JPH0531218B2 - - Google Patents
Info
- Publication number
- JPH0531218B2 JPH0531218B2 JP57197605A JP19760582A JPH0531218B2 JP H0531218 B2 JPH0531218 B2 JP H0531218B2 JP 57197605 A JP57197605 A JP 57197605A JP 19760582 A JP19760582 A JP 19760582A JP H0531218 B2 JPH0531218 B2 JP H0531218B2
- Authority
- JP
- Japan
- Prior art keywords
- holder
- lens
- semiconductor laser
- lens holder
- lens system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 claims description 35
- 238000010168 coupling process Methods 0.000 claims description 33
- 238000005859 coupling reaction Methods 0.000 claims description 33
- 230000008878 coupling Effects 0.000 claims description 31
- 230000003287 optical effect Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/123—Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Head (AREA)
- Optical Couplings Of Light Guides (AREA)
Description
【発明の詳細な説明】
〔発明の適用分野〕
本発明は半導体レーザを用いた光源装置に関
し、特に半導体レーザに高い出力パワーが要求さ
れる光デイスク装置用に適した光源装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a light source device using a semiconductor laser, and particularly to a light source device suitable for an optical disk device that requires a high output power from the semiconductor laser.
光デイスク装置では、回転するデイスク面に形
成された金属膜にレーザ光を照射し、情報記録時
にはレーザ光の照射パワーを変調することにより
上記金属膜に情報の“1”あるいは“0”に応じ
た穴(ピツト)を形成し、再生時には上記金属膜
に微弱なレーザ光を照射し、ピツトの有無による
反射光の変化を検出して情報の認識を行なう。こ
のような光デイスク装置用の光源としては、小型
の半導体レーザ素子とレーザ光集束用のコリメー
タレンズ系とを組み合せた光源装置が適用される
が、半導体レーザの出力パワー不足を補なつて情
報記録時のピツト形成に必要な高い照射パワーを
得るためには、上記半導体レーザ素子光を平行光
に集束するコリメータレンズの開口数をできるだ
け大きくする必要がある。しかしながら、開口数
を大きくするとコリメータレンズの焦点深度が浅
くなるため、半導体レーザ素子とレンズ系との結
合に高度の位置合せ技術が必要である。
In an optical disk device, a metal film formed on a rotating disk surface is irradiated with a laser beam, and when information is recorded, the irradiation power of the laser beam is modulated so that the metal film is irradiated with information according to “1” or “0” of the information. During playback, the metal film is irradiated with a weak laser beam, and information is recognized by detecting changes in reflected light depending on the presence or absence of pits. As a light source for such an optical disk device, a light source device that combines a small semiconductor laser element and a collimator lens system for laser beam focusing is applied, but it is possible to compensate for the lack of output power of the semiconductor laser and to record information. In order to obtain the high irradiation power necessary for forming pits at the time, it is necessary to make the numerical aperture of the collimator lens for focusing the semiconductor laser element light into parallel light as large as possible. However, as the numerical aperture is increased, the depth of focus of the collimator lens becomes shallower, so a sophisticated alignment technique is required to couple the semiconductor laser element and the lens system.
第1図は従来の光源装置の構成を示す図であ
り、11は半導体レーザ素子、12はコリメータ
レンズ系、13はレンズホルダを示す。この構成
において、例えばコリメータレンズ系12の開口
数を0.5、半導体レーザ素子11からの出力光の
波長を830μmとすると、光軸方向には約3μm、
光軸に垂直な面内では約20〜30μmの精度での位
置合せを必要とし、この範囲を越えるとレンズ系
12からの出力光の平行精度が劣化し、これを対
物レンズ系でデイスク面上に光スポツトとして絞
り込んだ場合に、球面収差やコマ収差による変形
が生じ、所定のスポツトが得られないという問題
が発生する。 FIG. 1 is a diagram showing the configuration of a conventional light source device, in which 11 is a semiconductor laser element, 12 is a collimator lens system, and 13 is a lens holder. In this configuration, for example, if the numerical aperture of the collimator lens system 12 is 0.5 and the wavelength of the output light from the semiconductor laser element 11 is 830 μm, about 3 μm in the optical axis direction,
Positioning with an accuracy of approximately 20 to 30 μm is required in a plane perpendicular to the optical axis; if this range is exceeded, the collimation accuracy of the output light from the lens system 12 deteriorates, and the objective lens system aligns the output light onto the disk surface. When the light is narrowed down to form a light spot, deformation occurs due to spherical aberration and comatic aberration, resulting in the problem that a predetermined spot cannot be obtained.
