[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05335033A - Non-aqueous solvent for battery electrolyte - Google Patents

Non-aqueous solvent for battery electrolyte

Info

Publication number
JPH05335033A
JPH05335033A JP4137193A JP13719392A JPH05335033A JP H05335033 A JPH05335033 A JP H05335033A JP 4137193 A JP4137193 A JP 4137193A JP 13719392 A JP13719392 A JP 13719392A JP H05335033 A JPH05335033 A JP H05335033A
Authority
JP
Japan
Prior art keywords
aqueous solvent
lithium
battery
solvent
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4137193A
Other languages
Japanese (ja)
Inventor
Yuko Kanazawa
祐子 金澤
Nozomi Narita
望 成田
Yoshiro Harada
吉郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP4137193A priority Critical patent/JPH05335033A/en
Publication of JPH05335033A publication Critical patent/JPH05335033A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a non-aqueous solvent for electrolytic solution which is hard to be reduced and satisfies perfectly other physical and chemical characteristics by mixing a 1,3-dioxane-2-on derivative given by a specific structural expression with other non-aqueous solvent. CONSTITUTION:A 1,3-dioxane-2-on derivative given by the expression in attached illustration is mixed with a non-aqueous solvent such as ester, ether, etc. In expression, R1, R6 are alkyl radical given by general expression CnH2n+1 (n=1-4) or alkoxyl radical given by general expression OCnH2n+1 (n=1-4), and R2-R5 are H or alkyl radical given by general expression CnH2n+1 (n=1-4) or alkoxyl radical given by general expression OCnH2n+1 (n=1-4) O<1>-C<6>, O<3>-C<4> of this compound are hard to be cleaved, i.e., not likely to be reduced. Further, it has a high specific dielectric factor and is not likely reduced by other non-aqueous electrolyte PC, BC, to provide a favorable non-aqueous solvent for electrolyte to be used in a battery. As positive electrode active material is used a metal oxide or sulfide, while metal Li, Li alloy, or a carbonaceous material capable of occluding and releasing Li ions is used to the negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池など
の非水電解液二次電池,あるいはリチウム一次電池など
に用いられる電解液用非水溶媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolytic solution secondary battery such as a lithium secondary battery or a non-aqueous solvent for an electrolytic solution used in a lithium primary battery.

【0002】[0002]

【従来の技術】非水電解液二次電池として、正極活物質
にMnO2 ,V2 5 ,MoO3 ,V6 13,Ti
2 ,MoS2 等の金属酸化物もしくは遷移金属酸化物
あるいは硫化物を用い、負極に金属リチウムあるいはそ
の合金、例えばウッド合金やリチウムアルミニウム合金
を用いた二次電池が公知である。
2. Description of the Related Art As a non-aqueous electrolyte secondary battery, MnO 2 , V 2 O 5 , MoO 3 , V 6 O 13 and Ti are used as positive electrode active materials.
A secondary battery is known in which a metal oxide such as S 2 or MoS 2 or a transition metal oxide or a sulfide is used, and metal lithium or an alloy thereof such as a wood alloy or a lithium aluminum alloy is used for a negative electrode.

【0003】この種の電池では近年高エネルギー密度化
を達成するために、より高電圧を発生する材料が種々検
討されており、例えば一般式:Lix y 2 (MはC
oまたはNi,x は0.8以下,y はほぼ1)で示され
るイオン導電体で構成される二次電池が特公昭63−5
9507号公報に開示されている。
[0003] To achieve the recent high energy density in batteries of this type, and material generating a higher voltage is studied, for example, the general formula: Li x M y O 2 ( M is C
O or Ni, x is 0.8 or less, and y is almost 1).
It is disclosed in Japanese Patent Publication No. 9507.

【0004】この活物質を用いて負極をリチウム,電解
液をLiBF4 (1M)/プロピレンカーボネートとし
て構成された電池の開路電圧は4V以上にも達する。ま
た実際の作動電圧範囲は3.4〜4.6V程度が可能で
ある。
The open circuit voltage of a battery constructed by using this active material for the negative electrode of lithium and the electrolyte of LiBF 4 (1M) / propylene carbonate reaches 4 V or more. Further, the actual operating voltage range can be about 3.4 to 4.6V.

【0005】このような高い電池電圧特性を有する電池
は、高エネルギー密度電池として、近年めざましい発達
を呈している各種電子機器のための電源として好適であ
り、機器の軽量化,小形化,高機能化を一層促進する。
A battery having such a high battery voltage characteristic is suitable as a power source for various electronic devices, which have been remarkably developed in recent years, as a high energy density battery, and the device is lightweight, compact, and highly functional. Further promote

【0006】しかし、これらの二次電池系においては、
負極の充放電効率の低さが大きな問題である。正極の充
放電効率についてはサイクル初期に利用率が低下する現
象があるが、やがて充放電効率はほぼ100%近い数字
になる。
However, in these secondary battery systems,
The low charge and discharge efficiency of the negative electrode is a big problem. Regarding the charge and discharge efficiency of the positive electrode, there is a phenomenon that the utilization rate decreases at the beginning of the cycle, but eventually the charge and discharge efficiency reaches a value close to 100%.

【0007】一方、負極に関しては充放電効率が金属リ
チウムで最高97%でありリチウム合金を用いても最高
99%である。このことは正負極の容量が同じであると
すれば、1サイクル当り2〜3%負極容量が低下するこ
とになり、深い深度の充放電を繰返せば数十回のサイク
ル寿命を示すに留まる。
On the other hand, with respect to the negative electrode, the charge and discharge efficiency is 97% at maximum for metallic lithium and 99% at maximum even when a lithium alloy is used. This means that if the positive and negative electrodes have the same capacity, the negative electrode capacity will decrease by 2 to 3% per cycle, and if the charge and discharge at a deep depth is repeated, the cycle life will be only tens of cycles. ..

