JPH05321719A - Fuel cut device of internal combustion engine - Google Patents
Fuel cut device of internal combustion engineInfo
- Publication number
- JPH05321719A JPH05321719A JP12603492A JP12603492A JPH05321719A JP H05321719 A JPH05321719 A JP H05321719A JP 12603492 A JP12603492 A JP 12603492A JP 12603492 A JP12603492 A JP 12603492A JP H05321719 A JPH05321719 A JP H05321719A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- speed
- engine
- deviation
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は内燃機関(以下、エンジ
ンとも言う。)の燃料カット装置に関し、特に、吸気系
の蓄圧効果を考慮して適切な低いエンジン回転数で燃料
供給を再開するための改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cut device for an internal combustion engine (hereinafter also referred to as an engine), and in particular, for restarting fuel supply at an appropriate low engine speed in consideration of the pressure accumulation effect of the intake system. Regarding the improvement of.
【0002】[0002]
【従来の技術】走行燃費の向上及び未燃ガスの排出抑制
の点で、車両の減速運転時に、エンジンへの燃料供給を
カットすることが極めて有効である。このため、減速運
転時にはなるべく低いエンジン回転数まで燃料カットを
持続させ、その後に燃料供給を再開することが望ましい
が、急減速時、例えばレーンシグ(空吹し)時、あるい
はコースト(スロットル全閉の急減速走行)中でのエン
ジンとトランスミッションとの切離し時には、通常の減
速時に比べて吸気系の蓄圧効果によりエンジンのストー
ルや回転落込みが発生し易いので、これを避けるため一
般には、アイドル回転数よりも十分高い固定値をエンジ
ン回転数が下まわった時点で、燃料供給を再開させてい
る。2. Description of the Related Art It is extremely effective to cut off fuel supply to an engine during deceleration operation of a vehicle from the viewpoint of improving running fuel efficiency and suppressing unburned gas emission. For this reason, it is desirable to continue the fuel cut to the lowest possible engine speed during deceleration operation, and then restart the fuel supply, but at the time of sudden deceleration, for example, during lane sig (driving) or coast (when the throttle is fully closed). When the engine and transmission are separated during rapid deceleration, the engine stall or rotation drop is more likely to occur due to the pressure accumulation effect of the intake system compared to during normal deceleration. The fuel supply is restarted when the engine speed falls below a fixed value that is sufficiently higher than the above.
【0003】これに対し、特公昭60−48623号公
報あるいは特公昭63−210215号公報には、燃料
供給を再開するエンジン回転数(以下、燃料復帰回転数
という。)として高低2つの固定値を設定しておき、エ
ンジン回転数の減速度合の大小をエンジン回転数を表わ
すアナログ電圧信号の微分値、あるいはクランク角パル
ス信号の周期の時間差から判定し、減速度合が小さい場
合は、低い方の燃料復帰回転数まで低下した時に燃料供
給を再開し、減速度合が大きい場合は、高い方の燃料復
帰回転まで低下した時に燃料供給を再開するという技術
が開示されている。これによれば、通常の減速時には燃
料カットの範囲が広がって未燃ガスの排出抑制と走行燃
費の向上を図ることができ、急減速時にはエンジンスト
ールや回転落込みを防止できる。On the other hand, in Japanese Patent Publication No. 60-48623 or Japanese Patent Publication No. 63-210215, two fixed values, high and low, are set as the engine speed (hereinafter referred to as the fuel return speed) for restarting the fuel supply. If the deceleration is small, the magnitude of the deceleration of the engine speed is determined from the differential value of the analog voltage signal that represents the engine speed or the time difference of the cycle of the crank angle pulse signal. A technique is disclosed in which the fuel supply is restarted when the speed reaches the return speed, and when the deceleration degree is large, the fuel supply is restarted when the speed reaches the higher speed of the fuel return. According to this, the range of fuel cut is widened during normal deceleration, it is possible to suppress the emission of unburned gas and improve the running fuel consumption, and it is possible to prevent engine stall and rotation drop during rapid deceleration.
【0004】[0004]
【発明が解決しようとする課題】しかし、エンジン回転
数の微分値等の大小によって高低2つの燃料復帰回転数
を選択する技術では、当然ながら種々の減速度合には対
応しないから、燃料カット範囲の拡大に限界がある。例
えば、近年の車両ではエンジンに対する負荷デバイスの
種類、数量が増加しているので、負荷デバイスのオン/
オフ状況によって種々の負荷トルクが発生して減速度合
が種々異なるが、それぞれに最適な、即ち、回転落込み
が生じない範囲で最低限のエンジン回転数で燃料供給を
再開することはできない。However, in the technique of selecting two high and low fuel return rotational speeds depending on the magnitude of the differential value of the engine rotational speed, etc., of course, various deceleration rates are not supported, so that the fuel cut range There is a limit to expansion. For example, since the types and the number of load devices for the engine are increasing in recent vehicles, the load devices are turned on / off.
Although various load torques are generated and various deceleration degrees are different depending on the off state, it is not possible to restart the fuel supply at the minimum engine speed within the optimum range, that is, in the range where the rotation drop does not occur.