一方、半導体レーザ素子11についてみると、
発光点となる半導体ペレツトの基板(ステム)部
品への取り付け精度にバラツキがあるため、発光
点の位置と光の照射方向が素子ごとに微妙に異な
つている。このため、半導体レーザ素子11とレ
ンズ系12との位置合せには上記3次元的な位置
合せの他に、半導体レーザ素子11の出力光の光
軸とレンズ系12の光軸との方向を一致させるた
めの調整も必要となる。 On the other hand, regarding the semiconductor laser element 11,
Because there are variations in the precision with which the semiconductor pellet that serves as the light emitting point is attached to the substrate (stem) component, the position of the light emitting point and the direction of light irradiation differ slightly from element to element. Therefore, in order to align the semiconductor laser device 11 and the lens system 12, in addition to the three-dimensional alignment described above, the direction of the optical axis of the output light of the semiconductor laser device 11 and the optical axis of the lens system 12 is aligned. Adjustments will also be required to make this happen.
上述した半導体レーザ素子とレンズ系との複雑
な位置合せ作業は、例えば半導体レーザの自己結
合効果に着目したレーザパワー変化測定装置、レ
ンズ系に対する半導体レーザ素子の相対位置を3
次元的に移動すると共にレーザ素子の首振りを可
能とする微動装置等の補助装置を用いて行なうこ
とができるが、第1図に示す従来の構成において
は、これらの位置合せを半導体レーザ素子11と
レンズホルダ13との間の空間14を利用して行
なつており、位置合せ完了時点で上記空間14に
接着剤15を充填することにより両部品の相対的
位置関係を固定していた。 The above-mentioned complicated alignment work between the semiconductor laser element and the lens system can be performed using, for example, a laser power change measuring device that focuses on the self-coupling effect of the semiconductor laser,
This can be done using an auxiliary device such as a fine movement device that allows for dimensional movement and swing of the laser element, but in the conventional configuration shown in FIG. This is done by utilizing the space 14 between the lens holder 13 and the lens holder 13, and when the alignment is completed, the space 14 is filled with an adhesive 15 to fix the relative positional relationship between the two parts.
従つて従来の光源装置では接着剤15の経時変
化による不安定性がレーザ部とレンズ部の相対的
位置変動に直接影響する欠点があつた。また、上
記従来構造によれば半導体レーザ素子11に生ず
る発熱の放熱効果が充分でないため、安定したレ
ーザ動作を保つためには、第2図に示す如く、半
導体レーザ素子11のステム部に放熱フイン16
の取りつけを必要とした。この場合、光源装置の
全体寸法が大型化すると同時に、放熱フイン16
に加わる外力で接着剤充填部分が変形、破損しや
すくなるため、光源装置の運搬、取扱いに細心の
注意を要するという問題があつた。 Therefore, the conventional light source device has a drawback in that instability due to changes in the adhesive 15 over time directly affects relative positional fluctuations between the laser section and the lens section. In addition, according to the conventional structure described above, the heat dissipation effect of the heat generated in the semiconductor laser element 11 is not sufficient, so in order to maintain stable laser operation, a heat dissipation fin is installed in the stem portion of the semiconductor laser element 11 as shown in FIG. 16
required installation. In this case, the overall size of the light source device increases, and at the same time, the heat dissipation fin 16
Since the adhesive-filled portion is easily deformed and damaged by external force applied to the light source device, there is a problem in that the light source device must be transported and handled with great care.
本発明は上述した従来の問題点を解決し、小型
で機械的強度のすぐれた光源装置を提供すること
を目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and provide a light source device that is small and has excellent mechanical strength.
本発明の他の目的は半導体レーザ素子部とレン
ズ部との位置合せを容易に行なえる構造の光源装
置を提供することにある。 Another object of the present invention is to provide a light source device having a structure that allows easy alignment of a semiconductor laser element section and a lens section.