【0008】この主な原因は、特開平1−286263
号公報にも述べられているように、充電時に析出するリ
チウムが非常に活性で溶媒を還元してしまい、この結果
リチウムが電気化学的に不活性な化合物に変化するため
であると考えられている。
The main cause of this is Japanese Patent Laid-Open No. 1-286263.
As described in Japanese Patent Publication, it is thought that this is because the lithium deposited during charging is very active and reduces the solvent, and as a result, lithium changes into an electrochemically inactive compound. There is.

【0009】また、詳細な機構は明らかではないが、溶
媒を構成する成分がリチウムと反応してできるリチウム
表面のある種の膜の性状(物理的性状,イオン電導性,
電子電導性等)が、溶媒とリチウムとが反応して還元さ
れる機構、またリチウムの充放電効率に及ぼす溶媒の影
響に密接に関連すると考えられている。
Although the detailed mechanism is not clear, the properties (physical properties, ionic conductivity,
It is believed that the electron conductivity and the like) are closely related to the mechanism of the reaction between the solvent and lithium to be reduced, and the influence of the solvent on the charge and discharge efficiency of lithium.

【0010】ところで、従来より非水電解液電池用溶媒
として種々の溶媒が検討されており、その中でもγ−ブ
チロラクトン(略号:γ−BL、以下同じ),エチレン
カーボネート(EC),プロピレンカーボネート(P
C),スルホラン(SL),1,3−ジオキソラン(D
O),1,2−ジメトキシエタン(DME),2−メチ
ルテトラヒドロフラン(2−MeTHF),ジエチルカ
ーボネート(DEC)などが特に有用な溶媒として、単
独またはそれら同士を混合して用いられてきた。
By the way, various solvents have been studied as solvents for non-aqueous electrolyte batteries, and among them, γ-butyrolactone (abbreviation: γ-BL, the same applies hereinafter), ethylene carbonate (EC), propylene carbonate (P
C), sulfolane (SL), 1,3-dioxolane (D
O), 1,2-dimethoxyethane (DME), 2-methyltetrahydrofuran (2-MeTHF), diethyl carbonate (DEC) and the like have been used as a particularly useful solvent, either alone or as a mixture thereof.

【0011】この中でも特にPCは、単独溶媒としても
混合溶媒としても非水電解液二次電池用溶媒としてもっ
とも多く用いられているが、充放電を繰返すことにより
負極リチウムと反応して還元生成物を生じ、これが負極
表面上に蓄積して充放電効率低下の一因となる問題点を
残している。
Of these, PC is most often used as a solvent for a non-aqueous electrolyte secondary battery both as a single solvent and as a mixed solvent. However, by repeatedly charging and discharging, PC reacts with negative electrode lithium to give a reduction product. Occurs, which accumulates on the surface of the negative electrode and causes a decrease in charge / discharge efficiency.

【0012】なお、リチウム一次電池にも前掲した各種
溶媒、特にPCが用いられている。一次電池では充電の
問題を考慮する必要はないが、放電時の活性なリチウム
の存在のために溶媒が還元されて電池の性能劣化を招く
ことが問題となっている。特に高温で放電時間が長期に
亘るような微弱放電を行うと、活性なリチウムと溶媒と
の反応が長期に亘って行われるためこの傾向が顕著とな
り、著しい電池性能の劣化を招くことがあった。
The above-mentioned various solvents, especially PC, are also used in the lithium primary battery. In a primary battery, it is not necessary to consider the problem of charging, but there is a problem that the solvent is reduced due to the presence of active lithium at the time of discharging and the performance of the battery is deteriorated. Particularly, when a weak discharge is performed at a high temperature for a long time, the reaction between active lithium and a solvent is performed for a long time, and this tendency becomes remarkable, which may lead to a significant deterioration in battery performance. ..

【0013】このため、前述の特開平1−286263
号公報では、リチウムと反応しにくくするための実用的
解決策として、PC,BC等の既知の環状炭酸エステル
あるいはこれらの混合溶媒と他のエステル,エーテル類
とを含む溶媒中に添加剤として炭酸リチウムを添加した
ものを用いている。
Therefore, the above-mentioned Japanese Patent Laid-Open No. 1-286263
In the publication, as a practical solution for making it difficult to react with lithium, carbonic acid as an additive is added to a known cyclic carbonic acid ester such as PC and BC, or a solvent containing a mixed solvent thereof and other ester or ether. The one to which lithium is added is used.

【0014】これは、前記PC等の環状炭酸エステルを
含む溶媒はリチウムに反応して炭酸リチウムを生ずる
が、Li2 CO3 はLiを放電できないため負極活物質
であるリチウムが消耗して充放電サイクルが短くなるの
で、これを防ぐためにあらかじめ電解液中にLi2 CO
3 を添加しておくことによって、反応による炭酸リチウ
ムの増加を防止しようとするものである。
This is because the solvent containing cyclic carbonate such as PC reacts with lithium to produce lithium carbonate, but Li 2 CO 3 cannot discharge Li, so that lithium as a negative electrode active material is consumed and charged and discharged. Since the cycle becomes short, in order to prevent this, the Li 2 CO
The addition of 3 is intended to prevent an increase in lithium carbonate due to the reaction.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、このよ
うな添加剤を加えたとしても、リチウム二次電池用溶媒
としては未だ充分な特性劣化対策とはなっておらず、溶
媒の還元が原因と考えられるサイクル特性の劣化が認め
られている。このことは、添加剤を添加したとしても、
これら環状炭酸エステル自体の還元されやすさを充分に
改質し得るものでないことを示唆している。
However, even if such an additive is added, it is still not a sufficient countermeasure against deterioration of characteristics as a solvent for a lithium secondary battery, and it is considered that the reduction of the solvent is the cause. The deterioration of the cycle characteristics is recognized. This means that even if additives are added,
It is suggested that the easiness of reduction of these cyclic carbonic acid ester itself cannot be sufficiently modified.

