JPH0531137B2 - - Google Patents
Info
- Publication number
- JPH0531137B2 JPH0531137B2 JP60205541A JP20554185A JPH0531137B2 JP H0531137 B2 JPH0531137 B2 JP H0531137B2 JP 60205541 A JP60205541 A JP 60205541A JP 20554185 A JP20554185 A JP 20554185A JP H0531137 B2 JPH0531137 B2 JP H0531137B2
- Authority
- JP
- Japan
- Prior art keywords
- oxytitanium phthalocyanine
- phthalocyanine
- photoreceptor
- peak
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims description 69
- 108091008695 photoreceptors Proteins 0.000 claims description 45
- 238000001228 spectrum Methods 0.000 claims description 21
- 238000002441 X-ray diffraction Methods 0.000 claims description 17
- 229920000642 polymer Polymers 0.000 claims description 14
- 239000011230 binding agent Substances 0.000 claims description 12
- 239000010410 layer Substances 0.000 description 37
- 239000013078 crystal Substances 0.000 description 31
- 238000004519 manufacturing process Methods 0.000 description 27
- 230000035945 sensitivity Effects 0.000 description 25
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 238000012546 transfer Methods 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000000975 dye Substances 0.000 description 12
- 238000005406 washing Methods 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 11
- -1 Polyazo Polymers 0.000 description 10
- 239000002904 solvent Substances 0.000 description 9
- 238000000862 absorption spectrum Methods 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 230000003595 spectral effect Effects 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- XQZYPMVTSDWCCE-UHFFFAOYSA-N phthalonitrile Chemical compound N#CC1=CC=CC=C1C#N XQZYPMVTSDWCCE-UHFFFAOYSA-N 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000000921 elemental analysis Methods 0.000 description 4
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000007810 chemical reaction solvent Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000012442 inert solvent Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- ZWYDDDAMNQQZHD-UHFFFAOYSA-L titanium(ii) chloride Chemical compound [Cl-].[Cl-].[Ti+2] ZWYDDDAMNQQZHD-UHFFFAOYSA-L 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 2
- NQMUGNMMFTYOHK-UHFFFAOYSA-N 1-methoxynaphthalene Chemical compound C1=CC=C2C(OC)=CC=CC2=C1 NQMUGNMMFTYOHK-UHFFFAOYSA-N 0.000 description 2
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- 150000001241 acetals Chemical class 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- MTHSVFCYNBDYFN-UHFFFAOYSA-N anhydrous diethylene glycol Natural products OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 229920003086 cellulose ether Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 229920006287 phenoxy resin Polymers 0.000 description 2
- 239000013034 phenoxy resin Substances 0.000 description 2
- 239000001007 phthalocyanine dye Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical compound C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- GWPZOSJFNMQZFQ-UHFFFAOYSA-N 1-methoxy-4-methylpentan-2-one Chemical compound COCC(=O)CC(C)C GWPZOSJFNMQZFQ-UHFFFAOYSA-N 0.000 description 1
- BSZXAFXFTLXUFV-UHFFFAOYSA-N 1-phenylethylbenzene Chemical compound C=1C=CC=CC=1C(C)C1=CC=CC=C1 BSZXAFXFTLXUFV-UHFFFAOYSA-N 0.000 description 1
- AHXBXWOHQZBGFT-UHFFFAOYSA-M 19631-19-7 Chemical compound N1=C(C2=CC=CC=C2C2=NC=3C4=CC=CC=C4C(=N4)N=3)N2[In](Cl)N2C4=C(C=CC=C3)C3=C2N=C2C3=CC=CC=C3C1=N2 AHXBXWOHQZBGFT-UHFFFAOYSA-M 0.000 description 1
- CGYGETOMCSJHJU-UHFFFAOYSA-N 2-chloronaphthalene Chemical compound C1=CC=CC2=CC(Cl)=CC=C21 CGYGETOMCSJHJU-UHFFFAOYSA-N 0.000 description 1
- MNFZZNNFORDXSV-UHFFFAOYSA-N 4-(diethylamino)benzaldehyde Chemical compound CCN(CC)C1=CC=C(C=O)C=C1 MNFZZNNFORDXSV-UHFFFAOYSA-N 0.000 description 1