【0005】この場合、エンジン回転数の微分値あるい
はクランク角パルスの周期差を用いて減速度合を細かに
区分し、それぞれに適した燃料復帰回転数を選択するこ
とも考えられるが、同じ微分値あるいは周期差でも、比
較的高回転から減速した場合と、比較的低回転から減速
した場合では、燃料供給再開後のエンジン回転の落込み
度合が異なってしまい、十分な対策とは言えない。これ
は、エンジン回転の落込みは燃料供給再開時点のエンジ
ントルクに左右され、このエンジントルクは吸気管内圧
力に左右されるが、この燃料供給再開時点の吸気管内圧
力は吸気系の蓄圧効果のため一次遅れ応答を示すので、
エンジン回転数の微分値やクランク角パルスの周期差と
単純には対応していないためである。In this case, it is conceivable that the deceleration degree is finely divided by using the differential value of the engine speed or the cycle difference of the crank angle pulse, and the fuel return rotational speed suitable for each is selected. Alternatively, even with the cycle difference, the degree of decrease in engine rotation after resuming fuel supply differs between the case of deceleration from a relatively high speed and the case of deceleration from a relatively low speed, which cannot be said to be a sufficient countermeasure. This is because the drop in engine speed depends on the engine torque when the fuel supply is restarted, and this engine torque depends on the intake pipe internal pressure, but the intake pipe internal pressure when the fuel supply is restarted is due to the pressure accumulation effect of the intake system. Since it shows a first-order lag response,
This is because it does not simply correspond to the differential value of the engine speed or the cycle difference of the crank angle pulse.
【0006】そこで本発明は、吸気系の蓄圧効果を考慮
して、種々の減速度合に応じて適切な低いエンジン回転
数で燃料供給を再開することができる内燃機関の燃料カ
ット装置を提供することを目的とする。Therefore, the present invention provides a fuel cut device for an internal combustion engine which can resume fuel supply at an appropriately low engine speed in accordance with various decelerations in consideration of the pressure accumulation effect of the intake system. With the goal.
【0007】[0007]
【課題を解決するための手段】本発明の内燃機関の燃料
カット装置は、内燃機関の減速時に、燃料供給をカット
すると共に燃料復帰回転数まで低下したときに燃料供給
を再開する内燃機関の燃料カット装置において、基本的
な燃料復帰回転数を設定する設定手段と、内燃機関の回
転数の瞬時値を検出する検出手段と、瞬時値から回転数
の平滑値を求める平滑化手段と、平滑値に対する瞬時値
の偏差を求める手段と、偏差に応じて前記基本燃料復帰
回転数を補正して燃料復帰回転数とする補正手段とを具
備することを特徴とするものである。SUMMARY OF THE INVENTION A fuel cut device for an internal combustion engine according to the present invention cuts the fuel supply during deceleration of the internal combustion engine and restarts the fuel supply when the fuel return rotational speed is reduced. In the cutting device, setting means for setting a basic fuel return rotation speed, detection means for detecting an instantaneous value of the rotation speed of the internal combustion engine, smoothing means for obtaining a smoothed value of the rotation speed from the instantaneous value, and a smooth value It is characterized by comprising means for obtaining the deviation of the instantaneous value with respect to the above, and means for correcting the basic fuel return rotational speed according to the deviation to obtain the fuel return rotational speed.
【0008】[0008]
【作用】燃料カット時にはエンジンのスロットル弁が閉
じられ、臨界流が流れることになるが、エンジン回転数
の低下と吸気管内圧力の上昇との関係は、吸気管の容積
と気筒容積との関係(蓄圧効果)に依存して下記のよう
に異なる。 (1)吸気管容積が小さいエンジンの場合:吸気系の蓄
圧効果が殆どなく、スロットル弁が閉じて回転数が低下
すると、それに反比例して吸気管内圧力が急速に上昇す
る。従い、燃料供給再開時点でのエンジンのトルクが大
きく発生するので、回転数は落込むことなくアイドル回
転数に収束する。 (2)吸気管容積が大きいエンジンの場合:MPI(Mu
ti-Point Injection)方式のエンジンのように、サージ
タンクを有する等、吸気管容積が気筒容積の数倍に及ぶ
エンジンでは、吸気系の蓄圧効果が大きいため、スロッ
トル弁が閉じてエンジン回転数が低下しても、吸気管内
圧力の上昇が緩慢である。従って、燃料供給再開時点で
のエンジントルクはアイドル回転数を維持できるだけの
大きさを発生できず、回転落込みが生じ、更にその後の
回転数にふらつき現象(ハンチング)が生じる。When the fuel is cut off, the throttle valve of the engine is closed and a critical flow flows, but the relationship between the decrease in engine speed and the increase in intake pipe pressure is related to the relationship between the intake pipe volume and the cylinder volume ( It depends on the pressure accumulation effect) as follows. (1) In the case of an engine with a small intake pipe volume: There is almost no pressure accumulation effect in the intake system, and when the throttle valve closes and the rotation speed decreases, the intake pipe internal pressure rapidly increases in inverse proportion to it. Therefore, a large amount of engine torque is generated when the fuel supply is restarted, so that the rotation speed does not drop and converges to the idle rotation speed. (2) For engines with large intake pipe volume: MPI (Mu
In an engine with a surge tank such as a ti-Point Injection) system where the intake pipe volume is several times the cylinder volume, the pressure accumulation effect of the intake system is large, so the throttle valve closes and the engine speed increases. Even if it decreases, the increase in the intake pipe pressure is slow. Therefore, the engine torque at the time of restarting the fuel supply cannot generate a magnitude enough to maintain the idle rotation speed, a rotation drop occurs, and a fluctuation phenomenon (hunting) occurs in the rotation speed thereafter.
