[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0532462A - Production of joint-formed silicon carbide formed article - Google Patents

Production of joint-formed silicon carbide formed article

Info

Publication number
JPH0532462A
JPH0532462A JP9118091A JP1809191A JPH0532462A JP H0532462 A JPH0532462 A JP H0532462A JP 9118091 A JP9118091 A JP 9118091A JP 1809191 A JP1809191 A JP 1809191A JP H0532462 A JPH0532462 A JP H0532462A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbon
porous
silicon
hydrocarbon gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9118091A
Other languages
Japanese (ja)
Inventor
Tadahisa Arahori
忠久 荒堀
Kazuhiro Minagawa
和弘 皆川
Shigetoshi Hayashi
茂利 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9118091A priority Critical patent/JPH0532462A/en
Priority to EP91111425A priority patent/EP0466109B1/en
Priority to DE69104918T priority patent/DE69104918T2/en
Publication of JPH0532462A publication Critical patent/JPH0532462A/en
Priority to US08/089,615 priority patent/US5380511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

PURPOSE:To produce a formed article of high-purity silicon carbide having complicate form or large size and high strength at the joined part and, accordingly, useful as a heat-resistant jig such as process tube and wafer boat used in the thermal diffusion treatment of silicon wafer. CONSTITUTION:Porous articles of synthetic quartz glass are made to contact with each other at the bonding faces. Carbon produced by the thermal decomposition of a gas containing a hydrocarbon gas or halogenated hydrocarbon gas is deposited in the porous material and on the bonding faces at a carbon to silicon dioxide molar ratio (C/SiO3) of >=3.5 and the product is baked. Metallic silicon is impregnated into the obtained formed article of porous silicon carbide to obtain the objective joint-formed silicon carbide formed article.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は接合形成される炭化珪素
質成形体の製造方法、より詳しくは特に半導体製造用治
具、例えばシリコンウェハの熱拡散処理等に使用される
プロセスチューブ、ウェハボート等の耐熱性治具の材料
として有用な、接合形成される炭化珪素質成形体の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a bonded silicon carbide molding, and more particularly to a semiconductor manufacturing jig, for example, a process tube or wafer boat used for thermal diffusion treatment of silicon wafers. The present invention relates to a method for manufacturing a silicon carbide-based molded article to be joined and formed, which is useful as a material for a heat-resistant jig such as.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
高純度を要求される半導体製造用耐熱性治具としては、
主として石英ガラス製のものが用いられていた。石英ガ
ラス製治具は、極めて純度の高いものを容易に製作する
ことができ、また透明であることから内部の観察が容易
である等の利点を有している。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
As a heat resistant jig for semiconductor manufacturing that requires high purity,
Those mainly made of quartz glass were used. The quartz glass jig has advantages that it is possible to easily manufacture a jig having extremely high purity, and that it is transparent because it is easy to observe the inside.

【0003】しかし、この石英ガラス製のものは1000℃
を越えると粘性流動による変形が生じ始めるため、1150
℃以上の熱処理にはほとんど使用することができず、ま
た、クリストバライト生成によって失透、破損する等寿
命が短いという欠点があった。
However, this quartz glass is 1000 ° C.
When the temperature exceeds 1150, deformation due to viscous flow begins to occur.
It has a drawback that it cannot be used for heat treatment at a temperature of ℃ or more, and that it has a short life such as devitrification and damage due to cristobalite formation.

【0004】近年、このような欠点を解決し得る材料と
して石英ガラスに代わって、炭化珪素粉体を成形した多
孔質炭化珪素成形体に、金属シリコンを充填した複合体
が開発され、半導体製造用耐熱性治具として使用されて
いる。しかしながら、高純度の炭化珪素原料粉が得難
く、また原料配合、成形、高純度化処理、焼成等と製造
工程が複雑な上、フェノール樹脂等のバインダーを必要
とするため、プロセスにおける汚染及び原材料の不純物
等に起因して高純度な炭化珪素質複合材料を得ることが
困難であった。
In recent years, as a material capable of solving such drawbacks, a composite in which metallic silicon is filled in a porous silicon carbide compact formed by molding silicon carbide powder has been developed in place of quartz glass, and is used for semiconductor manufacturing. Used as a heat resistant jig. However, it is difficult to obtain a high-purity silicon carbide raw material powder, and the manufacturing process such as raw material blending, molding, purification treatment, and firing is complicated, and a binder such as a phenol resin is required. It was difficult to obtain a high-purity silicon carbide composite material due to the impurities and the like.