上記目的を達成するため、本発明の光源装置で
は、半導体レーザ素子をその外周に密着して保持
する素子ホルダと、レンズ系を内挿保持するレン
ズホルダと、上記両ルダの間に介在する筒状の結
合部材とからなり、上記結合部材の一端は内孔の
中心軸に垂直な面、他端は凹または凸の球面を有
し、上記素子ホルダの前端部と上記レンズホルダ
の後端部はそれぞれ上記結合部材の端部と適合す
る形状の面を有することを特徴とする。
In order to achieve the above object, the light source device of the present invention includes an element holder that holds a semiconductor laser element in close contact with its outer periphery, a lens holder that inserts and holds a lens system, and a cylinder that is interposed between the two holders. one end of the coupling member has a surface perpendicular to the central axis of the inner hole, the other end has a concave or convex spherical surface, and the front end of the element holder and the rear end of the lens holder are characterized in that each has a surface shaped to match the end of the coupling member.
以下、本発明の実施例について図面を参照して
説明する。
Embodiments of the present invention will be described below with reference to the drawings.
第3図は本発明による光源装置の最終組立図で
あり、11は半導体レーザ素子、12はコリメー
タレンズ系の鏡筒を示す。半導体レーザ素子11
は先端部外面を球面20Aに形成した素子ホルダ
20に挿入保持され、一方、コリメータレンズ系
12は補助円筒32の後部に装填された状態でレ
ンズホルダ31の円孔に挿入保持される。レンズ
ホルダ31の後端部31Aは円孔の中心軸、すな
わちレンズ系12の光軸に垂直な平面に形成して
ある。30は素子ホルダ20とレンズホルダ31
との間に介在する結合リングであり、結合リング
30の前端面30Aは中心軸に対して垂直な面に
形成され、後端部内面30Bは素子ホルダ前端の
球面20Aに適合する曲面が形成してある。結合
リング30と素子ホルダ20とはネジ40により
結合され、この場合、結合リング側にネジ外径よ
りも大きな通し孔33を設けておくことにより、
素子ホルダ20の取り付け角度を調整可能として
ある。同様に、結合リング30とレンズホルダ3
1との間においても、位置調整可能にネジ止めが
なされている。 FIG. 3 is a final assembly diagram of the light source device according to the present invention, in which 11 shows a semiconductor laser element and 12 shows a lens barrel of a collimator lens system. Semiconductor laser element 11
is inserted and held in the element holder 20 whose tip outer surface is formed into a spherical surface 20A, while the collimator lens system 12 is inserted and held in the circular hole of the lens holder 31 while being loaded into the rear part of the auxiliary cylinder 32. The rear end portion 31A of the lens holder 31 is formed in a plane perpendicular to the central axis of the circular hole, that is, the optical axis of the lens system 12. 30 is an element holder 20 and a lens holder 31
The front end surface 30A of the joining ring 30 is formed perpendicular to the central axis, and the rear end inner surface 30B is a curved surface that conforms to the spherical surface 20A at the front end of the element holder. There is. The coupling ring 30 and the element holder 20 are coupled by a screw 40, and in this case, by providing a through hole 33 larger than the outer diameter of the screw on the coupling ring side,
The mounting angle of the element holder 20 is adjustable. Similarly, the coupling ring 30 and the lens holder 3
1 are also screwed together so that the position can be adjusted.
上記構成によれば、結合リング30に対する素
子ホルダ20の取り付け角度を調整することによ
り、レーザ光の光軸を結合リング30の中心軸と
平行にすることができ、一方、結合リング30と
レンズホルダ31との突き合せ位置を変えること
により、レンズ系の光軸を結合リングの中心軸と
平行移動できるため、最終的にレーザ光とレンズ
系の光軸を一致させることができる。また、補助
円筒32を光軸方向に移動させることによりレー
ザ発光点をレンズ系12の焦点に一致させること
もできる。 According to the above configuration, by adjusting the attachment angle of the element holder 20 with respect to the coupling ring 30, the optical axis of the laser beam can be made parallel to the central axis of the coupling ring 30, while the coupling ring 30 and the lens holder By changing the abutting position with 31, the optical axis of the lens system can be moved parallel to the central axis of the coupling ring, so that the optical axes of the laser beam and the lens system can finally be made to coincide. Further, by moving the auxiliary cylinder 32 in the optical axis direction, the laser emission point can be made to coincide with the focal point of the lens system 12.