【0009】そこで減速時に燃料カットをした場合、蓄
圧効果によるトルク不足が顕著に現われる場合ほど、燃
料復帰回転数を高くすれば、回転落込みやストールを抑
止でき、全体として見れば燃料カットの動作範囲が広が
る。Therefore, when the fuel is cut during deceleration, when the torque shortage due to the pressure accumulation effect becomes more prominent, the rotation speed drop and stall can be suppressed by increasing the fuel return rotation speed. The range expands.
【0010】ところで、前述の如く吸気管内圧力の上昇
は蓄圧効果により遅れるから一次遅れ現象である。従っ
て、減速時のエンジン回転数の瞬時値とその平滑値との
偏差が吸気管内圧力の上昇不足、即ちトルク不足に相当
する。By the way, as described above, the rise in the pressure in the intake pipe is delayed due to the pressure accumulation effect, which is a first-order delay phenomenon. Therefore, the deviation between the instantaneous value of the engine speed during deceleration and its smoothed value corresponds to insufficient rise in the intake pipe pressure, that is, insufficient torque.
【0011】そこで、本発明の構成により、予め基本的
燃料復帰回転数を設定しておき、エンジン回転数の瞬時
値とその平滑値との偏差により補正して燃料復帰回転数
とすることにより、負荷デバイスの増加に伴いあらゆる
負荷トルクがかかっても、また高回転から減速しても、
低回転から減速しても、種々の減速度合に応じて連続的
に燃料復帰回転数が変化し、それぞれに最適な、即ち、
回転落込みを生じない最低限のエンジン回転数で燃料供
給を再開することができる。Therefore, according to the configuration of the present invention, the basic fuel return speed is set in advance, and the fuel return speed is corrected by the deviation between the instantaneous value of the engine speed and the smoothed value thereof to obtain the fuel return speed. Even if any load torque is applied with the increase of load devices, or even if it decelerates from high rotation,
Even after decelerating from a low speed, the fuel return speed changes continuously according to various deceleration rates, and the optimum speed for each, namely,
The fuel supply can be restarted at the minimum engine speed that does not cause a rotation drop.
【0012】[0012]
【実施例】以下、本発明の一実施例を図1〜図6を参照
して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.
【0013】図1は本発明に係る内燃機関の燃料カット
装置を適用したMPIタイプの多気筒ガソリンエンジン
の制御系の概略構成を示す。まず、制御系全体の概略説
明をする。エンジン1の各気筒につながる吸気管(マニ
ホルド)2Aのそれぞれに、各吸気ポートに隣接して電
磁式燃料噴射弁3が配設されている。これら吸気管2A
にはサージタンク4を介して吸気管2Bの一端が接続さ
れ、吸気管2Bの他端にエアクリーナ5が取付けられて
大気に開放されている。吸気管2Bの途中にはスロット
ル弁6が配設され、各燃料噴射弁3にはフューエルポン
プから燃料通路7を通して一定圧の燃料が供給される。
8は燃圧レギュレータである。各燃料噴射弁3は電子制
御装置(ECU)9の出力側に電気的に接続され、この
電子制御装置9からの駆動信号により開弁及び閉弁され
て、所要量の燃料を各気筒へ噴射供給したり、燃料供給
をカットしたり、燃料供給を再開する。各気筒には点火
栓10が配設され、各点火栓10はディストリビュータ
11及びイグニッションコイル12を介して電子制御装
置9に接続されており、電子制御装置9により点火時期
が制御され、その駆動回路(図示省略)による一次コイ
ルの電流遮断により、各気筒の燃焼室中の混合気を点火
する。FIG. 1 shows a schematic structure of a control system of an MPI type multi-cylinder gasoline engine to which a fuel cut device for an internal combustion engine according to the present invention is applied. First, a schematic description of the entire control system will be given. An electromagnetic fuel injection valve 3 is disposed adjacent to each intake port in each intake pipe (manifold) 2A connected to each cylinder of the engine 1. These intake pipes 2A
Is connected to one end of an intake pipe 2B via a surge tank 4, and an air cleaner 5 is attached to the other end of the intake pipe 2B to open to the atmosphere. A throttle valve 6 is provided in the middle of the intake pipe 2B, and a constant pressure of fuel is supplied to each fuel injection valve 3 from a fuel pump through a fuel passage 7.
Reference numeral 8 is a fuel pressure regulator. Each fuel injection valve 3 is electrically connected to the output side of an electronic control unit (ECU) 9, and is opened and closed by a drive signal from this electronic control unit 9 to inject a required amount of fuel into each cylinder. Supply, cut off fuel supply, restart fuel supply. An ignition plug 10 is provided in each cylinder, and each ignition plug 10 is connected to an electronic control unit 9 via a distributor 11 and an ignition coil 12. The electronic control unit 9 controls the ignition timing and its drive circuit. By shutting off the primary coil current (not shown), the air-fuel mixture in the combustion chamber of each cylinder is ignited.
【0014】電子制御装置9は図示しない中央演算装
置、記憶装置及び入出力装置等により構成され、記憶装
置には燃料供給のカット及び再開の実行の他、燃料供給
量、点火時期、アイドル回転制御の実行等の演算を行う
ための制御プログラム、種々のプログラム変数等が記憶
されている。The electronic control unit 9 is composed of a central processing unit (not shown), a storage unit, an input / output unit, etc., and in the storage unit, in addition to execution of cut and restart of fuel supply, fuel supply amount, ignition timing, idle rotation control. A control program for performing computations such as execution of, and various program variables are stored.