【0005】また、多孔質炭化珪素成形体に金属シリコ
ンを含浸させる方法として、金属シリコンを融点以上に
加熱し、溶融したシリコンを浸透させる方法が一般に用
いられている。
As a method of impregnating a porous silicon carbide molded body with metallic silicon, a method of heating metallic silicon to a temperature equal to or higher than its melting point and allowing the molten silicon to permeate is generally used.

【0006】さらには、炭化珪素を気相蒸発させて炭化
珪素材の表面に緻密質炭化珪素膜を形成し、不純物の拡
散を抑える方法が提案されている。
Furthermore, a method has been proposed in which silicon carbide is vapor-phase evaporated to form a dense silicon carbide film on the surface of a silicon carbide material to suppress the diffusion of impurities.

【0007】従来、半導体製造用に用いられている炭化
珪素材料は、成形、焼成後に適当な純化処理を行なうこ
とによって製造されている。しかし、炭化珪素材料はこ
の純化処理は複雑な製造プロセスにおいて汚染され、緻
密な焼結体に焼成した後に施されるため、不純物除去は
表面に限定される。そのため、上記従来法により製造さ
れた炭化珪素材料製治具で例えばシリコンウェハの熱処
理を行なうと、炭化珪素材料内部の不純物が拡散放出さ
れて、ウェハの汚染を引き起こすことがあった。
Conventionally, silicon carbide materials used for semiconductor manufacturing are manufactured by performing appropriate purification treatment after molding and firing. However, since the purification treatment of the silicon carbide material is contaminated in a complicated manufacturing process and is performed after firing into a dense sintered body, impurity removal is limited to the surface. Therefore, when a silicon wafer material jig manufactured by the above-mentioned conventional method is used to heat-treat a silicon wafer, for example, impurities in the silicon carbide material are diffused and released, which may cause wafer contamination.

【0008】そこで、気相合成石英多孔体を原料とした
高純度炭化珪素製造プロセスが提案されているが、石英
母材の形状に制約があるため、ウェハボートのような複
雑形状品、プロセスチューブのような大型形状品を製造
することが困難であるという課題があった。
Therefore, a high-purity silicon carbide manufacturing process using a vapor-phase synthetic quartz porous material as a raw material has been proposed. However, since the shape of the quartz base material is limited, a complicated-shaped product such as a wafer boat or a process tube. There is a problem that it is difficult to manufacture such a large shaped product.

【0009】また、多孔質炭化珪素材料を接合して、複
雑形状品あるいは大型形状品を製造する方法として、多
孔質炭化珪素材料同士を接合面で重ね合わせ、金属シリ
コンによって接合する方法が提案されているが、この方
法による接合では接合強度が小さいという課題があっ
た。
As a method of joining porous silicon carbide materials to manufacture a complex-shaped product or a large-sized product, a method has been proposed in which porous silicon carbide materials are superposed on each other at a bonding surface and bonded by metallic silicon. However, the joining by this method has a problem that the joining strength is small.