次に上記光源装置の組立手順について述べる。 Next, the assembly procedure of the light source device will be described.
先ず、第4図に示す如く、半導体レーザ素子1
1を素子ホルダ20の後部より挿入し、熱伝導性
の接着剤、例えば電気化学工業の商品名「ラムダ
イト」を用いて一体化する。一方、第5図に示す
如く、コリメータレンズ系の鏡筒12を補助円筒
32の後部に挿入し、エポキシ系の接着剤で一体
化した後、補助円筒32をレンズホルダ31に挿
入し、ネジ42により仮止めしておく。 First, as shown in FIG.
1 is inserted from the rear of the element holder 20 and integrated using a thermally conductive adhesive such as "Lambdite", a trade name of Denki Kagaku Kogyo. On the other hand, as shown in FIG. 5, the lens barrel 12 of the collimator lens system is inserted into the rear part of the auxiliary cylinder 32, and after being integrated with epoxy adhesive, the auxiliary cylinder 32 is inserted into the lens holder 31, and the screw 42 Temporarily secure it.
次に素子ホルダ20と結合リング30とを突き
合わせ、ネジ40により軽く止めた状態で突き合
せ角度を調整し、半導体レーザの光軸と結合リン
グ30の中心軸の方向を合せる。この作業は、素
子ホルダ位置決め装置と、例えば第6図に矢印5
0で示す補助レーザ光(He−Neレーザ)と、反
射光観測プレート51、プレーンミラー52を用
いて行なうことができる。すなわち、素子ホルダ
11を位置決め装置で保持して半導体レーザ素子
11をHe−Neレーザと所定の距離をへだてて対
向させ、先ず、レーザ光50を半導体レーザ素子
の出力窓11aの内側にある発光チツプ面に照射
すると、発光チツプ面からの反射回折光が観測プ
レート51に映し出される。この状態で反射回折
光の零次光がHe−Neレーザの発光点、つまり観
測プレート51の中心孔50′に一致するように
素子ホルダ11の向きを調整し、この姿勢で位置
決め装置を固定すると、半導体レーザ光の光軸が
He−Neレーザ光50の光軸と一致したことにな
る。次に、プレーンミラー52を結合リング30
の端面30Aに密着させ、He−Neレーザ光50
を照射しながら、ミラーからの反射スポツトが観
測プレート51の中心孔50′に一致するよう結
合リング30の向きを調整し、ネジ40を締める
と、結合リング30の中心軸は半導体レーザの光
軸と平行に位置合せされたことになる。 Next, the element holder 20 and the coupling ring 30 are butted against each other, and the angle of the butt is adjusted while the element holder 20 and the coupling ring 30 are lightly fastened with the screw 40, so that the optical axis of the semiconductor laser and the central axis of the coupling ring 30 are aligned. This work is carried out using the element holder positioning device and, for example, arrow 5 in FIG.
This can be performed using an auxiliary laser beam (He--Ne laser) indicated by 0, a reflected light observation plate 51, and a plane mirror 52. That is, the element holder 11 is held by a positioning device and the semiconductor laser element 11 is opposed to the He-Ne laser at a predetermined distance, and the laser beam 50 is first directed to the light emitting chip located inside the output window 11a of the semiconductor laser element. When the surface is irradiated, the reflected and diffracted light from the light emitting chip surface is projected onto the observation plate 51. In this state, adjust the direction of the element holder 11 so that the zero-order light of the reflected diffracted light coincides with the light emission point of the He-Ne laser, that is, the center hole 50' of the observation plate 51, and fix the positioning device in this position. , the optical axis of the semiconductor laser beam is
This means that it coincides with the optical axis of the He--Ne laser beam 50. Next, the plane mirror 52 is attached to the coupling ring 30.
The He-Ne laser beam is placed in close contact with the end face 30A of the
While irradiating the beam, adjust the direction of the coupling ring 30 so that the reflected spot from the mirror matches the center hole 50' of the observation plate 51, and tighten the screw 40, so that the central axis of the coupling ring 30 aligns with the optical axis of the semiconductor laser. This means that it is aligned parallel to .