【0015】電子制御装置9の入力側には、スロットル
弁6の全閉位置を検出するためのアイドルスイッチ1
3、上死点あるいはその少し前の所定のクランク角度位
置を検出する毎にパルス信号(以下、TDC信号とい
う。)を出力するクランク角センサ14、エンジンの冷
却水温WTを検出するための水温センサ15、パワース
テアリング装置やエアコン装置、ヘッドランプ等の負荷
機器の作動を検出するためのスイッチ群16の他、スロ
ットル弁6の弁開度を検出するためのスロットルセンサ
17、吸気管2Bの大気開放端に設けられた吸入空気量
に比例した信号を出力するエアフローセンサ18、吸入
空気温度Taを検出する吸気温センサ19、大気圧Pa
を検出する大気圧センサ20、特定の気筒例えば第1気
筒が所定のクランク角位置にあることを検出する気筒判
別センサ21等が運転状態検出のために接続されてい
る。At the input side of the electronic control unit 9, an idle switch 1 for detecting the fully closed position of the throttle valve 6 is provided.
3. A crank angle sensor 14 that outputs a pulse signal (hereinafter, referred to as a TDC signal) every time when a predetermined crank angle position at or slightly before top dead center is detected, and a water temperature sensor for detecting an engine cooling water temperature WT. 15, a switch group 16 for detecting the operation of a load device such as a power steering device, an air conditioner device, and a headlamp, a throttle sensor 17 for detecting the valve opening of the throttle valve 6, and an opening of the intake pipe 2B to the atmosphere. An air flow sensor 18 that outputs a signal proportional to the intake air amount provided at the end, an intake air temperature sensor 19 that detects the intake air temperature Ta, and an atmospheric pressure Pa
An atmospheric pressure sensor 20 for detecting the above, a cylinder discrimination sensor 21 for detecting that a specific cylinder, for example, the first cylinder is at a predetermined crank angle position, etc. are connected for detecting the operating state.
【0016】なお、吸気管2Bにはスロットル弁6をバ
イパスするためのバイパス通路22が設けられており、
バイパス通路22にはアイドル回転制御のためにバイパ
ス弁(ISCバルブ)23が配設されている。バイパス
弁23は例えばステップモータ等のアクチュエータによ
り駆動されて弁開度を変化するものであり、電子制御装
置9からの駆動信号により弁開度が制御されて、バイパ
ス通路22を通してエンジン1に供給される補助空気量
を調整する。図1中、24は排気マニホルドであり、エ
ンジン1の各気筒の排気側にそれぞれ排気マニホルド2
4が接続されており、その大気側端に図示省略の排気管
が接続されている。A bypass passage 22 for bypassing the throttle valve 6 is provided in the intake pipe 2B,
A bypass valve (ISC valve) 23 is arranged in the bypass passage 22 for idle rotation control. The bypass valve 23 is driven by an actuator such as a step motor to change the valve opening, and the valve opening is controlled by a drive signal from the electronic control unit 9 and is supplied to the engine 1 through the bypass passage 22. Adjust the auxiliary air flow rate. In FIG. 1, reference numeral 24 denotes an exhaust manifold, and an exhaust manifold 2 is provided on the exhaust side of each cylinder of the engine 1.
4 is connected, and an exhaust pipe (not shown) is connected to the atmospheric side end thereof.
【0017】電子制御装置9は、上記各種センサ13〜
21の検出信号に基づき、減速時の燃料カット及び再開
の運転状態の他、アイドル運転状態、高負荷運転状態、
低負荷運転状態、O2 フィードバック制御運転状態等、
エンジン運転状態を検出し、検出した運転状態に応じた
燃料噴射量即ち、燃料噴射弁3の開弁時間Tinj を演算
し、演算値Tinj に応じた駆動信号を各燃料噴射弁3に
与えて開弁させ、所要の燃料量の各気筒への噴射供給及
びカットを行う。また、電子制御装置9はエンジン運転
状態に応じて点火時期の制御も行う。The electronic control unit 9 includes various sensors 13 to 13 described above.
Based on the detection signal of No. 21, in addition to the operating state of fuel cut and restart during deceleration, idle operating state, high load operating state,
Low load operating condition, O 2 feedback control operating condition, etc.
The engine operating state is detected, the fuel injection amount corresponding to the detected operating state, that is, the valve opening time T inj of the fuel injection valve 3 is calculated, and a drive signal corresponding to the calculated value T inj is given to each fuel injection valve 3. Valve is opened to supply and cut the required amount of fuel to each cylinder. The electronic control unit 9 also controls the ignition timing according to the operating state of the engine.
【0018】次に、図2を参照して燃料カット装置の一
実施例を説明する。図2において、30は燃料噴射弁用
駆動器、31は燃料カット及び再開の判定器、32は燃
料カット回転数Ncut の設定器、33はエンジン回転数
の瞬時値Nの検出器、34は基本燃料復帰回転数Nbase
の設定器、35はエンジン回転数の平滑値Nf を算出す
る平滑化演算器、36は瞬時値と平滑値との偏差DN
(=Nf −N)を算出する偏差演算器、37は基本燃料
復帰回転数Nbaseに対する補正器、38は基本点火時期
θbaseの設定器、39は点火時期の補正量演算器、40
は基本点火時期θ baseに対する補正器であり、これら各
機能器30〜40は電子制御装置9の中央演算装置、記
憶装置、入出力装置等により主としてソフトウェア的に
実現してある。Next, referring to FIG. 2, one example of the fuel cut device
An example will be described. In FIG. 2, 30 is for a fuel injection valve
Driver, 31 is a fuel cut / restart judgment device, 32 is a fuel
Material cut speed NcutSetting device, 33 is the engine speed
Of the instantaneous value N of the fuel cell, 34 is the basic fuel return speed Nbase
Is a smoothing value N of the engine speed.fCalculate
Smoothing calculator 36, and a deviation DN between the instantaneous value and the smoothed value.