【0016】ところで、本発明の発想の原点である1,
3−ジオキサン−2−オンは、次の構造式:
By the way, the origin of the idea of the present invention is 1,
3-dioxan-2-one has the following structural formula:

【化2】 において、R1 〜R6 の全てが水素で占められた構造で
あり、高い比誘電率をもつ物質であることが本発明者ら
によって確認されている。それゆえ、前記PCなど非水
電池用の電解液を構成する代替物質として好適であり、
その使用が期待されている。
[Chemical 2] In the above, the present inventors have confirmed that all of R 1 to R 6 have a structure occupied by hydrogen and have a high relative dielectric constant. Therefore, it is suitable as an alternative substance that constitutes an electrolytic solution for a non-aqueous battery such as the PC,
Its use is expected.

【0017】しかしながら、この物質の耐還元性を検討
すると、O1 −C6 ,O3 −C4 における酸素−炭素間
が開裂し易く、充放電劣化の原因となる還元生成物を生
ずるので、前記PCと同様な欠点が目立つものとなる。
なお、R1 ,R6 のどちらか一つだけをアルキル基で置
換したとしても同一理由により置換されていない側の酸
素−炭素間が開裂しやすいことに変わりがない。
However, when the reduction resistance of this substance is examined, the oxygen-carbon bond in O 1 -C 6 , O 3 -C 4 is likely to be cleaved, and a reduction product which causes deterioration of charge and discharge is generated. The same drawbacks as the PC are noticeable.
Even if only one of R 1 and R 6 is substituted with an alkyl group, the oxygen-carbon bond on the non-substituted side is likely to be cleaved for the same reason.

【0018】それゆえ、1,3−ジオキサン−2−オン
は以上のような優れた特性を有するにもかかわらず、実
際には電解液として使用されてはいなかった。
Therefore, although 1,3-dioxan-2-one has the above-mentioned excellent properties, it has not been actually used as an electrolytic solution.

【0019】本発明者らは1,3−ジオキサン−2−オ
ンの持つ優れた特性に着目し、この基本構造におけるC
4 ,C6 両炭素に結合する水素の少なくとも一つ以上を
アルキル基,またはアルコキシル基に置き換えれば、こ
れら置換基の寄与によってO1 −C6 ,O3 −C4 の酸
素−炭素間が開裂しにくい、すなわち還元されにくくな
るものと推測した。
The present inventors have paid attention to the excellent characteristics of 1,3-dioxan-2-one, and have taken note of the C in this basic structure.
4, C 6 both at least one alkyl group of hydrogen carbon bonds or by replacing the alkoxy group, the oxygen of the O 1 -C 6, O 3 -C 4 by contribution of these substituents, - carbon-carbon cleavage It was assumed that it would be difficult to do, that is, it would be difficult to be reduced.

【0020】本発明は、以上の点に着目してなされたも
のであって、その目的は、前述のPCなどを含む従来か
ら用いられている環状炭酸エステルよりもその構造自体
が負極で還元されにくい構造であって、電池の電解液溶
媒として要求される他の物理化学的特性も完全に満足す
る電池の電解液用非水溶媒を提供することにある。
The present invention has been made by paying attention to the above points, and its purpose is to reduce the structure itself at the negative electrode more than the conventionally used cyclic carbonic acid ester including PC mentioned above. It is an object of the present invention to provide a non-aqueous solvent for an electrolytic solution of a battery, which has a difficult structure and completely satisfies other physicochemical characteristics required as an electrolytic solution solvent of the battery.

【0021】[0021]

【課題を解決するための手段】前記目的を達成するため
に本発明は、次の構造式で表わされ:
To achieve the above object, the present invention is represented by the following structural formula:

【化3】 (式中のR1 ,R6 は、一般式Cn 2n+1(n=1 〜4 )
で表わされるアルキル基、または一般式OCn
2n+1(n=1 〜4 )で示されるアルコキシル基:式中のR
2 〜R5 は、水素もしくは一般式Cn 2n+1(n=1 〜4
)で表わされるアルキル基、または一般式OCn
2n+1(n=1 〜4 )で示されるアルコキシル基:) から
なる1,3−ジオキサン−2−オン誘導体を、他の非水
溶媒と混合して用いることを特徴とするものである。
[Chemical 3] (R 1 and R 6 in the formula are represented by the general formula C n H 2n + 1 (n = 1 to 4)
Or an alkyl group represented by the general formula OC n H
Alkoxyl group represented by 2n + 1 (n = 1 to 4): R in the formula
2 to R 5 are hydrogen or the general formula C n H 2n + 1 (n = 1 to 4
) Or an alkyl group represented by the general formula OC n H
It is characterized in that a 1,3-dioxan-2-one derivative consisting of an alkoxyl group represented by 2n + 1 (n = 1 to 4): is mixed with another non-aqueous solvent and used.

【0022】なお、置換基の炭素数n は1〜4程度とす
ることが望ましい。これは、炭素数をこれ以上増しても
還元されにくさの向上とはならず、無意味であるととも
に、他の物理的特性、例えば粘度の増加や比誘電率の減
少などの点において電池電解液用溶媒として不具合が生
ずるためである。また特にC5 に対する置換基の有無は
耐還元性に対しては寄与しないので、水素のままでよい
が、置換する場合には前記と同様の不具合を考慮して炭
素数1〜4とする。
The carbon number n of the substituent is preferably about 1 to 4. This is meaningless even if the number of carbons is further increased, and is meaningless, and in addition to other physical characteristics such as an increase in viscosity and a decrease in relative permittivity, battery electrolysis is not performed. This is because problems occur as a liquid solvent. In addition, since the presence or absence of a substituent for C 5 does not contribute to the reduction resistance, hydrogen may be used as it is. However, when substituting, the number of carbon atoms is 1 to 4 in consideration of the same problems as described above.