こうして得られたレーザ側のブロツクを第5図
のレンズ側ブロツクと面30A,31Aで突き合
わせ、双方の光軸が一致するように当接位置を調
整する。この位置合せは、結合リング30とレン
ズホルダ31をネジ41で軽く結合しておき、次
に述べるように、第6図で用いたHe−Neレーザ
を利用することにより容易に実現できる。 The thus obtained laser-side block is brought into contact with the lens-side block shown in FIG. 5 at surfaces 30A and 31A, and the contact position is adjusted so that the optical axes of both sides coincide. This positioning can be easily achieved by lightly coupling the coupling ring 30 and lens holder 31 with screws 41 and using the He--Ne laser used in FIG. 6, as described below.
先ず、レンズブロツク側を観測プレート51か
ら所定距離へだてて位置決め装置で保持した状態
で、コリメータレンズ12の中心に向けてHe−
Neレーザ光50を照射すると、レンズ面からの
同心円状の反射干渉光が観測プレート51上に映
し出される。そこで、干渉光の中心がHe−Neレ
ーザの発光点50′と一致するようにレンズブロ
ツクの位置を調整し、位置を固定する。この状態
で半導体レーザ素子11を発光させると、レーザ
側の光軸がレンズ系の光軸と一致していない場
合、観測プレート51上の中心点50′からずれ
た位置にレーザスポツトが結ばれる。従つて、ネ
ジ41をわずかに緩め、レーザスポツトが中心点
50′に一致するようにレーザ側ブロツクの位置
を調整し、一致した位置でネジ41を締めること
により、レーザ側とレンズ側の光軸合せを達成で
きる。尚半導体レーザ素子の波長が近赤外光(波
長830nm前後)の場合は、観測プレート50と
して赤外感光材(例えば、米国イーストマン・コ
ダツク社の製品、IR−PHOSPHOR)を用いれ
ばよい。 First, with the lens block side held at a predetermined distance from the observation plate 51 and held by a positioning device, the He-
When the Ne laser beam 50 is irradiated, concentric reflected interference light from the lens surface is projected onto the observation plate 51. Therefore, the position of the lens block is adjusted so that the center of the interference light coincides with the light emitting point 50' of the He--Ne laser, and the position is fixed. When the semiconductor laser element 11 is caused to emit light in this state, a laser spot is formed at a position offset from the center point 50' on the observation plate 51 if the optical axis of the laser side does not coincide with the optical axis of the lens system. Therefore, by slightly loosening the screw 41, adjusting the position of the laser side block so that the laser spot coincides with the center point 50', and tightening the screw 41 at the aligned position, the optical axes of the laser side and the lens side are aligned. can be achieved. If the wavelength of the semiconductor laser element is near-infrared light (wavelength of about 830 nm), an infrared photosensitive material (for example, IR-PHOSPHOR, a product of Eastman Kodak, USA) may be used as the observation plate 50.
組立作業の最後は、半導体レーザ素子11の発
光点とコリメータレンズ系12の焦点との位置合
せである。この位置合せは、例えば、半導体レー
ザ素子11からの出力光を、レンズ系の前方に配
置した円錘プリズムにより反射させて発光点に戻
したときに生ずる自己結合(共振)現象に着目し
て、補助円筒30を仮止めしたネジ42を緩めて
補助円筒を前後に微動調整し、レーザ光強度が最
大となる位置でネジ42を固定すればよい。 The final step of the assembly work is to align the light emitting point of the semiconductor laser element 11 and the focal point of the collimator lens system 12. For example, this alignment focuses on the self-coupling (resonance) phenomenon that occurs when the output light from the semiconductor laser element 11 is reflected by a conical prism placed in front of the lens system and returned to the light emitting point. The screw 42 that temporarily fixes the auxiliary cylinder 30 may be loosened, the auxiliary cylinder may be slightly adjusted back and forth, and the screw 42 may be fixed at a position where the laser beam intensity is maximum.
以上説明した実施例では、レンズホルダ20の
先端部を球面状にし、これと接する結合リング3
0の後端部を上記球面に適合する曲面としたが、
これを第7図に示す如く、結合リング30′に球
面を形成し、レンズホルダ20′に上記球面と適
合する曲面を形成してもよい。また、図面は省略
するが、レンズホルダと結合リングの接合面を光
軸に垂直な面とし、結合リングとレンズホルダと
の接合面を首振り可能な球面と曲面との組み合せ
にしてもよい。 In the embodiment described above, the tip of the lens holder 20 is made into a spherical shape, and the coupling ring 3 in contact with the tip is made into a spherical shape.