【0010】本発明はこのような課題に鑑み発明された
ものであって、半導体製造プロセスに使用できるよう
な、高純度でかつ複雑形状、大型形状の接合形成される
炭化珪素質成形体の製造方法を提供することを目的とし
ている。
The present invention has been invented in view of the above problems, and is for producing a silicon carbide-based molded article having a high purity and having a complicated shape and a large-sized joint, which can be used in a semiconductor manufacturing process. It is intended to provide a way.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る接合形成される炭化珪素質成形体の製造
方法は、合成石英ガラス多孔体を接合面で重ね合わせ、
炭化水素ガス又はハロゲン化炭化水素ガスを含有するガ
スの熱分解により生成する炭素を炭素/二酸化珪素のモ
ル比で3.5以上で前記多孔体内及び前記接合面に析出
させ、その後焼成して得られた多孔質炭化珪素成形体に
金属シリコンを充填することを特徴とし、また、合成石
英ガラス多孔体に、炭化水素ガス又はハロゲン化炭化水
素ガスを含有するガスの熱分解により生成する炭素を炭
素/二酸化珪素のモル比で3.5以上で析出させ、該析
出により得られた二酸化珪素−炭素多孔質成形体を接合
面で重ね合わせ、その後焼成して得られた多孔質炭化珪
素成形体に金属シリコンを充填することを特徴とし、さ
らには合成石英ガラス多孔体に、炭化水素ガス又はハロ
ゲン化炭化水素ガスを含有するガスの熱分解により生成
する炭素を炭素/二酸化珪素のモル比で3.5以上で析
出させ、その後焼成して得られた多孔質炭化珪素成形体
を接合面で重ね合わせ、この後金属シリコンを充填する
ことを特徴としている。
In order to achieve the above-mentioned object, a method for manufacturing a silicon carbide-based molded article to be joined and formed according to the present invention comprises: stacking synthetic quartz glass porous bodies on a joining surface;
Carbon produced by thermal decomposition of a gas containing a hydrocarbon gas or a halogenated hydrocarbon gas is deposited in the porous body and the bonding surface at a carbon / silicon dioxide molar ratio of 3.5 or more, and then fired to obtain. The obtained porous silicon carbide molded body is filled with metallic silicon, and carbon produced by thermal decomposition of a gas containing a hydrocarbon gas or a halogenated hydrocarbon gas is added to the synthetic quartz glass porous body. In the porous silicon carbide molded body obtained by depositing at a molar ratio of / silicon dioxide of 3.5 or more, superposing the silicon dioxide-carbon porous molded body obtained by the deposition on the bonding surface, and then firing. The method is characterized in that it is filled with metallic silicon, and carbon generated by thermal decomposition of a gas containing a hydrocarbon gas or a halogenated hydrocarbon gas is added to the carbon / carbon Precipitated with 3.5 or more in a molar ratio of silicon oxide, then superimposing the firing to the obtained porous silicon carbide molded body joint surface is characterized by filling the following metal silicon.

【0012】[0012]

【作用】VAD(Vapor−phase Axial
Deposition)法気相合成石英ガラスは多孔
質であるため、炭素含有ガス雰囲気中で熱処理すること
により内部にまで炭素を析出させることが可能である。
従って、炭素を析出させた多孔体を高温で処理し、さら
に金属シリコンを含浸させることにより高純度な緻密質
炭化珪素材料が得られる。
[Function] VAD (Vapor-phase Axial)
Deposition) vapor-phase synthetic quartz glass is porous, so that it is possible to deposit carbon even inside by heat treating in a carbon-containing gas atmosphere.
Therefore, a high-purity dense silicon carbide material can be obtained by treating the porous body on which carbon is deposited at a high temperature and further impregnating it with metallic silicon.

【0013】しかし、多孔質合成石英母材は、大型で複
雑な形状に製造、加工することが困難であるため、各形
状に加工した合成石英母材を接合する必要性が生じる。
However, since it is difficult to manufacture and process the porous synthetic quartz base material into a large size and a complicated shape, it becomes necessary to join the synthetic quartz base materials processed into the respective shapes.

【0014】本発明に係る方法によれば、まず、所定の
形状に加工した気相合成石英ガラス多孔体を接合面で合
わせ、炭化水素ガスあるいはハロゲン化炭化水素ガス
(CH4、C2H6、C3H8、C4H10 、C2H4、C2H2、C2H4Cl4 、C
2H3Cl3 、C2H3Cl、C2H2Cl2 等)の中の少なくとも1種
類よりなる雰囲気中で、ガスの分解温度以上、1400
℃以下で熱処理し、炭素を多孔体内部に析出させる。こ
の際、炭化珪素は、 SiO2 +3C→SiC+2CO で表わされた反応式に従い生成される。従って、二酸化
珪素に対する炭素析出量がモル比で3となるように炭素
を析出させる必要があるが、接合界面に過剰の炭素を析
出させた後、炭化珪素接合をさせるため、実際には二酸
化珪素に対する炭素析出量がモル比で3.5以上となる
ように炭素を析出させる。二酸化珪素に対する炭素のモ
ル比が3.5未満であるときには接合面の接合がSi接合
主体となり、高温接合強度が不十分である。
According to the method of the present invention, first, the vapor-phase synthetic quartz glass porous bodies that have been processed into a predetermined shape are brought together at the joint surface, and a hydrocarbon gas or a halogenated hydrocarbon gas (CH 4 , C 2 H 6 is used). , C 3 H 8 , C 4 H 10 , C 2 H 4 , C 2 H 2 , C 2 H 4 Cl 4 , C
2 H 3 Cl 3, C 2 H 3 Cl, in an atmosphere comprising at least one among the C 2 H 2 Cl 2, etc.), the decomposition temperature or more gases, 1400
Heat treatment is performed at a temperature of not more than ℃ to deposit carbon inside the porous body. At this time, silicon carbide is generated according to the reaction formula represented by SiO 2 + 3C → SiC + 2CO. Therefore, it is necessary to deposit carbon so that the amount of deposited carbon with respect to silicon dioxide becomes 3 in molar ratio. However, since silicon carbide is bonded after depositing excess carbon at the bonding interface, silicon dioxide is actually used. Carbon is deposited so that the amount of deposited carbon is 3.5 or more in terms of molar ratio. When the molar ratio of carbon to silicon dioxide is less than 3.5, the joining of the joining surfaces is mainly Si joining, and the high temperature joining strength is insufficient.