- VIJYEGDOKCKUOL-UHFFFAOYSA-N 9-phenylcarbazole Chemical class C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VIJYEGDOKCKUOL-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- LBGCRGLFTKVXDZ-UHFFFAOYSA-M ac1mc2aw Chemical compound [Al+3].[Cl-].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 LBGCRGLFTKVXDZ-UHFFFAOYSA-M 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- LBAIJNRSTQHDMR-UHFFFAOYSA-N magnesium phthalocyanine Chemical compound [Mg].C12=CC=CC=C2C(N=C2NC(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2N1 LBAIJNRSTQHDMR-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- PRMHOXAMWFXGCO-UHFFFAOYSA-M molport-000-691-708 Chemical compound N1=C(C2=CC=CC=C2C2=NC=3C4=CC=CC=C4C(=N4)N=3)N2[Ga](Cl)N2C4=C(C=CC=C3)C3=C2N=C2C3=CC=CC=C3C1=N2 PRMHOXAMWFXGCO-UHFFFAOYSA-M 0.000 description 1
- JGOAZQAXRONCCI-SDNWHVSQSA-N n-[(e)-benzylideneamino]aniline Chemical compound C=1C=CC=CC=1N\N=C\C1=CC=CC=C1 JGOAZQAXRONCCI-SDNWHVSQSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- UBZYKBZMAMTNKW-UHFFFAOYSA-J titanium tetrabromide Chemical compound Br[Ti](Br)(Br)Br UBZYKBZMAMTNKW-UHFFFAOYSA-J 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- 239000006163 transport media Substances 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0664—Dyes
- G03G5/0696—Phthalocyanines
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Description
<産業上の利用分野>
本発明は、特定の結晶型のオキシチタニウムフ
タロシアニンを電荷発生層に用いた電子写真用感
光体に関する。
<従来の技術>
従来から、フタロシアニン類、金属フタロシア
ニン類は、良好な光導電性を示し、例えば電子写
真用感光体などに使用されている。
また、近年、従来の白色光のかわりにレーザ光
を光源とし、高速化、高画質、ノンインパクト化
をメリツトとしたレーザビームプリンター等が広
く普及するに至り、その要求に耐えうる感光体の
開発が盛んである。
特にレーザー光の中でも近年進展が著るしい半
導体レーザーを光源とする方式が種々試みられて
おり、この場合、該光源の波長は800nm前後で
あることから800nm前後の長波長光に対し高感
度な特性を有する感光体が強く望まれている。
この要求を満す有機系の光導電性材料として
は、スクアリツク酸メチン系色素、シアニン系色
素、ピリリウム系色素、チアピリリウム系色素、
ポリアゾ系色素、フタロシアニン系色素等が知ら
れている。
これらのうち、スクアリツク酸メチン系色素、
シアニン系色素、ピリリウム系色素、チアピリリ
ウム系色素は、分光感度の長波長化が比較的容易
ではあるが、繰返し使用する様な実用上の安定性
に欠けており、ポイアゾ系色素は、吸収の長波長
化が困難であり、かつ製造面で、工程が長く、か
つ不純物の分離が難しいなどの難点がある。
一方、フタロシアニン系色素は、600nm以上
の長波長域に吸収ピークを有し、中心金属や、結
晶型により、分光感度が変化し、半導体レーザの
波長域で高感度を示すものがいくつか発表されて
おり、精力的に研究開発が行われている。
フタロシアニン類は、中心金属の種類により吸
収スペクトルや、光導電性が異なるだけでなく、
結晶型によつてもこれらの物性には差があり、同
じ中心金属のフタロシアニンでも、特定の結晶型
が電子写真用感光体用に選択されている例がいつ
くか報告されている。
無金属フタロシアニンではX型の結晶型のもの
が、光導電性が高く、かつ800nm以上にも感度
があるとの報告があり、又、銅フタロシアニンで
は、多くの結晶型の内ε型が最も長波長域迄感度
を有していると報告されている。
しかし、X型無金属フタロシアニンは準安定型
の結晶型であつて、その製造が困難であり、又、
安定した品質のものが得にくいという欠点があ
る。一方、ε型銅フタロシアニンは、αやβ型銅
フタロシアニンに比べれば分光高度は長波長に伸
びているが、800nmでは感度が780nmに比べ急
激に低下しており、発振波長に振れのある現在の
半導体レーザー用には使いにくい性能となつてい
る。このため、多くの金属フタロシアニンが検討
され、オキシバナジルフタロシアニン、クロロア
ルミニウムフタロシアニン、クロロインジウムフ
タロシアニン、オキシチタニウムフタロシアニ
ン、クロロガリウムフタロシアニン、マグネシウ
ムフタロシアニン、などが、半導体レーザーの様
な近赤外光に対して高感度なフタロシアニン類と
して報告されている。
しかし、これらのフタロシアニンを複写機やプ
リンター用の電子写真用感光体の電荷発生材料と
して用いるには、感度だけでなく、多くの要求性
能を満足しなければならない。
電気特性としては、初期特性として、半導体レ
ーザー光に対し感度が高いだけでなく、帯電性が
良好であり、暗減衰が小さいこと、残留電位が小
さいことが必要であり、さらに、これらの特性が
繰返し使用により大きく変化しないことが要求さ
れる。
得に最近は、感光体の長寿命化が重要視され、
電気特性が繰返し使用により変化しにくいことが
強く求められている。
この点ではまだ十分に満足できるものはない。
電気特性は、フタロシアニンの配位金属の種類で
大きく異なるが、、同じ金属フタロシアニンでも
結晶形による特性の差は大きい。
例えば、銅フタロシアニンではα、β、γ、ε
型などの結晶形の違いにより、帯電性、暗減衰、
感度等に大きな差があることあが知られている。
(澤田学;染料と薬品」第24巻第6号、p.122
(1979))又、結晶形により吸収スペクトルが異な
ることにより、分光高度も変化し、銅フタロシア
ニンではε型の吸収が最も長波長側にあり、分光
高度も最も長波長側に伸びている。(熊野勇夫:
電子写真学会誌第22巻、第2号、p.111(1984))
この様に結晶形による電気特性の違いは、無金
属フタロシアニンや、他の多くの金属フタロシア
ニンに関し公知であり、電気特性の良好な結晶形
をいかにして作るかという点に、多くの努力がな
されている。
例えば、金属フタロシアニンの蒸着膜を電荷発
生層にする例が多いが、この蒸着膜をジクロロメ
タンやテトラヒドロフラン等の有機溶剤に浸漬し
たりい溶剤蒸気にさらすことにより、結晶転移を
おこさせ、電気特性を改良する例がアルミニウ
ム、インジウム、チタニウムのフタロシアニンに
ついて報告されている(特開昭58−158649号、特
開昭59−44054号、特開昭59−49544号、特開昭59
−155851号、特開昭59−166959号各公報参照。)。
その内、特開昭59−49544号および特開昭59−
166959号公報には、電子写真用感光体に特定の結
晶型のオキシチタニウムフタロシアニンを使用す
ることが報告されている。
特開昭59−49544号公報では、オキシチタニウ
ムフタロシアニンの結晶型としては、ブラツグ角
(2θ±0.2°)=9.2°、13.1°、20.7°、26.2°、27.