【0023】それゆえ、置換基がアルキル基の場合には
CH3 ,C2 5 ,CH(CH3 2 ,C(CH3 3
の中から選ばれることが望ましい。
Therefore, when the substituent is an alkyl group, CH 3 , C 2 H 5 , CH (CH 3 ) 2 and C (CH 3 ) 3
It is desirable to be selected from the following.

【0024】また置換基がアルコキシル基の場合には、
OCH3 ,OC2 5 ,OC3 7,OCH(CH3
2 ,OC(CH3 3 の中から選ばれることが望まし
い。
When the substituent is an alkoxyl group,
OCH3, OC 2 H 5, OC 3 H 7, OCH (CH 3)
It is desirable to be selected from 2 , OC (CH 3 ) 3 .

【0025】前記1,3−ジオキサン−2−オン誘導体
は、一般に次の化学反応式によって得られる。
The 1,3-dioxan-2-one derivative is generally obtained by the following chemical reaction formula.

【0026】[0026]

【化4】 前記環状炭酸エステル化合物と混合される他の非水溶媒
としては、前掲の既知のエステル,エーテル類の内から
選ぶことができるが、負極に還元されにくい特性のみな
らず、前記1,3−ジオキサン−2−オン誘導体と混合
することにより、電池用非水溶媒として全般的に好まし
い物理化学的特性に調整されるものを選ぶことが必要で
ある。
[Chemical 4] The other non-aqueous solvent mixed with the cyclic carbonic acid ester compound can be selected from the above-mentioned known esters and ethers, but not only has the property of being less likely to be reduced to the negative electrode but also the 1,3-dioxane. It is necessary to select a non-aqueous solvent for a battery that can be adjusted to have generally preferable physicochemical properties by mixing with a 2-one derivative.

【0027】また、本発明の電解液用非水溶媒は、正極
活物質に金属酸化物あるいは硫化物などを用い、負極に
金属リチウムあるいはリチウム合金あるいはリチウムイ
オンを吸蔵,放出することが可能な炭素質材料を用いた
非水電解液二次電池の電解液用非水溶媒としてのほか、
リチウム一次電池の電解液用非水溶媒として用いること
ができる。
The non-aqueous solvent for an electrolytic solution of the present invention uses a metal oxide or a sulfide as a positive electrode active material, and a lithium capable of occluding and releasing metal lithium or a lithium alloy or a lithium ion in a negative electrode. In addition to non-aqueous solvent for electrolyte of non-aqueous electrolyte secondary battery using porous material,
It can be used as a non-aqueous solvent for an electrolytic solution of a lithium primary battery.

【0028】[0028]

【作用】本発明の1,3−ジオキサン−2−オン誘導体
からなる非水溶媒は、前記構造式において少なくとも,
1 ,R6 にアルキル基、またはアルコキシル基を有
し、これらの基によりO1 −C6 ,O3 −C4 における
酸素−炭素間の開裂が起こりにくくなり、比誘電率が高
い上にPC,BCより還元されにくい溶媒となる。
The non-aqueous solvent comprising the 1,3-dioxan-2-one derivative of the present invention has at least the above structural formula:
R 1 and R 6 have an alkyl group or an alkoxyl group, and these groups make it difficult for oxygen-carbon cleavage in O 1 -C 6 , O 3 -C 4 to occur, and have a high relative dielectric constant. It becomes a solvent that is less likely to be reduced than PC and BC.

【0029】このような非水溶媒を用いたリチウム二次
電池の充放電サイクル特性の向上は、同一条件のPCお
よびBCを用いたものに比べて顕著であることにより実
証される。また、一次電池では、特に低負荷での長期放
電時における電池特性の低下を防止でき、放電容量が増
加することにより本発明の非水溶媒を用いることの有用
性が実証される。
The improvement of the charge / discharge cycle characteristics of the lithium secondary battery using such a non-aqueous solvent is proved to be remarkable as compared with that using PC and BC under the same conditions. Further, in the primary battery, it is possible to prevent deterioration of battery characteristics particularly during long-term discharge under a low load, and increase in discharge capacity demonstrates the usefulness of using the non-aqueous solvent of the present invention.

【0030】[0030]

【実施例】次に、本発明の実施例について説明する。但
し、本発明は以下に述べる実施例のみに限定されるもの
ではない。
EXAMPLES Next, examples of the present invention will be described. However, the present invention is not limited to the examples described below.

【0031】実施例1.前述の構造式において、置換さ
れるアルキル基としてメチル基を用い、表1に示すごと
くその2〜6置換体の9種類を前述の化学反応式にした
がって合成した。
Example 1. In the above structural formula, a methyl group was used as a substituted alkyl group, and as shown in Table 1, 9 types of 2 to 6 substituted compounds were synthesized according to the above chemical reaction formula.

【0032】次にこの合成した誘導体とPCおよび無置
換の1,3−ジオキサン−2−オンの分子軌道のLUM
O(最低空軌道)エネルギー(eV)を計算したとこ
ろ、以下の表2に示す結果が得られた。なお、有機化合
物の還元電位とLUMOエネルギーとの間には相関関係
があり、LUMOエネルギーが高い程還元電位が低い、
すなわち還元されにくいことを意味する。
Next, the synthesized derivative and LUM of PC and the molecular orbital of unsubstituted 1,3-dioxan-2-one
When the O (lowest unoccupied orbit) energy (eV) was calculated, the results shown in Table 2 below were obtained. There is a correlation between the reduction potential of the organic compound and the LUMO energy, and the higher the LUMO energy, the lower the reduction potential.
That is, it is difficult to be reduced.