【0015】次に、この二酸化珪素−炭素多孔質成形体
を1600〜2500℃の温度範囲で焼成することによ
り、接合面で重ね合わせた炭化珪素と過剰炭素の多孔質
炭化珪素成形体を得る。これに溶融金属シリコンを充填
することにより、接合界面で過剰炭素とシリコンとが反
応して炭化珪素化し、強固な接合体が得られる。
Next, the silicon dioxide-carbon porous compact is fired in the temperature range of 1600 to 2500 ° C. to obtain a porous silicon carbide compact of silicon carbide and excess carbon superposed on the joint surface. By filling this with molten metal silicon, excess carbon reacts with silicon at the bonding interface to form silicon carbide, and a strong bonded body is obtained.

【0016】前記プロセスにより接合界面がなく一体化
された接合体が得られるが、接合体が比較的大型になる
と炭化水素ガスあるいはハロゲン化炭化水素ガスから炭
素を析出させる際に、表層部と中心部とで炭素の濃度に
差が生じ、均一に炭素を析出できない場合がある。そこ
で、接合前の合成石英ガラス多孔体片にあらかじめ炭素
を析出させておき、その後二酸化珪素−炭素多孔質成形
体を接合面で重ね合わせ、焼成した後金属シリコンを充
填する方法も有効である。
The above-mentioned process can obtain an integrated joined body without a joining interface. However, when the joined body becomes relatively large, when the carbon is deposited from the hydrocarbon gas or the halogenated hydrocarbon gas, the surface layer and the central part are not formed. There may be a difference in carbon concentration between the parts, and carbon may not be uniformly deposited. Therefore, a method is also effective in which carbon is preliminarily deposited on the synthetic quartz glass porous body piece before bonding, and then a silicon dioxide-carbon porous molded body is superposed on the bonding surface, fired, and then filled with metallic silicon.

【0017】さらに、接合前の合成石英ガラス多孔体に
炭素を析出させて焼成した後、多孔質炭化珪素成形体を
重ね合わせ、この後金属シリコンを充填しても強固な接
合体が得られる。
Further, even if carbon is deposited on the synthetic quartz glass porous body before bonding and fired, a porous silicon carbide molded body is superposed and then metal silicon is filled therein, a strong bonded body can be obtained.

【0018】このようにして得られた接合体は、従来の
金属シリコンのみによる接合とは異なり、接合部分が炭
化珪素母材と全く同一組織を呈し、母材−接合界面での
熱膨張係数差もないことから室温、高温においても高い
接合強度が得られる。
Unlike the conventional joining using only metallic silicon, the joined body thus obtained has a completely identical structure to the silicon carbide base material, and the difference in thermal expansion coefficient at the base material-bonding interface. Since it does not exist, high bonding strength can be obtained even at room temperature and high temperature.