1°に強
い回折ピークを与えるものが好適であると記され
ており、X線回折スペクトル図が示されている。
このスペクトルには、この他にいくつかのピーク
があり、7°から8°の間に、上記に次ぐ強度のピー
クの存在が示されている。
又、特開昭59−166959号公報では、オキシチタ
ニウムフタロシアニンの蒸着膜をテトラヒドロフ
ランの飽和蒸気中に1〜24時間放置し、結晶形を
変化させて、電荷発生層としている。
X線回折スペクトルは、ピークの数が少なく、
かつ幅が広く、ブラツグ角(2θ)=7.5°、12.6°、
13.0°、25.4°、26.2°、28.6°に強い回折ピークを示
すことが特徴として示されている。
これら、公知のオキシチタニウムフタロシアニ
ンは、主に蒸着により、電荷発生層を形成するも
のであり、しかも蒸着後に溶媒蒸気にさらして結
晶転移をおこさせる操作により、ようやく実用に
耐える電荷発生層を得ているが、蒸着法は塗布方
式に比べ、設備投資額が大きく、しかも量産性に
劣るためコスト高になるので好ましくない。
そして、本発明者らの検討によれば、ブラツク
角8゜以下に強い回折ピークのあるオキシチタニウ
ムフタロシアニンを使用する場合、特に、この分
散液の塗布により電荷発生層を形成した感光体の
性能は、必ずしも満足するものではないことが判
つた。このことは、例えば、特開昭59−49544の
実施例からも判る。即ち、塗布により形成した感
光体は、蒸着により形成した感光体に比べて帯電
性が低く、残留電位は高くなり、感度は、蒸着の
場合に比べ約40%低下している。
この様に、オキシチタニウムフタロシアニンを
用いた感光体の性能が条件により変化するのは、
オキシチタニウムフタロシアニンがいくつかの結
晶型を有し、しかも結晶型により電気特性が異な
ることによる。
従つて、電気特性の良好な結晶型の製法検討が
特に必要であるが従来は、量産性に劣る蒸着法に
よる検討が主であり、塗布方式に適したオキシチ
タニウムフタロシアニンの結晶型の製造条件の検
討は行なわれていない。
本発明者らは、上記の点に留意し、鋭意検討し
て、先に、ジクロロチタニウムフタロシアニンを
熱水懸濁し、N−メチルピロリドン処理して得ら
れるオキシチタニウムフタロシアニンが塗布方式
に適していることを提案した(特願昭59−
230982)。
かかる精製方法により得られるオキシチタニウ
ムフタロシアニンは、従来の方法により得られる
ものに比べて一般に良好な電気特性を示すが、本
発明者らが更に検討したところ、精製条件により
少なくとも数種類の結晶型のものが生成し、これ
らの結晶型間においても電気特性に差異があるこ
とを確認した。
本発明者らの検討によれば、特に、熱水懸濁の
際、その液のPHが5〜7付近になるまで充分洗
浄すること(特願昭60−12194)、更には、N−メ
チルピロリドン処理をブラツグ角4〜8°のピーク
強度が一定以下になるまで充分行なうこと等によ
つて得られる特定のX線回折パターンを示す結晶
型オキシチタニウムフタロシアニンが、特に、感
度、帯電性、暗減衰、残留電位等が良好で、バラ
ンスのとれた電気特性を有することを知得し、本
発明を完成するに到つた。
<発明の目的>
本発明の目的は、半導体レーザー用の近赤外光
に対し高感度で、電気特性にすぐれ、かつ製造し
やすい特定の結晶形を有する金属フタロシアニン
を用いて750〜800nm付近の長波長光に対し高感
度でかつ他の電気特性も良好なオキシチタニウム
フタロシアニンを使用する電子写真用感光体を提
供しようとするものである。
<発明の構成>
すなわち本発明の要旨は、少なくともオキシチ
タニウムフタロシアニンがバインダーポリマー中
に分散した電荷発生層と、電荷移動層が積層した
感光層を有する電子写真感光体において、オキシ
チタニウムフタロシアニンがそのX線回折スペク
トルにおいて、ブラツグ角(2θ±0.2°)9.3°、
10.6°、13.2°、15.1°、15.7°、16.1°、20.8°、23
.3°、
26.3°、27.1°に強い回折ピークを示し、この内ブ
ラツグ角26.3°の回折ピークの強度が最も強く、
かつ、ブラツク角4〜8°の回折ピークの強度がブ
ラツグ角26.3°の回折ピークの強度に対して5%
以下の強度であることを特徴とする電子写真用感
光体に存する。
本発明を詳細に説明すると、
本発明のオキシチタニウムフタロシアニンは、
そのX線回折スペクトルにおいて、ブラツグ角
(2θ±0.2°)=9.3°、10.6°、13.2°、15.1°、15.