【0033】[0033]

【表1】 [Table 1]

【表2】 以上の表2に示す結果からも明らかなように、実施例1
で得られた1,3−ジオキサン−2−オン誘導体は、従
来のPCまたは無置換の1,3−ジオキサン−2−オン
に比べてLUMOエネルギーが高く、したがって還元さ
れにくい物質であることを示している。また、他の性状
も電解液用非水溶媒として好適な値を示している。
[Table 2] As is clear from the results shown in Table 2 above, Example 1
It is shown that the 1,3-dioxan-2-one derivative obtained in 1. has a higher LUMO energy than conventional PC or unsubstituted 1,3-dioxan-2-one, and thus is difficult to reduce. ing. Further, other properties also show suitable values as the nonaqueous solvent for the electrolytic solution.

【0034】実施例2.(リチウム二次電池への適用
例) 次に、実施例1.で得られた溶媒と他の非水溶媒とを混
合した非水電解液と、PC,BCと他の非水溶媒とを混
合した非水電解液とを用いてそれぞれコイン形リチウム
二次電池(2016タイプ)を組立て、それぞれのサイ
クル特性を調べた。なお、非水電解液の溶媒の配合は、
次の表3に示す本発明と比較例および従来例を含む8種
類の組合せであり、溶質は全てLiPF6 1mol /lに
よった。
Example 2. (Example of Application to Lithium Secondary Battery) Next, Example 1. A non-aqueous electrolyte solution obtained by mixing the solvent obtained in (1) and another non-aqueous solvent and a non-aqueous electrolyte solution obtained by mixing PC, BC and another non-aqueous solvent are used to form coin-type lithium secondary batteries ( 2016 type) was assembled and the cycle characteristics of each were investigated. The composition of the solvent of the non-aqueous electrolyte is
There are eight kinds of combinations of the present invention shown in Table 3 below, the comparative example and the conventional example, and the solute was all LiPF 6 1 mol / l.

【0035】[0035]

【表3】 2016タイプのコイン形非水電解液二次電池の仕様は
次の通りである。
[Table 3] The specifications of the 2016 type coin-type non-aqueous electrolyte secondary battery are as follows.

【0036】正極としてLiMnO2 を導電材のカーボ
ン粉末と、バインダとしてのテフロン粉末とを重量比で
100:10:4の割合で混合しペレット状に加圧成形
した後熱処理して水分を除去して用いた。
LiMnO 2 as a positive electrode was mixed with carbon powder as a conductive material and Teflon powder as a binder at a weight ratio of 100: 10: 4, and the mixture was pressure-molded into pellets and heat-treated to remove water. Used.

【0037】負極としては、リチウムアルミニウム合金
を用いた。リチウムとアルミニウムとの比率は原子モル
比で1:1である。セパレータとしては、ポリプロピレ
ン製微孔フィルム(厚さ0.025mm)を用いた。正極
は直径15mm,高さ0.47mmの円形ペレットであり、
負極は直径15.4mm,高さ0.9mmの円形ペレットで
ある。この電池の公称容量は20mAh である。
A lithium aluminum alloy was used as the negative electrode. The atomic ratio of lithium to aluminum is 1: 1. A polypropylene microporous film (thickness 0.025 mm) was used as the separator. The positive electrode is a circular pellet with a diameter of 15 mm and a height of 0.47 mm,
The negative electrode is a circular pellet having a diameter of 15.4 mm and a height of 0.9 mm. The nominal capacity of this battery is 20 mAh.

【0038】次に、前記表3に示す9種類の電解液を使
用した前記仕様の電池の充放電サイクル特性を調べたと
ころ、図1に示される結果を得た。
Next, when the charge and discharge cycle characteristics of the battery of the above specifications using the nine kinds of electrolytic solutions shown in Table 3 were examined, the results shown in FIG. 1 were obtained.

【0039】試験条件は、温度20℃において、充電電
流1mA,放電電流は2mAの定電流充放電とした。放電終
止電圧は2.0V,充電電圧は3.4Vを上限とした。
図は、初度の放電容量を100とした場合の電解液組成
の違いによるサイクル毎の容量の変化を示している。図
1に示す結果から明らかなように、本発明の非水溶媒を
含む電解液を用いた電池では、サイクル特性が顕著に向
上する。また、このことは本発明の溶媒がPCに比べて
耐久性を有し、負極による還元がなされにくいことを示
唆するものである。
The test conditions were a constant current charge / discharge at a temperature of 20 ° C. with a charging current of 1 mA and a discharging current of 2 mA. The discharge end voltage was 2.0 V and the charge voltage was 3.4 V.
The figure shows the change in capacity for each cycle due to the difference in the composition of the electrolyte solution when the initial discharge capacity is 100. As is clear from the results shown in FIG. 1, the cycle characteristics are remarkably improved in the battery using the electrolytic solution containing the non-aqueous solvent of the present invention. Further, this suggests that the solvent of the present invention has durability as compared with PC and is less likely to be reduced by the negative electrode.

【0040】実施例3.(テストセルにおける評価試
験) 実施例2.の表3に示す9種類の非水電解液を用いて、
図2に示すテストセルを組立てた。
Example 3. (Evaluation test in test cell) Example 2. Using 9 kinds of non-aqueous electrolytes shown in Table 3 of
The test cell shown in FIG. 2 was assembled.