(= Nf-N) deviation calculator, 37 is basic fuel
Return speed NbaseCompensator for, 38 is the basic ignition timing
θbaseSetter 39, ignition timing correction amount calculator 40
Is the basic ignition timing θ baseIs a compensator for each of these
The functional units 30 to 40 are central processing units of the electronic control unit 9,
Mainly by software such as storage devices and input / output devices
Has been realized.
【0019】図2に例示した燃料カット装置は基本的に
は燃料噴射弁用駆動器30と燃料カット及び再開の判定
器31とからなり、駆動器30は判定器31の判定結果
信号41が“1”の間は開弁時間の演算値Tinj に応じ
た駆動信号を各燃料噴射弁3−1〜3−nに与えて開弁
させるが、判定結果信号41が“0”の間は開弁時間の
演算値Tinj にかかわらず、駆動信号を止めて各燃料噴
射弁3−1〜3−nを閉弁させる。判定器31は減速状
態であることをアイドルスイッチ13が検出したこと
(スイッチオン)を条件に、エンジン回転数Nが燃料カ
ット回転数Ncutを下まわった後、エンジン回転数Nが
燃料復帰回転数Ninj に低下するまで判定結果信号41
を“0”にし、エンジン回転数Nが燃料復帰回転数N
inj を下まわったら判定結果信号41を“1”に戻す。The fuel cut device illustrated in FIG. 2 basically comprises a fuel injection valve driver 30 and a fuel cut / restart deciding device 31, and the driver 30 outputs a decision result signal 41 from the deciding device 31. During 1 ", a drive signal corresponding to the calculated valve opening time T inj is given to each fuel injection valve 3-1 to 3-n to open the valve, but while the determination result signal 41 is" 0 ", the valve is opened. The drive signal is stopped and each of the fuel injection valves 3-1 to 3-n is closed regardless of the calculated value T inj of the valve time. The conditioner 31 determines that the idle switch 13 has detected that the vehicle is in the decelerating state (switch-on), and after the engine speed N falls below the fuel cut speed N cut , the engine speed N returns to the fuel return speed. The judgment result signal 41 until the number N inj falls
Is set to "0", and the engine speed N is the fuel return speed N.
When it goes down inj , the judgment result signal 41 is returned to "1".
【0020】燃料カット回転数Ncut は設定器32に予
め設定されているが、本実施例では1つの固定値ではな
く、水温センサ15が検出したエンジン冷却水温WTに
応じて変化するようにしてある。そのため、設定器32
には図3に例示するような冷却水温WTと燃料カット回
転数Ncut との関係をマップにして記憶し、WTに応じ
てNcut を出力するようにしている。The fuel cut speed N cut is preset in the setter 32, but in the present embodiment, it is not a fixed value, but is changed according to the engine cooling water temperature WT detected by the water temperature sensor 15. is there. Therefore, the setting device 32
In FIG. 3, the relationship between the cooling water temperature WT and the fuel cut speed N cut as illustrated in FIG. 3 is stored as a map, and N cut is output according to WT.
【0021】エンジン回転数Nは瞬時値であり、その検
出器34は本実施例では、クランク角センサ14がクラ
ンク角で特定角度毎にTDC信号を出力し、このTDC
信号のパルス発生間隔の逆数がエンジン回転数Nに比例
することから、図4(a)のステップS1,S2に示さ
れるように、一行程の点火割込みを利用して点火割込み
周期即ち、SGT周期で定数を割ることによりエンジン
回転数の瞬時値Nを検出している。The engine speed N is an instantaneous value, and in the present embodiment, the detector 34 outputs a TDC signal for each specific angle by the crank angle sensor 14 at the crank angle.
Since the reciprocal of the pulse generation interval of the signal is proportional to the engine speed N, as shown in steps S1 and S2 of FIG. 4 (a), the ignition interrupt cycle, that is, the SGT cycle, is used by using the ignition interrupt of one stroke. The instantaneous value N of the engine speed is detected by dividing the constant by.
【0022】燃料復帰回転数Ninj は、設定器34に設
定した基本燃料復帰回転数Nbaseを、各機能器35〜3
7によりエンジン回転数の平滑値Nf と瞬時値Nとの偏
差DN=Nf −Nに応じて補正することにより算出して
いる。但し、本実施例では、基本燃料復帰回転数Nbase
を1つの固定値とせず、水温センサ15が検出したエン
ジン冷却水温WTに応じて変化するようにしてある。そ
のため、設定器34には図3に例示するような冷却水温
WTと燃料復帰回転数Nbaseとの関係をマップにして記
憶し、WTに応じてNbaseを出力するようにしてある。
この基本燃料復帰回転数Nbaseは、例えば吸気系の蓄圧
効果がゼロに近い理想的な場合に回転落込みなく燃料供
給を再開できるようななるべく低い回転数としてある。For the fuel return speed N inj , the basic fuel return speed N base set in the setter 34 is set to the functional units 35 to 3 respectively.
7 is calculated by correcting according to the deviation DN = N f −N between the smoothed value N f of the engine speed and the instantaneous value N. However, in the present embodiment, the basic fuel return speed N base
Is not set to one fixed value, but is changed according to the engine cooling water temperature WT detected by the water temperature sensor 15. Therefore, the setting device 34 stores the relationship between the cooling water temperature WT and the fuel return rotational speed N base as illustrated in FIG. 3 as a map and outputs the N base according to WT.