7°、
16.1°、20.8°、23.3°、26.3°、27.1°に強い回折ピ
ー
クを示し、この内26.3°のピーク強度が最も強く、
かつ、7.0°、7.6°の回折ピークが26.3°のピーク強
度に比べ5%以下の強度である結晶型のオキシチ
タニウムフタロシアニンである。
オキシチタニウムフタロシアニンとしては、例
えば、下記一般式〔1〕
(式中、Xはハロゲン原子を表わし、nは0から
1迄の数を表わす。)
で示されるものが挙げられる。
前記一般式〔1〕において、Xが塩素原子でn
が0から0.5迄のものが好ましい。
本発明のオキシチタニウムフタロシアニンは、
例えば1,2−ジシアノベンゼン(o−フタロジ
ニトリル)とチタン化合物から例えば下記(1)又は
(2)に示す反応式に従つて容易に合成することがで
きる。
すなわち、1,2−ジシアノベンゼン(フタロ
ジニトリル)とチタンのハロゲン化物を、不活性
溶剤中で加熱し、反応させる。
チタン化合物としては、四塩化チタン、三塩化
チタン、四臭化チタンなどを用いることができる
が、四塩化チタンがコストの面で好ましい。不活
性剤とては、トリクロロベンゼン、α−クロロナ
フタレン、β−クロロナフタレン、α−メチルナ
フタレン、メトキシナフタレン、ジフエニルエー
テル、ジフエニルメタン、ジフエニルエタン、エ
チレングリコールジアルキルエーテル、ジエチレ
ングリコールジアルキルエーテル、トリエチレン
グリコールジアルキルエーテル等の反応に不活性
な高沸点有機溶剤が好ましい。
反応温度は通常150〜300℃、特に180〜250℃が
好ましい。
反応後生成したジクロロチタニウムフタロシア
ニンを別し、反応に用いた溶剤で洗浄し、反応
時に生成した不純物や、未反応の原料を除く。
次に、メタノール、エタノール、イソプロピル
アルコール等のアルコール類や、テトラヒドロフ
ラン、1,4−ジオキサン等のエーテル類等の不
活性溶剤で、洗浄し反応に用いた溶剤を除去す
る。
次いで得られたジクロロチタニウムフタロシア
ニンは、熱水で処理することにより、オキシチタ
ニウムフタロシアニンとなる。熱水処理は、洗液
のPHが約5〜7になるまで繰返し行なうことが望
ましい。
この段階で得られるオキシチタニウムフタロシ
アニンのX線回折スペクトルでは、ピークが幅広
くなつており、塩素原子が酸素原子に置換する加
水分解反応により、結晶配列に乱れが生じている
ことを示している。このオキシチタニウムフタロ
シアニンをキノリン、α−クロロナフタリン、N
−メチルピロリドン、等の有機溶剤、好ましく
は、N−メチルピロリドンで加熱処理する。
その際、反応物を100℃付近に加熱された反応
溶剤で洗浄した後、室温付近で反応溶剤で洗浄
し、更に、室温付近でメタノール等の不活性溶剤
で洗浄した後、加熱された同不活性溶剤で洗浄す
ると、電気特性、特に残留電位の低いオキシチタ
ニウムフタロシアニンが得られるので好ましい。
この有機溶剤処理は、通常100〜180℃好ましく
は、130〜170℃で行ない、オキシチタニウムフタ
ロシアニンに対し、等量から100重量倍、好まし
くは520重量倍の溶剤を用いて行なう。
有機溶剤処理のオキシチタニウムフタロシアニ
ンのX線回折ピークのブラツグ角8°以下に未だあ
る程度の強度の回折ピークがある場合は、この有
機溶剤により、本発明で特定する回折ピーク強度
となるまで繰返し充分処理する。
かくして、本発明の結晶型のオキシチタニウム
フタロシアニンを得ることができる。
本発明の感光体につき、更に詳細に説明する
と、本発明の感光体は、電荷発生層と電荷移動層
が積層された積層型感光体であり、少なくとも、
導電性支持体と電荷発生層、電荷移動層から成
る。電荷発生層と電荷移動層は、通常は、電荷発
生層の上に電荷移動層が積層された構成をとる
が、逆の構成でもよい。
又、これらの他に、接着層、ブロツキング層等
の中間層や、保護層など、電気特性、機械特性の
改良のための層を設けてもよい。導電性支持体と
しては周知の電子写真感光体に採用されているも
のがいずれも使用できる。具体的には例えばアル
ミニウム、ステンレス、銅等の金属ドラム、シー
トあるいはこれらの金属箔のラミネート物、蒸着
物が基げられる。更に、金属粉末、カーボンブラ
ツク、ヨウ化銅、高分子電解質等の導電性物質を
適当なバインダーとともに塗布して導電処理した
プラスチツクフイルム、プラスチツクドラム、
紙、紙管等が挙げられる。また、金属粉末、カー
ボンブラツク、炭素繊維等の導電性物質を含有
し、導電性となつたプラスチツクのシートやドラ
ムが挙げられる。又、酸化スズ、酸化インジウム
等の導電性金属酸化物で導電処理したプラスチツ
クフイルムやベルトが挙げられる。これらの導電
性支持体上に形成する電荷発生層は、本発明のオ
キシチタニウムフタロシアニン粒子とバインダー
ポリマーおよび必要に応じ有機光導電性化合物、
色素、電子吸引性化合物等を溶剤に溶解あるいは
分散して得られる塗布液を塗布乾燥して得られ
る。バインダーとしては、スチレン、酢酸ビニ
ル、塩化ビニル、アクリル酸エステル、メタクリ
ル酸エステル、ビニルアルコール、エチルビニル
エーテル等のビニル化合物の重合体および共重合
体、ポリビニルアセタール、ポリカーボネート、
ポリエステル、ポリアミド、ポリウレタン、セル
ロースエステル、セルロースエーテル、フエノキ
シ樹脂、けい素樹脂、エポキシ樹脂等が挙げられ
る。オキシチタニウムフタロシアニンとバインダ
ーポリマーとの割合は、特に制限はないが、一般
には、オキシチタニウムフタロシアニン100重量
部に対し、5〜500重量部、好ましくは、20〜300
重量部のバインダーポリマーを使用する。
電荷発生層の膜厚は、0.05〜5μm、好ましくは
0.1〜2μmになる様にする。
電荷発生層から電荷キヤリヤーが注入される。
電荷移動層は、キヤリヤーの注入効率と移動効率
の高いキヤリヤー移動媒体を含有する。
キヤリヤー移動媒体としては、ポリ−N−ビニ
ルカルバゾール、ポリスチリルアントラセンの様
な側鎖に複素環化合物や縮合多環芳香族化合物を
側鎖に有する高分子化合物、低分子化合物として
は、ピラゾリン、イミダゾール、オキサゾール、
オキサジアゾール、トリアゾール、カルバゾール
等の複素環化合物、トリフエニルメタンの様なト
リアリールアルカン誘導体、トリフエニルアミン
の用なトリアリールアミン誘導体、フエニレンジ
アミン誘導体、N−フエニルカルバゾール誘導
体、スチルベン誘導体、ヒドラゾン化合物などが
挙げられ、特に、置換アミノ基やアルコキシ基の
様な電子供与性基、あるいは、これらの置換基を
有する芳香族環基が置換した電子供与性の大きい
化合物が挙げられる。さらに、電荷移動層には必
要に応じバインダーポリマーが用いられる。バイ
ンダーポリマーとしては、上記キヤリヤー移動媒
体との相溶性が良く、塗膜形成後にキヤリヤー移
動媒体が結晶化したり、相分離することのないポ
リマーが好ましく、それらの例としては、スチレ
ン、酢酸ビニル、塩化ビニル、アクリル酸エステ
ル、メタクリル酸エステル、ブタジエン等のビニ
ル化合物の重合体および共重合体、ポリビニルア
セタール、ポリカーボネート、ポリエステル、ポ
リスルホン、ポリフエニレンオキサイド、ポリウ
レタン、セルロースエステル、セルロースエーテ
ル、フエノキシ樹脂、けい素樹脂、エポキシ樹脂
等が挙げられる。キヤリヤー移動媒体が高分子化
合物の場合は、特にバインダーポリマーを用いな
くてもよいが、可とう性の改良等で混合すること
も行なわれる。低分子化合物の場合は、成膜性の
ため、バインダーポリマーが用いられ、その使用
量は、通常キヤリヤー移動媒体100重量部に対し
50〜3000重量部、好ましくは70〜1000重量部の範
囲である。電荷移動層にはこの他に、塗膜の機械
的強度や、耐久性向上のための種々の添加剤を用
いることができる。
この様な添加剤としては、周知の可塑剤や、