【0041】正極1として、LiCoO2 と、導電材と
してのカーボン粉末と、バインダとしてのテフロン粉末
とを重量比で100:10:6の割合で混合し圧延して
シート状にし、集電体2としてのチタン製ネットに圧着
した。また、負極3はピッチ系炭素繊維を焼成すること
によって得られる炭素質粉末と、バインダとしてEPD
M(エチレンプロピレンジエンモノマー)を100:7
になるよう混合して圧延してシート状とし、集電体4と
してのNiネットに圧着した。寸法は、正極,負極とも
に10×10mmの正方形で、正極の厚みは0.25mm,
負極の厚みは0.40mmである。また、電極1,3間の
間隔は2mmとし、ビーカー5の中に図示のごとく配置し
た。
As the positive electrode 1, LiCoO 2 , carbon powder as a conductive material, and Teflon powder as a binder were mixed at a weight ratio of 100: 10: 6 and rolled to form a sheet, which was a current collector 2. It was crimped to a titanium net. The negative electrode 3 includes carbonaceous powder obtained by firing pitch-based carbon fiber and EPD as a binder.
M (ethylene propylene diene monomer) 100: 7
Were mixed and rolled into a sheet-like shape and pressed onto a Ni net as the current collector 4. The size of the positive and negative electrodes is a square of 10 × 10 mm, and the thickness of the positive electrode is 0.25 mm.
The thickness of the negative electrode is 0.40 mm. The distance between the electrodes 1 and 3 was set to 2 mm, and the electrodes were arranged in the beaker 5 as shown.

【0042】なお、正極の充填理論容量は8.2mAh 、
負極は7mAh である。正極の理論容量を大きくしてある
のは、最初の充電後、次の放電に関与できるリチウム量
が充電容量よりも減じてしまうからであり、これは最初
の充放電サイクルに限って充電されたリチウムが炭素質
負極中に一定量取り込まれ、次回からは放電できないこ
とによる。
The theoretical filling capacity of the positive electrode is 8.2 mAh,
The negative electrode is 7 mAh. The reason for increasing the theoretical capacity of the positive electrode is that after the first charge, the amount of lithium that can be involved in the next discharge is less than the charge capacity, and this is because the lithium was charged only in the first charge / discharge cycle. This is because a certain amount of lithium is taken into the carbonaceous negative electrode, and it will not be possible to discharge from the next time.

【0043】次に、前記9種類の電解液を使用した前記
仕様のテストセルの充放電サイクル特性を調べたとこ
ろ、図3の結果を得た。試験条件は充電電流1mA,放電
電流は2mAの定電流充放電とした。放電終止電圧は2.
8V,充電電圧は4.15Vを上限とした。図は、初度
の放電容量を100とした場合の電解液組成の違いによ
るサイクル毎の容量の変化を示している。図3に示す結
果から明らかなように、本発明の非水溶媒を含む電解液
を用いた電池では、サイクル特性が顕著に向上し、実施
例2.と同様の効果を奏することを確認した。
Next, when the charge and discharge cycle characteristics of the test cell of the above specifications using the above 9 kinds of electrolytes were examined, the results of FIG. 3 were obtained. The test conditions were constant current charging / discharging with a charging current of 1 mA and a discharging current of 2 mA. The discharge end voltage is 2.
The upper limit of the charging voltage was 8V and 4.15V. The figure shows the change in capacity for each cycle due to the difference in the composition of the electrolyte solution when the initial discharge capacity is 100. As is clear from the results shown in FIG. 3, in the battery using the electrolytic solution containing the non-aqueous solvent of the present invention, the cycle characteristics were remarkably improved. It was confirmed that the same effect as was obtained.

【0044】実施例4.(リチウム一次電池への適用
例) 実施例2.におけるNo.1〜9の非水電解液を用い
て、単三形のいわゆるインサイドアウト形リチウム一次
電池を組立てた。
Example 4. (Example of Application to Lithium Primary Battery) Example 2. No. A non-aqueous electrolyte solution of 1 to 9 was used to assemble a so-called inside-out type lithium primary battery of AA type.

【0045】正極として、LiMnO2 と、導電材のカ
ーボン粉末と、バインダのテフロン粉末とを重量比で1
00:10:4の割合で混合し加圧成形した後熱処理し
て水分を除去して用いた。負極としては、リチウムシー
トを用いた。セパレータとしては、厚さ0.2mmのポリ
プロピレン不織布を用いた。正極は外径13.7mm,長
さ40mm,内径9.7mmの中空円筒状に形成され、容器
兼用の正極に接続を保つように収容される。負極は厚さ
1.1mm,幅40mm,長さ24mmのリチウムシートを円
筒状にし、セパレータを介して正極の内側に向かい合わ
せて嵌合する。この電池の公称容量は1.9Ahである。
As the positive electrode, LiMnO 2 , carbon powder as a conductive material, and Teflon powder as a binder were used in a weight ratio of 1;
The mixture was mixed at a ratio of 00: 10: 4, pressure-molded, and then heat-treated to remove water before use. A lithium sheet was used as the negative electrode. As the separator, a polypropylene non-woven fabric having a thickness of 0.2 mm was used. The positive electrode is formed in a hollow cylindrical shape having an outer diameter of 13.7 mm, a length of 40 mm, and an inner diameter of 9.7 mm, and is housed so as to keep the connection to the positive electrode also serving as a container. For the negative electrode, a lithium sheet having a thickness of 1.1 mm, a width of 40 mm, and a length of 24 mm is formed into a cylindrical shape, and the lithium sheet is fitted to face the inside of the positive electrode via a separator. The nominal capacity of this battery is 1.9 Ah.