The basic fuel return rotational speed N base is set to a low rotational speed as low as possible so that the fuel supply can be restarted without a drop in the rotational speed in an ideal case where the pressure accumulation effect of the intake system is close to zero.
【0023】平滑化演算器35は、下式(1)のフィル
タ処理により瞬時値Nから平滑値N f を算出する(図4
(a)のステップS3参照)。 Nf (n)=Kf ・Nf (n−1)+(1−Kf )・N …式(1) ここで、Kf :平滑化係数 Nf (n−1):前回算出した平滑値 Nf (n):今回算出した平滑値 但し、平滑化係数Kf は吸気系の蓄圧効果を十分考慮す
るために、その時定数、即ち吸気管内圧力の一次遅れ時
定数となるように、次式(2)により選定してある。 Kf =Vs /(Vs +Vc ) …式(2) ここで、Vs :吸気系容積 Vc :1気筒当りの排気量The smoothing calculator 35 is a filter of the following equation (1).
Instantaneous value N to smoothed value N fIs calculated (Fig. 4
(See step S3 of (a)). Nf(N) = Kf・ Nf(N-1) + (1-Kf) · N ... Formula (1) where Kf: Smoothing coefficient Nf(N-1): Smoothed value N calculated last timef(N): smoothed value calculated this time, but smoothing coefficient KfSufficiently considers the pressure accumulation effect of the intake system
Therefore, the time constant, that is, the first-order lag of the intake pipe pressure
It is selected by the following equation (2) so as to be a constant. Kf= Vs/ (Vs+ Vc) Equation (2) where Vs: Intake system volume VcDisplacement per cylinder
【0024】偏差演算器36は、偏差DNを次式(3)
により算出する(図4(a)のステップS4参照)。 DN=Nf −N …式(3) なお、図4(a)に偏差計算に必要な処理のフローを示
すが、これは1行程の点火割込みを利用した割込演算と
し、割込毎に偏差DNを求めている。The deviation calculator 36 calculates the deviation DN by the following equation (3).
(Step S4 in FIG. 4A). DN = N f −N Equation (3) FIG. 4A shows a flow of processing required for deviation calculation. This is an interrupt calculation using an ignition interrupt in one stroke, and is performed for each interrupt. The deviation DN is calculated.
【0025】補正器37は、図4(b)の処理フローに
示すようにメインルーチン処理としてあり、燃料カット
を開始した時点で設定器34からエンジン冷却水温WT
に対応した基本燃料復帰回転数Nbaseを取込み(ステッ
プS5)、また、その時の偏差DNが正か否かを判定し
(ステップS6)、正であれば、次式(4)の加算によ
る補正演算を行って判定器31に燃料復帰回転数Ninj
を与える(ステップS7)。 Ninj =Nbase+DN …式(4) 偏差DNがゼロまたは負であれば、DNの加算は行わ
ず、基本燃料復帰回転数N baseをそのままNinj とする
(ステップS8)。The compensator 37 is based on the processing flow of FIG.
As shown in the main routine processing, fuel cut
The engine cooling water temperature WT from the setter 34 at the start of
Basic fuel return speed N corresponding tobaseCapture (step
S5), and determine whether the deviation DN at that time is positive or not.
(Step S6) If positive, the addition of the following equation (4) is performed.
Correction calculation to determine the fuel return speed Ninj
Is given (step S7). Ninj= Nbase+ DN Equation (4) If the deviation DN is zero or negative, addition of DN is performed.
No, basic fuel return speed N baseN as it isinjTo
(Step S8).
【0026】上記説明から判るように、エンジンの減速
運転時には、燃料復帰回転数Ninjが吸気管内圧力の一
次遅れと減速度合に応じて、蓄圧効果によるトルク不足
を補うに足りる最適な、即ちエンジンストールや回転落
込みが生じない最低限の回転数に連続的に変化する。こ
れによる効果の一例を、図5に示す実験結果により説明
する。この実験は、基本燃料復帰回転数を800rpm 、
アイドル回転数を600rpm にそれぞれ設定し、無負荷
時と、パワステON(負荷)時について、変速機がニュ
ートラルの状態で2000rpm から全閉減速した場合の
エンジン回転数と燃料量(Tinj )を時間経過とともに
表わしたものであり、実線は本発明の例を示し、破線は
従来例即ち、微分値が所定値以上の時に基本よりも一定
量だけ高い燃料復帰回転数に変更する例を示す。従来例
ではアイドル負荷の違いによる挙動の差が大きく、回転
落込みを回避するために高い回転数が必要であるから、
図5(a)のような無負荷時には最適タイミングよりも
早めに燃料供給が再開され、燃費的に若干不利にならざ
るを得ない。これに対し、本発明では、負荷の微妙な違
いによる減速度合の差にも対応できており、安定した挙
動が得られる。As can be seen from the above description, during deceleration operation of the engine, the fuel return rotational speed N inj is optimum for compensating for the torque shortage due to the pressure accumulation effect in accordance with the primary delay and deceleration of the intake pipe pressure, that is, the engine. It continuously changes to the minimum number of rotations that does not cause a stall or a drop in rotation. An example of the effect of this will be described with reference to the experimental results shown in FIG. In this experiment, the basic fuel return rotation speed is 800 rpm,
The idle speed is set to 600 rpm, and the engine speed and fuel amount (T inj ) when the speed is fully closed and decelerated from 2000 rpm when the transmission is in neutral with no load and power steering ON (load) are set. The solid line shows an example of the present invention, and the broken line shows a conventional example, that is, an example in which when the differential value is equal to or more than a predetermined value, the fuel return rotational speed is increased by a certain amount higher than the basic value. In the conventional example, the difference in behavior due to the difference in idle load is large, and a high rotation speed is necessary to avoid a drop in rotation,
When there is no load as shown in FIG. 5A, the fuel supply is restarted earlier than the optimum timing, which causes a slight disadvantage in terms of fuel consumption. On the other hand, in the present invention, it is possible to cope with the difference in the deceleration rate due to the slight difference in the load, and a stable behavior can be obtained.