種々の安定剤、流動性付与剤、架橋剤等が挙げら
れる。
〔発明の効果〕
この様にして得られる本発明の結晶型のオキシ
チタニウムフタロシアニンをバインダーポリマー
中に分散した電荷発生層を有する電子写真用感光
体は高感度で、残留電位が低く帯電性が高く、か
つ、繰返しによる変動が小さく、特に、画像濃度
に影響する帯電安定性が良好であることから、高
耐久性感光体として用いることができる。又750
〜800nmの領域の感度が高いことから、特に半
導体レーザプリンタ用感光体に適している。
〔実施例〕
以下に実施例、比較例、および応用例をあげて
本発明を更に具体的に説明する。
製造例 1
フタロジニトリル97.5gをα−クロロナフタレ
ン750ml中に加え、次に窒素雰囲気下で四塩化チ
タン22mlを滴下する。滴下後昇温し、攪拌しなが
ら200〜220℃で3時間反応させた後、放冷し、
100〜130℃で熱時過し、100℃に加熱したα−
クロロナフタレン200mlで洗浄した。得られた粗
ケーキを、α−クロロナフタレン300ml、次にメ
タノール300mlで室温にて懸洗し、さらに、メタ
ノール800mlで1時間熱懸洗を数回行ない、得ら
れたケーキを水700ml中に懸濁させ、2時間熱懸
洗を行なつた。
過のPHは1以下であつた。熱水懸洗を液の
PHが6〜7になるまで繰返した。この後、N−メ
チルピロリドン(三菱化成工業社製)700ml中、
140〜145℃で2時間熱懸洗を行ない、この操作を
4回行なつた。
次いで、メタノール800mlで2回熱懸洗を行な
つた。収量は76.6gであつた。
得られたオキシチタニウムフタロシアニンの元
素分析値は次のとおりであつた。
元素分析値
(C32H16N8TiO)
C H N
計算値(%) 66.68 2.80 19.44
実測値(%) 66.35 3.00 19.42
Cl 灰分
(TiO2として)
計算値(%) 0 13.86
実測値(%) 0.49 13.80
このオキシチタニウムフタロシアニンのX線回
折スペクトルを図−1に示す。
図−1から明らかな様に、ブラツグ角(2θ±
0.2°)で4°から8°にはピークはなく、9.3°、10.6°
、
13.2°、15.1°、15.7°、16.1°、20.8°、23.3°、26
.3°、
27.1°に強い回折ピークがあり、この内、26.3°の
ピークが最も強い。この結晶型をI型とする。
この結晶型が製造工程で生じたことを示すため
に、途中の段階のサンプルのX線回折スペクトル
を測定した。
図−2は、熱水懸洗後のサンプル(型)のス
ペクトルである。
図−2では、27.3°に鋭いピークを示すが、他
のピークは幅広いピークとなり加水分解反応によ
り、結晶性が乱れたことを示している。
この結晶の状態がN−メチルピロリドンの熱懸
洗により、分子の再配列をして、図−1に示され
る様に、図−2にはなかつた26.3°のピークが最
も強いピークとなり、図−2に見られた7°から8°
にある幅広いピークが消失して、本発明の結晶型
であるI型に変化した。
次に、これらのオキシチタニウムフタロシアニ
ンの吸収スペクトルを測定するために、後述する
実施例1の方法によりオキシチタニウムフタロシ
アニンの分散液を調製し、100μmの膜厚のポリ
エステルフイルムに塗布、乾燥しオキシタニウム
フタロシアニン顔料の分散層を形成し、吸収スペ
クトルを測定した。
I型の結晶型の吸収スペクトルを図−3に、
型の結晶型の吸収スペクトルを図−4に示す。
製造例 2
製造例1において、反応温度を225℃にして、
3時間反応させた以外は、製造例1と同様にし
て、オキシチタニウムフタロシアニンを製造し
た。このサンプルのX線回折スペクトルを測定し
た所、図−5に示す様に、製造例1のサンプル
(図−1)とほぼ同じスペクトルが得られた。た
だし、2θ=6.7°、7.6°に弱いピークが観測された。
これらのピーク強度は最強ピークの26.3°のピー
ク強度に対し、それぞれ1.4%、2.6%の比であつ
た。
製造例 3
製造例1と同様にして熱水処理して型の結晶
型のオキシチタニウムフタロシアニンを得た。こ
のオキシチタニウムフタロシアニン5gをキノリ
ン100ml中、140〜145℃の温度で2時間熱懸洗し
た。この操作を4回行なつた。更にメタノール
中、60〜65℃で1時間の熱懸洗を2回行なつた。
得られたオキシチタニウムフタロシアニンのX
線回折スペクトルを図−6に示した。この結晶型
は型と同様のスペクトルを示す。ブラツグ角
6.9°、7.6°に弱いピークがみられる。これらのピ
ークの26.3°のピークに対する強度比は夫々2.2%、
2.0%であつた。
製造例 4(比較例)
フタロジニトリル46gをα−クロロナフタレン
250ml中に仕込み、加熱溶解した後、四塩化チタ
ン10mlを滴下し、150℃で30分間攪拌を行ない、
次いで徐々に昇温し、220℃で2時間加熱攪拌を
行なつた。その後、攪拌をしながら放冷し、反応
系の温度が100℃に下つた時点で熱過し、次い
でメタノール熱懸濁、熱水煮沸懸濁(過のPHは
1以下であつた)を各1回行なつた後、N−メチ
ルピロリドンにより120℃で1時間熱懸濁を行な
い、熱過後、メタノールで熱懸濁し過した
後、減圧乾燥により、青色粉末のオキシチタニウ
ムフタロシアニン29.5gを得た。
この化合物の元素分析値は以下のとおりであつ
た。
元素分析値
(C32H16N8TiO)
C(%) H(%) N(%) Cl(%)
計算値 66.68 2.80 19.44 −
実測値 66.49 3.02 19.35 0.85
また、X線回折スペクトルイを図−7に示し
た。ブラツグ角7.0°、7.6°に回折ピークが見られ
る。これらのピークの26.3°に対する強度比は
夫々10.9%、23.6%であつた。
製造例 5(比較例)
熱水懸洗後の熱懸洗用溶媒として、N−メチル
ピロリドンの代わりに表1に示す溶媒を用いた以
外は、製造例1と全く同様にして、オキシチタニ
ウムフタロシアニンを製造し、該オキシチタニウ
ムフタロシアニンの粉末X線回折スペクトルを測
定した。得られたX線回折スペクトルにおいて、
強度の大きい方から、順に4本の回折ピークのブ
ラツグ角(2θ±0.2)を読み取つた結果を表1に
示す。
<Industrial Application Field> The present invention relates to an electrophotographic photoreceptor using a specific crystal type of oxytitanium phthalocyanine in a charge generation layer. <Prior Art> Phthalocyanines and metal phthalocyanines have conventionally shown good photoconductivity and have been used, for example, in electrophotographic photoreceptors. In addition, in recent years, laser beam printers that use laser light as a light source instead of conventional white light and have the advantages of high speed, high image quality, and non-impact properties have become widespread, and the development of photoreceptors that can withstand these demands. is popular. In particular, various attempts have been made to use semiconductor lasers as light sources, which have seen remarkable progress in recent years among laser light sources. A photoreceptor having these characteristics is strongly desired. Organic photoconductive materials that meet this requirement include squaric acid methine dyes, cyanine dyes, pyrylium dyes, thiapyrylium dyes,