【0046】次に、前記の9種類の電解液を使用した前
記仕様の一次電池の放電特性を調べたところ、図4の結
果を得た。なお、試験条件は温度60℃、放電電流10
μAであり、前述したように、このような温度条件で低
率の負荷による長期放電を行うと、放電時の活性なリチ
ウムと溶媒とが長期に亘って接触するため、電解液の劣
化が進行し、寿命を縮めているとされている。
Next, the discharge characteristics of the primary battery of the above specifications using the above 9 kinds of electrolytic solutions were examined, and the results shown in FIG. 4 were obtained. The test conditions were a temperature of 60 ° C. and a discharge current of 10
μA, and as described above, when a long-term discharge is performed under a low-rate load under such a temperature condition, the active lithium at the time of discharge and the solvent are in contact with each other for a long time, so that the deterioration of the electrolytic solution progresses. However, it is said that the life is shortened.

【0047】そして、この実施例では、図4に示す結果
から明らかなように、本発明の非水溶媒を含む電解液を
用いた場合には、このような低率放電であっても特性が
顕著に向上する。また、このことは、本発明の溶媒がP
C,BCに比べて耐久性を有し、リチウムと長期に亘っ
て接触しても劣化しにくいことを示唆するものである。
なお、前記実施例では1,3−ジオキサン−2−オン
の置換基としてCH3のみを用いたが、炭素数1〜4の
アルキル基またはアルコキシル基の中から種々選択で
き、例えばアルキル基はC2 5 ,CH(CH3 2
C(CH3 3 の中から選ぶことができ、またアルコキ
シル基はOCH3 ,OC2 5 ,OC3 7 ,OCH
(CH3 2 ,OC(CH3 3 の中から選ぶことがで
きる。また、これらの置換基は単独でもよいし、混在し
た状態であってもよく、その組み合わせは電解液として
好適な特性に応じて種々選択できる。
In this example, as is clear from the results shown in FIG. 4, when the electrolytic solution containing the non-aqueous solvent of the present invention was used, the characteristics were low even with such a low rate discharge. Noticeably improved. This also means that the solvent of the present invention is P
This suggests that it is more durable than C and BC and that it is less likely to deteriorate even if it is in contact with lithium for a long period of time.
Although only CH 3 was used as the substituent of 1,3-dioxan-2-one in the above-mentioned examples, various selections can be made from an alkyl group or an alkoxyl group having 1 to 4 carbon atoms. For example, the alkyl group is C 2 H 5 , CH (CH 3 ) 2 ,
C (CH 3 ) 3 can be selected, and the alkoxyl group can be OCH 3, OC 2 H 5 , OC 3 H 7 , OCH.
It can be selected from (CH 3 ) 2 and OC (CH 3 ) 3 . Further, these substituents may be used alone or in a mixed state, and the combination thereof can be variously selected according to the characteristics suitable as the electrolytic solution.

【0048】[0048]

【発明の効果】以上各実施例によって詳細に説明したよ
うに、本発明による環状炭酸エステルを電解液の溶媒構
成物質として用いることにより、二次電池においては充
放電サイクル特性を著しく改善することができ、電解液
の溶媒構成物質として有用である。
As described in detail in the above examples, by using the cyclic carbonic acid ester according to the present invention as the solvent constituent substance of the electrolytic solution, the charge / discharge cycle characteristics can be remarkably improved in the secondary battery. Therefore, it is useful as a solvent constituent substance of the electrolytic solution.

【0049】また、一次電池に適用した場合には、特に
低負荷での長期に亘る放電時の特性の劣化を防止できる
特徴がある。
Further, when applied to a primary battery, there is a feature that deterioration of the characteristics can be prevented especially when discharging for a long period under a low load.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2.における充放電サイクル特性を比較
したグラフである。
FIG. 1 Example 2. 5 is a graph comparing charge / discharge cycle characteristics in FIG.

【図2】実施例3.におけるテストセルの模式図であ
る。
FIG. 2 Example 3. 3 is a schematic diagram of a test cell in FIG.

【図3】実施例3.における充放電サイクル特性を比較
したグラフである。
FIG. 3 Example 3. 5 is a graph comparing charge / discharge cycle characteristics in FIG.