The rear end of 0 was made into a curved surface that conforms to the above spherical surface,
As shown in FIG. 7, the coupling ring 30' may be formed with a spherical surface, and the lens holder 20' may be formed with a curved surface that matches the spherical surface. Although not shown in the drawings, the joint surface between the lens holder and the coupling ring may be a surface perpendicular to the optical axis, and the joint surface between the coupling ring and the lens holder may be a combination of a swingable spherical surface and a curved surface.
本発明によれば、素子ホルダとレンズホルダを
用い、これを結合リングを介在させて一体化する
ことにより、レーザ発光点とレンズ系の相対的位
置関係を精度よく、旦つ強固に設定できる利点が
ある。また半導体レーザ素子を素子ホルダに挿入
し、この素子ホルダを結合リングを介してレンズ
ホルダに結合した構造となつているため、各部材
を熱伝導性の良い材料で構成することにより、従
来の如く特別な放熱フインを用いることなく、半
導体レーザ素子に発生した熱を光源装置の外に効
率よく逃がすことができる。また、放熱効果を一
層高めるために素子ホルダを外周に放熱フインを
もつ形状とした場合でも機械的に強固であり、更
に、結合リングやレンズホルダの外形も光デイス
ク装置への実装に適した任意の形状に設計するこ
とができるため、光源装置としての取り扱いに極
めて有利である。 According to the present invention, by using an element holder and a lens holder and integrating them with a coupling ring interposed, the relative positional relationship between the laser emission point and the lens system can be set precisely and firmly. There is. In addition, since the semiconductor laser element is inserted into an element holder, and this element holder is connected to a lens holder via a coupling ring, each member is made of a material with good thermal conductivity, making it possible to Heat generated in the semiconductor laser element can be efficiently dissipated to the outside of the light source device without using special heat dissipation fins. In addition, even when the element holder is shaped with heat dissipation fins on the outer periphery to further enhance the heat dissipation effect, it is mechanically strong, and the outer shape of the coupling ring and lens holder can be adjusted to any shape suitable for mounting in an optical disk device. Since it can be designed in the shape of , it is extremely advantageous for handling as a light source device.
第1図と第2図はそれぞれ従来の光源装置の構
成を示す図、第3図は本発明による光源装置の一
実施例を示す断面図、第4図〜第6図は上記第3
図装置の組立工程を説明するための図、第7図は
本発明による光源装置の他の実施例を示す図であ
る。
〔符号の説明〕、11……半導体レーザ素子、
12……レンズ系、20……素子ホルダ、30…
…結合リング、31……レンズホルダ、32……
補助円筒。
1 and 2 are diagrams showing the configuration of a conventional light source device, FIG. 3 is a sectional view showing an embodiment of the light source device according to the present invention, and FIGS. 4 to 6 are diagrams showing the configuration of a conventional light source device.
FIG. 7 is a diagram for explaining the assembly process of the device, and FIG. 7 is a diagram showing another embodiment of the light source device according to the present invention. [Explanation of symbols], 11... semiconductor laser element,
12... Lens system, 20... Element holder, 30...
...Coupling ring, 31...Lens holder, 32...
Auxiliary cylinder.