Polyazo dyes, phthalocyanine dyes, etc. are known. Among these, methine squaritcate dyes,
Cyanine dyes, pyrylium dyes, and thiapyrylium dyes are relatively easy to increase spectral sensitivity to longer wavelengths, but they lack practical stability when used repeatedly, and polyazo dyes have long absorption wavelengths. It is difficult to convert wavelengths, and in terms of manufacturing, there are drawbacks such as long processes and difficulty in separating impurities. On the other hand, phthalocyanine dyes have an absorption peak in the long wavelength range of 600 nm or more, and their spectral sensitivity changes depending on the central metal and crystal type, and some have been announced that show high sensitivity in the wavelength range of semiconductor lasers. Research and development is being carried out vigorously. Phthalocyanines not only have different absorption spectra and photoconductivity depending on the type of central metal, but also
There are differences in these physical properties depending on the crystal type, and there have been several reports of cases in which a specific crystal type has been selected for use in electrophotographic photoreceptors, even for phthalocyanines with the same central metal. It has been reported that the X-type crystal type of metal-free phthalocyanine has high photoconductivity and is sensitive to wavelengths of 800 nm or more, and among the many crystal types of copper phthalocyanine, the ε-type is the longest. It is reported that it has sensitivity up to the wavelength range. However, X-type metal-free phthalocyanine is a metastable crystalline type, and its production is difficult;
The disadvantage is that it is difficult to obtain products of stable quality. On the other hand, the spectral height of ε-type copper phthalocyanine extends to longer wavelengths than that of α- and β-type copper phthalocyanines, but the sensitivity at 800 nm is sharply lower than that at 780 nm, and the current oscillation wavelength has a fluctuation. Its performance makes it difficult to use for semiconductor lasers. For this reason, many metal phthalocyanines have been investigated, including oxyvanadyl phthalocyanine, chloroaluminum phthalocyanine, chloroindium phthalocyanine, oxytitanium phthalocyanine, chlorogallium phthalocyanine, and magnesium phthalocyanine, which are highly sensitive to near-infrared light such as semiconductor lasers. It has been reported as a sensitive phthalocyanine. However, in order to use these phthalocyanines as charge generating materials for electrophotographic photoreceptors for copying machines and printers, they must satisfy not only sensitivity but also many other performance requirements. In terms of initial electrical properties, it is necessary not only to have high sensitivity to semiconductor laser light, but also to have good charging properties, low dark decay, and low residual potential; It is required that it does not change significantly due to repeated use. Particularly recently, increasing the lifespan of photoreceptors has become important.