【0027】本実施例では、更に、図2に示す如く基本
点火時期θbaseの設定器38、補正量演算器39及び補
正器40を用いて、点火時期も蓄圧効果によるトルク不
足分だけ進角補正して、トルク不足を補ってアイドル回
転の安定化を図っている。この点火時期補正を図2、図
6に基づいて説明する。設定器38にはエンジン回転数
Nと、一吸気行程に気筒に吸入される空気量A/Nとに
応じて設定される基本点火時期θbaseをマップにして記
憶しており、NとA/Nに応じてθbaseを出力する。補
正量演算器39は前述したエンジン回転数の平滑値Nf
と瞬時値Nとの偏差DNにアイドル安定化ゲインKID
を乗じて点火時期の補正量(=KID・DN)とする。
補正器40は図6に示すように、メインルーチン処理に
より、エンジン回転数N及び吸入空気量A/Nに応じた
基本点火時期θbaseを設定器38から取込み(ステップ
S10)、アイドル状態か否かを判定し(ステップS1
1)、アイドル状態であれば次式(5)の加算による進
角補正を行って、補正後の点火時期θadv で点火させる
(ステップS12)。 θadv =θbase+KID・DN …式(5) アイドル状態でなければ、補正量KID・DNの加算は
せず、基本点火時期θba seをそのまま点火時期θadv と
する。In this embodiment, as shown in FIG. 2, the basic ignition timing θ base setter 38, the correction amount calculator 39, and the corrector 40 are used to advance the ignition timing by the torque shortage due to the pressure accumulation effect. This is corrected to compensate for the torque shortage and stabilize the idle rotation. This ignition timing correction will be described with reference to FIGS. The setter 38 stores a map of a basic ignition timing θ base that is set according to the engine speed N and the air amount A / N taken into the cylinder in one intake stroke. Output θ base according to N. The correction amount calculator 39 calculates the smoothed value N f of the engine speed described above.
To the deviation DN between the instantaneous value N and the idle stabilization gain KID
Is multiplied by to obtain the ignition timing correction amount (= KID · DN).
As shown in FIG. 6, the compensator 40 takes in the basic ignition timing θ base from the setter 38 according to the engine speed N and the intake air amount A / N by the main routine processing (step S10), and determines whether or not it is in the idle state. Is determined (step S1
1) In the idle state, advance angle correction is performed by addition of the following equation (5), and ignition is performed at the corrected ignition timing θ adv (step S12). θ adv = θ base + KID · DN ... If it is not the formula (5) idle state, without the addition of the correction amount KID · DN, and as it is the ignition timing θ adv the basic ignition timing θ ba se.
【0028】このように、燃料復帰回転数の連続的変化
という補正に加えて、点火時期を偏差DNに比例した量
だけ進角補正することにより、一層回転落込みの抑止及
び安定化ができる。また、点火時期の進角補正と燃料復
帰回転数の補正のパラメータに偏差DNを共用するの
で、少ないソフトウェア負担とマッチング工数により、
大きな効果が得られる。As described above, in addition to the correction of the continuous change of the fuel return rotational speed, the ignition timing is advanced by an amount proportional to the deviation DN, whereby the rotation drop can be further suppressed and stabilized. Further, since the deviation DN is shared by the parameters for the ignition timing advance angle correction and the fuel return rotation speed correction, the software load and the matching man-hours are reduced.
Great effect can be obtained.
【0029】[0029]
【発明の効果】本発明によれば、エンジン回転数の平滑
値と瞬時値との偏差に応じて基本燃料復帰回転数を補正
するので、エンジンストールや回転落込みを生じること
なく、吸気系の蓄圧効果によるトルク不足を補うに足る
低い回転数で燃料供給を再開できる。According to the present invention, the basic fuel return rotational speed is corrected in accordance with the deviation between the smoothed value and the instantaneous value of the engine rotational speed, so that the engine stall or the rotational speed drop does not occur and the intake system The fuel supply can be restarted at a low rotational speed sufficient to compensate for the torque shortage due to the pressure accumulation effect.
【図1】本発明装置を適用した内燃機関の制御系の概略
構成図。FIG. 1 is a schematic configuration diagram of a control system of an internal combustion engine to which the device of the present invention is applied.
【図2】本発明の一実施例を示すブロック構成図。FIG. 2 is a block diagram showing an embodiment of the present invention.
【図3】基本燃料復帰回転数及び燃料カット回転数と冷
却水温との関係例を示す図。FIG. 3 is a diagram showing an example of a relationship between a cooling water temperature and a basic fuel return rotation speed, a fuel cut rotation speed.
【図4】偏差計算及び燃料復帰回転数補正のフローを示
す図。FIG. 4 is a diagram showing a flow of deviation calculation and fuel return speed correction.
【図5】実験結果例を示す図。FIG. 5 is a diagram showing an example of experimental results.
【図6】点火時期補正のフローを示す図。FIG. 6 is a diagram showing a flow of ignition timing correction.