【0019】[0019]

【実施例及び比較例】以下、本発明に係る実施例及び比
較例を説明する。VAD法により合成したかさ密度が約
0.3g/cm3 、平均粒子径が約0.2μmの合成石
英ガラス多孔体を重ね合わせ、メタンガス100%の雰
囲気下、1000℃の温度で異なる所定時間処理し、表
1に示したような異なった炭素析出量の多孔体を得た。
この多孔体を真空下、2000℃の温度で3時間焼成
し、多孔質炭化珪素−炭素の成形体を得た。この成形体
を黒鉛製るつぼ内に挿入し、周囲に純度10−Nの塊状
の金属シリコンを入れ1550℃で加熱し、溶融したシ
リコンを前記成形体の開気孔中に充填し、炭化珪素質形
成体を得た。
EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples according to the present invention will be described below. Superposed synthetic quartz glass porous bodies having a bulk density of about 0.3 g / cm 3 and an average particle size of about 0.2 μm synthesized by the VAD method, and treated at a temperature of 1000 ° C. for different predetermined times in an atmosphere of 100% methane gas. Then, as shown in Table 1, porous bodies having different carbon deposition amounts were obtained.
This porous body was fired under vacuum at a temperature of 2000 ° C. for 3 hours to obtain a porous silicon carbide-carbon compact. This molded body was inserted into a graphite crucible, and massive metallic silicon having a purity of 10-N was placed around the crucible and heated at 1550 ° C., and the molten silicon was filled into the open pores of the molded body to form a silicon carbide material. Got the body

【0020】また、別の実施例として、上記実施例と同
様の方法により得た合成石英ガラス多孔体を、メタンガ
ス100%の雰囲気下、1000℃の温度で一定時間処
理して得られた二酸化珪素−炭素多孔質成形体を重ね合
わせ、真空下、2000℃の温度で3時間焼成し、多孔
質炭化珪素−炭素の成形体を得た。この成形体に上記実
施例と同様に金属シリコンを充填して炭化珪素質形成体
を得た。
As another example, a silicon dioxide obtained by treating a synthetic quartz glass porous body obtained by the same method as the above example at a temperature of 1000 ° C. for a certain time in an atmosphere of 100% methane gas. -The carbon porous molded bodies were overlaid and fired under vacuum at a temperature of 2000 ° C for 3 hours to obtain a porous silicon carbide-carbon molded body. This molded body was filled with metallic silicon in the same manner as in the above-mentioned example to obtain a silicon carbide-based formed body.

【0021】さらに別の実施例として、上記実施例と同
様の方法により得た合成石英ガラス多孔体を、メタンガ
ス100%の雰囲気下、1000℃の温度で一定時間処
理し、二酸化珪素−炭素多孔質成形体を得た。この二酸
化珪素−炭素多孔質成形体を真空下、2000℃の温度
で3時間焼成し、多孔質炭化珪素−炭素の成形体を得
た。この成形体を重ねあわせ、上記実施例と同様に金属
シリコンを充填して炭化珪素質形成体を得た。
As yet another example, a synthetic quartz glass porous body obtained by the same method as the above example was treated at a temperature of 1000 ° C. for a certain time in an atmosphere of 100% methane gas to give a porous silicon dioxide-carbon. A molded body was obtained. The silicon dioxide-carbon porous compact was fired under vacuum at a temperature of 2000 ° C. for 3 hours to obtain a porous silicon carbide-carbon compact. The compacts were stacked and filled with metallic silicon in the same manner as in the above-mentioned example to obtain a silicon carbide-based compact.

【0022】比較例として、金属シリコンを用いて炭化
珪素焼結体である緻密体を接合させることにより成形体
を得た。
As a comparative example, a compact was obtained by joining a dense body which was a silicon carbide sintered body using metallic silicon.

【0023】さらに、別の比較例として、炭化シリコン
粉体を成形、仮焼して炭化珪素多孔体を作製した後、接
合面に炭素を塗布して金属シリコンを充填することによ
り成形体を得た。
Further, as another comparative example, a silicon carbide powder is molded and calcined to produce a silicon carbide porous body, and then carbon is applied to the bonding surface and metal silicon is filled therein to obtain a molded body. It was

【0024】得られた炭化珪素質形成体の、1300℃
での高温接合強度を比較例とともに表1に、純度分析結
果を表2に示す。
[0024] The obtained silicon carbide forming body, 1300 ℃
The high temperature bonding strength in Table 1 is shown in Table 1 together with the comparative example, and the result of purity analysis is shown in Table 2.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】なお、表1及び表2中※印のものは、本発
明における実施例であり、それ以外は本発明外のもので
ある。
In Tables 1 and 2, those marked with * are examples of the present invention, and the others are outside the present invention.