There is a strong demand for electrical properties that do not easily change due to repeated use. In this respect, there is still nothing that is fully satisfactory.
Electrical properties vary greatly depending on the type of coordinating metal of the phthalocyanine, but even for the same metal phthalocyanine, there are large differences in properties depending on the crystal form. For example, for copper phthalocyanine, α, β, γ, ε
Due to differences in crystal form such as type, chargeability, dark decay,
It is known that there are large differences in sensitivity, etc.
(Manabu Sawada; Dyes and Drugs, Vol. 24, No. 6, p. 122
(1979)) Also, because the absorption spectrum differs depending on the crystal form, the spectral altitude also changes, and in copper phthalocyanine, the ε-type absorption is on the longest wavelength side, and the spectral altitude also extends to the longest wavelength side. (Isao Kumano:
(Journal of the Electrophotographic Society Vol. 22, No. 2, p. 111 (1984)) Differences in electrical properties due to crystal forms are well known for metal-free phthalocyanines and many other metal phthalocyanines, and Many efforts have been made to find out how to create a good crystalline form. For example, a vapor-deposited film of metal phthalocyanine is often used as a charge-generating layer, but by immersing this vapor-deposited film in an organic solvent such as dichloromethane or tetrahydrofuran or exposing it to solvent vapor, a crystal transition is caused and the electrical properties are changed. Examples of improvement have been reported for phthalocyanine of aluminum, indium, and titanium (JP-A-58-158649, JP-A-59-44054, JP-A-59-49544, JP-A-59)
-155851 and JP-A-59-166959. ). Among them, JP-A-59-49544 and JP-A-59-
Publication No. 166959 reports the use of a specific crystal type of oxytitanium phthalocyanine in an electrophotographic photoreceptor. In JP-A-59-49544, the crystal forms of oxytitanium phthalocyanine are Bragg angle (2θ±0.2°) = 9.2°, 13.1°, 20.7°, 26.2°, 27.
It is written that those giving a strong diffraction peak at 1° are suitable, and an X-ray diffraction spectrum is shown.
There are several other peaks in this spectrum, and the presence of a peak with the second highest intensity between 7° and 8° is shown. Furthermore, in Japanese Patent Application Laid-Open No. 166959/1983, a vapor-deposited film of oxytitanium phthalocyanine is left in saturated vapor of tetrahydrofuran for 1 to 24 hours to change the crystal form and form a charge generation layer. The X-ray diffraction spectrum has a small number of peaks,
and wide, Bragg angle (2θ) = 7.5°, 12.6°,
It is characterized by strong diffraction peaks at 13.0°, 25.4°, 26.2°, and 28.6°. These known oxytitanium phthalocyanines form a charge generation layer mainly by vapor deposition, and after vapor deposition, they are exposed to solvent vapor to cause crystal transition, and it is finally possible to obtain a charge generation layer that is suitable for practical use. However, compared to the coating method, the vapor deposition method is not preferable because it requires a large capital investment and is inferior in mass productivity, resulting in high costs. According to the studies conducted by the present inventors, when using oxytitanium phthalocyanine which has a strong diffraction peak at a black angle of 8 degrees or less, the performance of a photoreceptor in which a charge generation layer is formed by coating this dispersion is particularly poor. It turns out that the results are not necessarily satisfactory. This can be seen, for example, from the example of Japanese Patent Application Laid-Open No. 59-49544. That is, a photoreceptor formed by coating has a lower chargeability and a higher residual potential than a photoreceptor formed by vapor deposition, and its sensitivity is about 40% lower than that of a photoreceptor formed by vapor deposition. In this way, the performance of photoreceptors using oxytitanium phthalocyanine changes depending on the conditions.
