plasma processing and processor thereof
JPS62130524A (en) Plasma processing apparatus
JP2708903B2 (en) Cleaning method and cleaning jig for inner wall of ion source housing
JPH0831442B2 (en) Plasma processing method and apparatus
JPH0885885A (en) Method for cleaning microwave plasma device
Segers et al. Thin Film Deposition Using a Dielectric‐barrier Discharge
KR101002335B1 (en) System for Atmospheric Pressure Plasma
JP2885150B2 (en) Dry cleaning method for dry etching equipment
JP2900546B2 (en) Liquid crystal alignment processing equipment