【0028】表1及び表2から明らかなように、実施例
における高純度炭化珪素質成形体は、従来のシリコン接
合体に比べて高強度を示した。また、この高純度炭化珪
素質成形体を用いてウェハボートを作製し、ウェハ熱処
理に使用した際、純度、強度、耐久性とも問題なく操業
することができた。一方、炭化珪素緻密体同士の接合に
おいては、強度が母材より著しく劣っている。また、炭
化珪素多孔体の接合面に炭素を塗布した後金属シリコン
を充填する方法により製造したものにおいては、接合層
と母材とが不均質であるため、強度も低く、表2から明
らかなように、塗布用炭素および塗布工程からの不純物
の混入が認められる。
As is clear from Tables 1 and 2, the high-purity silicon carbide-based compacts in the examples showed higher strength than the conventional silicon bonded bodies. In addition, when a wafer boat was produced using this high-purity silicon carbide molding and used for wafer heat treatment, it was possible to operate without any problems in purity, strength, and durability. On the other hand, in the joining of silicon carbide dense bodies, the strength is significantly inferior to the base material. In addition, in the product manufactured by the method of coating the bonded surface of the porous silicon carbide body with carbon and then filling with metallic silicon, since the bonding layer and the base material are non-homogeneous, the strength is low, which is clear from Table 2. Thus, contamination of coating carbon and impurities from the coating process is observed.

【0029】このように、上記実施例に係る接合形成さ
れる炭化珪素質成形体の製造方法によれば、接合界面が
なく一体的な、大型形状、あるいは複雑形状の強固な接
合体を得ることができる。また、接合体が比較的大型に
なる場合でも、炭化水素ガスあるいはハロゲン化炭化水
素ガスから炭素を析出させる場合、表層部と中心部とに
析出する炭素の濃度差を抑制し、均一に炭素を析出させ
ることができ、強固な接合体が得られる。従って、半導
体製造用治具、例えばシリコンウェハの熱拡散処理等に
使用されるプロセスチューブ、ウェハボート等の耐熱性
治具に有用な、高純度な炭化珪素質成形体を製造するこ
とができる。
As described above, according to the method for manufacturing a silicon carbide-based molded body to be bonded and formed according to the above-mentioned embodiment, it is possible to obtain an integral, large-sized or complex-shaped strong bonded body without a bonding interface. You can Further, even when the joined body becomes relatively large, when carbon is deposited from the hydrocarbon gas or the halogenated hydrocarbon gas, the difference in concentration of carbon deposited between the surface layer portion and the central portion is suppressed, and the carbon is uniformly deposited. It can be deposited and a strong joined body can be obtained. Therefore, it is possible to manufacture a high-purity silicon carbide molding useful for a jig for semiconductor production, for example, a heat-resistant jig such as a process tube or a wafer boat used for thermal diffusion treatment of a silicon wafer.

【0030】[0030]

【発明の効果】以上詳述したように本発明に係る接合形
成される炭化珪素質成形体の製造方法は、合成石英ガラ
ス多孔体を接合面で重ね合わせ、炭化水素ガス又はハロ
ゲン化炭化水素ガスを含有するガスの熱分解により生成
する炭素を炭素/二酸化珪素のモル比で3.5以上で前
記多孔体内及び前記接合面に析出させ、その後焼成して
得られた多孔質炭化珪素成形体に金属シリコンを充填す
るので、接合界面がなく一体的な、大型形状、あるいは
複雑形状の強固な接合体を得ることができる。
As described above in detail, the method for manufacturing a silicon carbide-based molded article to be joined and formed according to the present invention is a method in which synthetic quartz glass porous bodies are superposed on a joining surface to form a hydrocarbon gas or a halogenated hydrocarbon gas. Carbon produced by thermal decomposition of a gas containing carbon is deposited in the porous body and the bonding surface at a carbon / silicon dioxide molar ratio of 3.5 or more, and then fired to obtain a porous silicon carbide molded body. Since it is filled with metallic silicon, it is possible to obtain an integral, large-sized or complex-shaped strong joined body having no joining interface.