Claims (1)
その外周に密着して保持する素子ホルダと、上記
半導体レーザ素子から発せられるレーザ光を集束
するためのレンズ系と、該レンズ系を内挿保持す
るレンズホルダと、上記素子ホルダとレンズホル
ダとの間に介在する筒状の結合部材とからなり、
上記結合部材の一端は内孔の中心軸に対して垂直
な面、他端は凹または凸の球面を有し、上記素子
ホルダの前端部と上記レンズホルダの後端部はそ
れぞれ上記結合部材の端部と適合する形状の面を
有し、上記レンズホルダは、上記レンズ系を装填
するための補助円筒部材と、該補助円筒部材を軸
方向にスライド可能に保持する円筒保持部材とか
らなり、該円筒保持部材が上記結合部材と適合す
る端面を有することを特徴とする光源装置。 2 前記素子ホルダと結合部材、および結合部材
とレンズホルダとが、それぞれの端面において相
対的位置関係を調整可能に係合されていることを
特徴とする第1項の光源装置。[Scope of Claims] 1. A semiconductor laser element, an element holder that holds the semiconductor laser element in close contact with its outer periphery, a lens system for focusing laser light emitted from the semiconductor laser element, and the lens system. consisting of a lens holder for inserting and holding the element holder, and a cylindrical coupling member interposed between the element holder and the lens holder,
One end of the coupling member has a surface perpendicular to the central axis of the inner hole, the other end has a concave or convex spherical surface, and the front end of the element holder and the rear end of the lens holder are respectively connected to the coupling member. The lens holder has a surface shaped to match the end portion, and the lens holder includes an auxiliary cylindrical member for loading the lens system, and a cylindrical holding member that holds the auxiliary cylindrical member slidably in the axial direction, A light source device characterized in that the cylindrical holding member has an end surface that is compatible with the coupling member. 2. The light source device according to item 1, wherein the element holder and the coupling member, and the coupling member and the lens holder are engaged with each other so that their relative positional relationships can be adjusted at their respective end faces.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57197605A JPS5990241A (en) | 1982-11-12 | 1982-11-12 | Light source device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57197605A JPS5990241A (en) | 1982-11-12 | 1982-11-12 | Light source device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5990241A JPS5990241A (en) | 1984-05-24 |
JPH0531218B2 true JPH0531218B2 (en) | 1993-05-12 |
Family
ID=16377245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57197605A Granted JPS5990241A (en) | 1982-11-12 | 1982-11-12 | Light source device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5990241A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH082813Y2 (en) * | 1985-09-19 | 1996-01-29 | パイオニア株式会社 | Optical pickup device |
JP2518213Y2 (en) * | 1987-07-24 | 1996-11-27 | 三菱電機株式会社 | Optical head |
JP2004133962A (en) | 2002-10-08 | 2004-04-30 | Pioneer Electronic Corp | Pickup device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3396344A (en) * | 1964-02-24 | 1968-08-06 | Nat Res Dev | Semiconductor laser array |
JPS51126844A (en) * | 1975-04-26 | 1976-11-05 | Yasuhiro Suenaga | A mirror holder |
JPS5584158A (en) * | 1978-12-18 | 1980-06-25 | Nippon Sekigaisen Kogyo Kk | Multiple articular reflector system manipulator |
-
1982
- 1982-11-12 JP JP57197605A patent/JPS5990241A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3396344A (en) * | 1964-02-24 | 1968-08-06 | Nat Res Dev | Semiconductor laser array |
JPS51126844A (en) * | 1975-04-26 | 1976-11-05 | Yasuhiro Suenaga | A mirror holder |
JPS5584158A (en) * | 1978-12-18 | 1980-06-25 | Nippon Sekigaisen Kogyo Kk | Multiple articular reflector system manipulator |
Also Published As
Publication number | Publication date |
---|---|
JPS5990241A (en) | 1984-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6526089B1 (en) | Laser marker and method of light spot adjustment therefor | |
JP2645862B2 (en) | Semiconductor light emitting device and its applied products | |
JPH02250011A (en) | Focusing module for divergent light source | |
JPH0412039B2 (en) | ||
US4453241A (en) | Optical scanning unit for reading information from an optical recording | |
JPH0531218B2 (en) | ||
JPH0636324A (en) | Optical disk device | |
JPS61175617A (en) | Semiconductor laser device | |
JP2004158784A (en) | Light source device | |
JPH0340478A (en) | Laser diode module | |
JP2835778B2 (en) | Optical head and its adjustment method | |
JPS59195349A (en) | Optical head device | |
JP2005311203A (en) | Fixing holder for light-emitting element, optical pickup, and information processing device | |
JPH02220228A (en) | Optical head | |
JPH0261611A (en) | Laser light source device for multiplexing | |
JPS59195341A (en) | Optical head | |
JPS59195346A (en) | Optical head device | |
JPH045053Y2 (en) | ||
JP2981103B2 (en) | Lens support device and method of manufacturing lens support device | |
JP3518904B2 (en) | Optical pickup | |
JPH04121823A (en) | Laser beam source device | |
JP2783892B2 (en) | Optical pickup | |
JPH03147536A (en) | Optical head | |
JPS6139240A (en) | Focus detector | |
JPH0554419A (en) | Optical pickup |