1 エンジン 2A 吸気管(マニホルド) 2B 吸気管 3,3−1〜3−n 燃料噴射弁 4 サージタンク 13 アイドルスイッチ 14 クランク角センサ 15 水温センサ 30 燃料噴射弁駆動器 31 判定器 32 燃料カット回転数の設定器 33 エンジン回転数瞬時値の検出器 34 基本燃料復帰回転数の設定器 35 平滑化演算器 36 偏差演算器 37 補正器 38 基本点火時期の設定器 39 補正量演算器 40 補正器 1 Engine 2A Intake pipe (manifold) 2B Intake pipe 3,3-1 to 3-n Fuel injection valve 4 Surge tank 13 Idle switch 14 Crank angle sensor 15 Water temperature sensor 30 Fuel injection valve driver 31 Judgment device 32 Fuel cut speed Setter 33 detector for instantaneous value of engine speed 34 setter for basic fuel return speed 35 smoothing calculator 36 deviation calculator 37 corrector 38 basic ignition timing setter 39 correction amount calculator 40 corrector
Claims (1)
すると共に燃料復帰回転数まで低下したときに燃料供給
を再開する内燃機関の燃料カット装置において、基本的
な燃料復帰回転数を設定する設定手段と、内燃機関の回
転数の瞬時値を検出する検出手段と、瞬時値から回転数
の平滑値を求める平滑化手段と、平滑値に対する瞬時値
の偏差を求める手段と、偏差に応じて前記基本燃料復帰
回転数を補正して燃料復帰回転数とする補正手段とを具
備することを特徴とする内燃機関の燃料カット装置。1. A fuel cut device for an internal combustion engine, which cuts off fuel supply when the internal combustion engine is decelerating and restarts fuel supply when the fuel return rotational speed falls to a setting for setting a basic fuel return rotational speed. Means, detecting means for detecting an instantaneous value of the rotational speed of the internal combustion engine, smoothing means for obtaining a smoothed value of the rotational speed from the instantaneous value, means for obtaining a deviation of the instantaneous value with respect to the smoothed value, and depending on the deviation, A fuel cut device for an internal combustion engine, comprising: a correction unit that corrects the basic fuel return speed to obtain the fuel return speed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12603492A JPH05321719A (en) | 1992-05-19 | 1992-05-19 | Fuel cut device of internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12603492A JPH05321719A (en) | 1992-05-19 | 1992-05-19 | Fuel cut device of internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05321719A true JPH05321719A (en) | 1993-12-07 |
Family
ID=14925047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12603492A Pending JPH05321719A (en) | 1992-05-19 | 1992-05-19 | Fuel cut device of internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05321719A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6692404B2 (en) | 2001-08-29 | 2004-02-17 | Honda Giken Kogyo Kabushiki Kaisha | Engine control system and method for hybrid vehicle |
JP2012067714A (en) * | 2010-09-27 | 2012-04-05 | Daihatsu Motor Co Ltd | Fuel cut control method of internal combustion engine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0240945B2 (en) * | 1984-12-24 | 1990-09-13 | Matsushita Electric Ind Co Ltd | |
JPH0454245A (en) * | 1990-06-22 | 1992-02-21 | Mitsubishi Motors Corp | Fuel supply controller |
-
1992
- 1992-05-19 JP JP12603492A patent/JPH05321719A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0240945B2 (en) * | 1984-12-24 | 1990-09-13 | Matsushita Electric Ind Co Ltd | |
JPH0454245A (en) * | 1990-06-22 | 1992-02-21 | Mitsubishi Motors Corp | Fuel supply controller |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6692404B2 (en) | 2001-08-29 | 2004-02-17 | Honda Giken Kogyo Kabushiki Kaisha | Engine control system and method for hybrid vehicle |
JP2012067714A (en) * | 2010-09-27 | 2012-04-05 | Daihatsu Motor Co Ltd | Fuel cut control method of internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3478318B2 (en) | Control device for in-cylinder injection spark ignition internal combustion engine | |
JPH1162690A (en) | Control device for engine | |
JP2002322934A (en) | Intake air control device for internal combustion engine | |
JPS62159771A (en) | Ignition timing control method for internal combustion engine | |
JPH11148402A (en) | Deceleration timing control device for internal combustion engine | |
US9309858B2 (en) | Internal combustion engine control device | |
JPH0599055A (en) | Controller for internal combustion engine with assist air supply device | |
JPH0692757B2 (en) | Bypass air amount control method for internal combustion engine | |
JPH05321719A (en) | Fuel cut device of internal combustion engine | |
WO2008096885A1 (en) | Controller of internal combustion engine | |
JP2009036036A (en) | Ignition timing control device of internal combustion engine | |
JP2016098786A (en) | Internal combustion engine control device | |
JPH0526138A (en) | Ignition timing controller | |
JPH0430358Y2 (en) | ||
JP2930256B2 (en) | Engine throttle valve controller | |
JPH11182395A (en) | Ignition timing controller of internal combustion engine | |
JPH0749073A (en) | Control device for engine | |
JPS61145332A (en) | Electronic control device in internal combustion engine | |
JP2001090581A (en) | Control device for internal combustion engine | |
JPH0450446A (en) | Idling engine speed control method for internal combustion engine | |
JP2942623B2 (en) | Engine ignition timing control device | |
JPH09242654A (en) | Ignition timing controller for engine | |
JPH1089157A (en) | Exhaust gas reflux quantity control device for engine | |
JP3094484B2 (en) | Engine fuel injection control system | |
JPH07224706A (en) | Idle rotating speed control device of engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19981027 |