【0031】あるいは、合成石英ガラス多孔体に、炭化
水素ガス又はハロゲン化炭化水素ガスを含有するガスの
熱分解により生成する炭素を炭素/二酸化珪素のモル比
で3.5以上で析出させ、該析出により得られた二酸化
珪素−炭素多孔質成形体を接合面で重ね合わせ、その後
焼成して得られた多孔質炭化珪素成形体に金属シリコン
を充填する場合には、接合体が比較的大型になる場合で
も、炭化水素ガスあるいはハロゲン化炭化水素ガスから
炭素を析出させる際、表層部と中心部との炭素の濃度差
を抑制し、均一に炭素を析出させることができ、強固な
接合体を得ることができる。
Alternatively, carbon produced by thermal decomposition of a gas containing a hydrocarbon gas or a halogenated hydrocarbon gas is deposited on a synthetic quartz glass porous body at a carbon / silicon dioxide molar ratio of 3.5 or more, When the silicon dioxide-carbon porous compact obtained by precipitation is superposed on the joint surface and then the porous silicon carbide compact obtained by firing is filled with metallic silicon, the joint is relatively large. Even in the case where the carbon is deposited from the hydrocarbon gas or the halogenated hydrocarbon gas, the carbon concentration difference between the surface layer portion and the central portion can be suppressed, and the carbon can be uniformly deposited to form a strong bonded body. Obtainable.

【0032】また、合成石英ガラス多孔体に、炭化水素
ガス又はハロゲン化炭化水素ガスを含有するガスの熱分
解により生成する炭素を炭素/二酸化珪素のモル比で
3.5以上で析出させ、その後焼成して得られた多孔質
炭化珪素成形体を接合面で重ね合わせ、この後金属シリ
コンを充填する場合には、接合体が比較的大型になる場
合でも、炭化水素ガスあるいはハロゲン化炭化水素ガス
から炭素を析出させる際、表層部と中心部との炭素の濃
度差を抑制し、均一に炭素を析出させることができ、強
固な接合体を得ることができる。
Further, carbon produced by thermal decomposition of a gas containing a hydrocarbon gas or a halogenated hydrocarbon gas is deposited on a synthetic quartz glass porous body at a carbon / silicon dioxide molar ratio of 3.5 or more, and thereafter, When the porous silicon carbide compacts obtained by firing are superposed on the joint surface and then filled with metallic silicon, a hydrocarbon gas or a halogenated hydrocarbon gas can be used even if the joint body becomes relatively large. When carbon is deposited from the above, the carbon concentration difference between the surface layer portion and the central portion can be suppressed, carbon can be deposited uniformly, and a strong joined body can be obtained.

【0033】従って、半導体製造用治具、例えばシリコ
ンウェハの熱拡散処理等に使用されるウェハボートのよ
うな複雑形状品、プロセスチューブのような大型形状品
に有用な高純度な接合形成される炭化珪素質成形体の製
造を可能とし、産業上極めて有用である。
Therefore, a high-purity joint is formed which is useful for a jig for semiconductor manufacturing, for example, a complicated shaped product such as a wafer boat used for thermal diffusion treatment of silicon wafers, and a large shaped product such as a process tube. It enables the production of silicon carbide-based compacts, and is extremely useful in industry.