【図4】実施例4.における放電特性を比較したグラフ
である。
FIG. 4 is a fourth embodiment. 5 is a graph comparing the discharge characteristics in FIG.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 次の構造式で表わされ: 【化1】 (式中のR1 ,R6 は、一般式Cn 2n+1(n=1 〜4 )
で表わされるアルキル基、または一般式OCn
2n+1(n=1 〜4 )で示されるアルコキシル基:式中のR
2 〜R5 は、水素もしくは一般式Cn 2n+1(n=1 〜4
)で表わされるアルキル基、または一般式OCn
2n+1(n=1 〜4 )で示されるアルコキシル基:) から
なる1,3−ジオキサン−2−オン誘導体を、他の非水
溶媒と混合して用いることを特徴とする電池の電解液用
非水溶媒。
1. Represented by the structural formula: (R 1 and R 6 in the formula are represented by the general formula C n H 2n + 1 (n = 1 to 4)
Or an alkyl group represented by the general formula OC n H
Alkoxyl group represented by 2n + 1 (n = 1 to 4): R in the formula
2 to R 5 are hydrogen or the general formula C n H 2n + 1 (n = 1 to 4
) Or an alkyl group represented by the general formula OC n H
A 1,3-dioxan-2-one derivative consisting of an alkoxyl group represented by 2n + 1 (n = 1 to 4) :) is mixed with another non-aqueous solvent and used. Non-aqueous solvent.
【請求項2】 前記アルキル基がCH3 ,C2 5 ,C
H(CH3 2 ,C(CH3 3 の中から選ばれること
を特徴とする請求項1に記載の電池の電解液用非水溶
媒。
2. The alkyl group is CH 3 , C 2 H 5 , C
The non-aqueous solvent for a battery electrolyte according to claim 1, wherein the non-aqueous solvent is selected from H (CH 3 ) 2 and C (CH 3 ) 3 .
【請求項3】 前記アルコキシル基がOCH3 ,OC2
5 ,OC3 7 ,OCH(CH3 2 ,OC(C
3 3 の中から選ばれることを特徴とする請求項1に
記載の電池の電解液用非水溶媒。
3. The alkoxyl group is OCH 3, OC 2
H 5 , OC 3 H 7 , OCH (CH 3 ) 2 , OC (C
The non-aqueous solvent for the electrolytic solution of the battery according to claim 1, which is selected from H 3 ) 3 .
【請求項4】 正極活物質に金属酸化物あるいは硫化物
などを用い、負極に金属リチウムあるいはリチウム合金
あるいはリチウムイオンを吸蔵,放出することが可能な
炭素質材料を用いた非水電解液二次電池の電解液用非水
溶媒として用いられることを特徴とする請求項1から請
求項3までのいずれかに記載の電池の電解液用非水溶
媒。
4. A non-aqueous electrolyte secondary using a metal oxide, a sulfide or the like as a positive electrode active material and a metallic lithium or lithium alloy or a carbonaceous material capable of absorbing and releasing lithium ions as a negative electrode. It is used as a non-aqueous solvent for an electrolytic solution of a battery, and the non-aqueous solvent for an electrolytic solution of a battery according to any one of claims 1 to 3.
【請求項5】 リチウム一次電池の電解液用非水溶媒と
して用いられることを特徴とする請求項1から請求項3
までのいずれかに記載の電池の電解液用非水溶媒。
5. The method according to any one of claims 1 to 3, which is used as a non-aqueous solvent for an electrolytic solution of a lithium primary battery.
A nonaqueous solvent for an electrolytic solution of a battery according to any one of 1 to 4 above.
JP4137193A 1992-05-28 1992-05-28 Non-aqueous solvent for battery electrolyte Pending JPH05335033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4137193A JPH05335033A (en) 1992-05-28 1992-05-28 Non-aqueous solvent for battery electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4137193A JPH05335033A (en) 1992-05-28 1992-05-28 Non-aqueous solvent for battery electrolyte

Publications (1)

Publication Number Publication Date
JPH05335033A true JPH05335033A (en) 1993-12-17

Family

ID=15192975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4137193A Pending JPH05335033A (en) 1992-05-28 1992-05-28 Non-aqueous solvent for battery electrolyte

Country Status (1)

Country Link
JP (1) JPH05335033A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3411577A1 (en) * 1983-03-30 1984-10-11 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho, Kariya, Aichi METHOD AND DEVICE FOR APPLYING A YARN IN A FIBER BUNCH YARN SPINNING UNIT
DE3413894A1 (en) * 1983-04-15 1984-10-25 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho, Kariya, Aichi METHOD FOR MAKING A YARN
EP0944126A1 (en) * 1998-03-18 1999-09-22 Hitachi, Ltd. Lithium secondary battery, its electrolyte, and electric apparatus using the same
JP2006012806A (en) * 2004-06-21 2006-01-12 Samsung Sdi Co Ltd Electrolytic solution for lithium-ion secondary battery and lithium-ion secondary battery containing this

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3411577A1 (en) * 1983-03-30 1984-10-11 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho, Kariya, Aichi METHOD AND DEVICE FOR APPLYING A YARN IN A FIBER BUNCH YARN SPINNING UNIT
DE3413894A1 (en) * 1983-04-15 1984-10-25 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho, Kariya, Aichi METHOD FOR MAKING A YARN
EP0944126A1 (en) * 1998-03-18 1999-09-22 Hitachi, Ltd. Lithium secondary battery, its electrolyte, and electric apparatus using the same
JP2006012806A (en) * 2004-06-21 2006-01-12 Samsung Sdi Co Ltd Electrolytic solution for lithium-ion secondary battery and lithium-ion secondary battery containing this
JP4527605B2 (en) * 2004-06-21 2010-08-18 三星エスディアイ株式会社 Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same

Similar Documents

Publication Publication Date Title
JP6739823B2 (en) Additive for non-aqueous electrolyte solution, non-aqueous electrolyte solution containing the same for lithium secondary battery, and lithium secondary battery
JP3304187B2 (en) Electrolyte for lithium secondary battery
KR102000100B1 (en) Additive for non-aqueous electrolyte, non aqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
US4737424A (en) Secondary lithium battery
EP0714148B1 (en) A lithium secondary battery
JP3294400B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
WO2008010665A1 (en) Lactam-based additive for electrolyte and secondary battery comprising the same
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JPH08298134A (en) Nonaqueous electrolyte
EP0548449B1 (en) Nonaqueous electrolyte secondary batteries
US20040191629A1 (en) Positive electrode, non-aqueous electrolyte secondary battery, and method of manufacturing the same
JPH0520874B2 (en)
JP2021511640A (en) Mixtures of potassium and lithium salts and their use in batteries
JP2000215911A (en) Nonflammable electrolytic solution and nonaqueous electrolytic solution secondary battery
JP5117649B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JPH05335033A (en) Non-aqueous solvent for battery electrolyte
JP3119928B2 (en) Non-aqueous solvent for battery electrolyte
JP3123780B2 (en) Non-aqueous electrolyte battery
KR20020055572A (en) Non-aqueous electrolyte secondary battery
JPH05299118A (en) Nonaque0us solvent for electrolyte of battery
JP3128230B2 (en) Non-aqueous electrolyte secondary battery
JPH05299117A (en) Nqnaqueous solvent for electrolyte of battery
JPH09283181A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
JP3423168B2 (en) Non-aqueous electrolyte secondary battery
JPH0722068A (en) Secondary battery having nonaqueous solvent electrolyte