【0034】[0034]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 合成石英ガラス多孔体を接合面で重ね合
わせ、炭化水素ガス又はハロゲン化炭化水素ガスを含有
するガスの熱分解により生成する炭素を炭素/二酸化珪
素のモル比で3.5以上で前記多孔体内及び前記接合面
に析出させ、その後焼成して得られた多孔質炭化珪素成
形体に金属シリコンを充填することを特徴とする接合形
成される炭化珪素質成形体の製造方法。
1. Synthetic quartz glass porous bodies are superposed on each other at a joint surface, and carbon produced by thermal decomposition of a gas containing a hydrocarbon gas or a halogenated hydrocarbon gas has a carbon / silicon dioxide molar ratio of 3.5 or more. 2. A method for producing a bonded silicon carbide-based molded product, comprising: depositing in the porous body and the bonding surface, and then firing the porous silicon carbide molded product, and filling the porous silicon carbide molded product with metallic silicon.
【請求項2】 合成石英ガラス多孔体に、炭化水素ガス
又はハロゲン化炭化水素ガスを含有するガスの熱分解に
より生成する炭素を炭素/二酸化珪素のモル比で3.5
以上で析出させ、該析出により得られた二酸化珪素−炭
素多孔質成形体を接合面で重ね合わせ、その後焼成して
得られた多孔質炭化珪素成形体に金属シリコンを充填す
ることを特徴とする接合形成される炭化珪素質成形体の
製造方法。
2. Carbon produced by thermal decomposition of a gas containing a hydrocarbon gas or a halogenated hydrocarbon gas in a synthetic quartz glass porous body has a molar ratio of carbon / silicon dioxide of 3.5.
It is characterized in that the above-described precipitation, the silicon dioxide-carbon porous molded body obtained by the deposition are superposed on the bonding surface, and the porous silicon carbide molded body obtained by firing is filled with metallic silicon. A method of manufacturing a silicon carbide-based molded body to be joined and formed.
【請求項3】 合成石英ガラス多孔体に、炭化水素ガス
又はハロゲン化炭化水素ガスを含有するガスの熱分解に
より生成する炭素を炭素/二酸化珪素のモル比で3.5
以上で析出させ、その後焼成して得られた多孔質炭化珪
素成形体を接合面で重ね合わせ、この後金属シリコンを
充填することを特徴とする接合形成される炭化珪素質成
形体の製造方法。
3. Carbon produced by thermal decomposition of a gas containing a hydrocarbon gas or a halogenated hydrocarbon gas in a synthetic quartz glass porous body has a carbon / silicon dioxide molar ratio of 3.5.
A method for producing a bonded silicon carbide molded body, which comprises depositing the porous silicon carbide molded body obtained by the above and then stacking the porous silicon carbide molded bodies on each other at a bonding surface, and thereafter filling with metallic silicon.
JP9118091A 1990-07-10 1991-02-08 Production of joint-formed silicon carbide formed article Pending JPH0532462A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9118091A JPH0532462A (en) 1991-02-08 1991-02-08 Production of joint-formed silicon carbide formed article
EP91111425A EP0466109B1 (en) 1990-07-10 1991-07-09 Process for producing a silicon carbide-base complex
DE69104918T DE69104918T2 (en) 1990-07-10 1991-07-09 Method for producing a composite body based on silicon carbide.
US08/089,615 US5380511A (en) 1990-07-10 1993-07-12 Process for producing silicon carbide-base complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9118091A JPH0532462A (en) 1991-02-08 1991-02-08 Production of joint-formed silicon carbide formed article

Publications (1)

Publication Number Publication Date
JPH0532462A true JPH0532462A (en) 1993-02-09

Family

ID=11961970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9118091A Pending JPH0532462A (en) 1990-07-10 1991-02-08 Production of joint-formed silicon carbide formed article

Country Status (1)

Country Link
JP (1) JPH0532462A (en)

Similar Documents

Publication Publication Date Title
JPS6356700B2 (en)
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
WO2001060764A1 (en) METHOD FOR MANUFACTURING Si-SiC MEMBER FOR SEMICONDUCTOR HEAT TREATMENT
JPH09275078A (en) Silicon wafer retaining jig
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
JP2630180B2 (en) Silicon carbide members for semiconductor manufacturing
JPH0532462A (en) Production of joint-formed silicon carbide formed article
WO2015025951A1 (en) Porous ceramic and method for producing same
JPH03146470A (en) Silicon carbide-based material
JP4458692B2 (en) Composite material
JP3378608B2 (en) Method for producing silicon carbide substrate for jig for semiconductor production
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPS63166789A (en) Graphite crucible used in pulling up device for silicon single crystal and production thereof
JPH04245924A (en) Silicon carbide fiber and its production
JP2009190950A (en) Silicon carbide composite material and method for producing the same
JP4052210B2 (en) Manufacturing method of ceramic structure
JP3570640B2 (en) High density aluminum fluoride sintered body and method for producing the same
JPH01242408A (en) Silicon carbide-graphite composite material and production thereof
JP2500012B2 (en) Method for manufacturing ceramics sintered body having composite coating layer
JPH0558676A (en) Production of sio2-sic-si composite material
JPH05851A (en) Silicon carbide-based material and its production
JP2694369B2 (en) Silicon nitride sintered body
JP2002249387A (en) Method for manufacturing silicon carbide-based member
JPH06219835A (en) Graphite-silicon carbide composite excellent in oxidation resistance and its production
JPS63135783A (en) Graphite mold for hot press

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090618

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100618

LAPS Cancellation because of no payment of annual fees