This is because oxytitanium phthalocyanine has several crystal forms, and the electrical properties differ depending on the crystal form. Therefore, it is particularly necessary to investigate a manufacturing method for a crystalline form with good electrical properties, but conventional studies have mainly focused on vapor deposition methods, which are less suitable for mass production. No consideration has been made. The present inventors kept the above points in mind and conducted extensive studies to determine that oxytitanium phthalocyanine obtained by first suspending dichlorotitanium phthalocyanine in hot water and treating it with N-methylpyrrolidone is suitable for the coating method. (Special application 1982-
230982). Oxytitanium phthalocyanine obtained by such a purification method generally exhibits better electrical properties than those obtained by conventional methods, but upon further investigation by the present inventors, it was found that at least several types of crystal forms may be obtained depending on the purification conditions. was formed, and it was confirmed that there were differences in electrical properties between these crystal types. According to the studies of the present inventors, in particular, when suspending in hot water, it is necessary to thoroughly wash the liquid until the pH of the suspension becomes around 5 to 7 (Japanese Patent Application No. 60-12194), and furthermore, N-methyl Crystalline oxytitanium phthalocyanine, which exhibits a specific X-ray diffraction pattern obtained by sufficiently performing pyrrolidone treatment until the peak intensity at a Bragg angle of 4 to 8 degrees falls below a certain level, is particularly sensitive to sensitivity, chargeability, and darkness. They found that the material has good attenuation, residual potential, etc., and has well-balanced electrical characteristics, leading to the completion of the present invention. <Objective of the invention> The object of the present invention is to use a metal phthalocyanine that is highly sensitive to near-infrared light for semiconductor lasers, has excellent electrical properties, and has a specific crystal form that is easy to manufacture. The object of the present invention is to provide an electrophotographic photoreceptor using oxytitanium phthalocyanine that is highly sensitive to long wavelength light and has good other electrical properties. <Structure of the Invention> That is, the gist of the present invention is to provide an electrophotographic photoreceptor having at least a charge generation layer in which oxytitanium phthalocyanine is dispersed in a binder polymer and a photosensitive layer in which a charge transfer layer is laminated. In the line diffraction spectrum, the Bragg angle (2θ±0.2°) is 9.3°,
10.6°, 13.2°, 15.1°, 15.7°, 16.1°, 20.8°, 23
.3°,
It shows strong diffraction peaks at 26.3° and 27.1°, of which the diffraction peak at Bragg angle of 26.3° is the strongest.
And the intensity of the diffraction peak at a Bragg angle of 4 to 8° is 5% of the intensity of the diffraction peak at a Bragg angle of 26.3°.
An electrophotographic photoreceptor characterized by having the following strength. To explain the present invention in detail, the oxytitanium phthalocyanine of the present invention is
In its X-ray diffraction spectrum, Bragg angles (2θ±0.2°) = 9.3°, 10.6°, 13.2°, 15.1°, 15.
7°,
It shows strong diffraction peaks at 16.1°, 20.8°, 23.3°, 26.3°, and 27.1°, of which the peak intensity at 26.3° is the strongest.
Moreover, it is a crystalline oxytitanium phthalocyanine in which the diffraction peaks at 7.0° and 7.6° have an intensity of 5% or less compared to the peak intensity at 26.3°. As the oxytitanium phthalocyanine, for example, the following general formula [1] (In the formula, X represents a halogen atom, and n represents a number from 0 to 1.) In the general formula [1], X is a chlorine atom and n
is preferably from 0 to 0.5. The oxytitanium phthalocyanine of the present invention is
For example, from 1,2-dicyanobenzene (o-phthalodinitrile) and a titanium compound, for example, the following (1) or
It can be easily synthesized according to the reaction formula shown in (2). That is, 1,2-dicyanobenzene (phthalodinitrile) and a titanium halide are heated and reacted in an inert solvent. As the titanium compound, titanium tetrachloride, titanium trichloride, titanium tetrabromide, etc. can be used, but titanium tetrachloride is preferable in terms of cost. Inert agents include trichlorobenzene, α-chloronaphthalene, β-chloronaphthalene, α-methylnaphthalene, methoxynaphthalene, diphenyl ether, diphenylmethane, diphenylethane, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether. A high boiling point organic solvent that is inert to the reaction is preferred. The reaction temperature is usually 150 to 300°C, particularly preferably 180 to 250°C. After the reaction, the dichlorotitanium phthalocyanine produced is separated and washed with the solvent used in the reaction to remove impurities produced during the reaction and unreacted raw materials. Next, the solvent used in the reaction is removed by washing with an inert solvent such as alcohols such as methanol, ethanol, and isopropyl alcohol, and ethers such as tetrahydrofuran and 1,4-dioxane. The obtained dichlorotitanium phthalocyanine is then treated with hot water to become oxytitanium phthalocyanine. It is desirable to repeat the hot water treatment until the pH of the washing liquid reaches approximately 5-7. In the X-ray diffraction spectrum of oxytitanium phthalocyanine obtained at this stage, the peaks become broader, indicating that the crystal arrangement is disturbed by the hydrolysis reaction in which chlorine atoms are replaced with oxygen atoms. This oxytitanium phthalocyanine is combined with quinoline, α-chloronaphthalene, N
-Methylpyrrolidone, etc., preferably N-methylpyrrolidone. At that time, the reactants are washed with a reaction solvent heated to around 100°C, then washed with a reaction solvent around room temperature, and then washed with an inert solvent such as methanol at around room temperature, and then washed with a reaction solvent heated to around 100°C. Washing with an active solvent is preferred because it yields oxytitanium phthalocyanine with low electrical properties, particularly low residual potential. This organic solvent treatment is usually carried out at 100 to 180°C, preferably 130 to 170°C, and is carried out using an equivalent to 100 times, preferably 520 times the weight of the solvent relative to the oxytitanium phthalocyanine. If the X-ray diffraction peak of oxytitanium phthalocyanine treated with an organic solvent still has a diffraction peak of a certain degree of intensity at a Bragg angle of 8° or less, the organic solvent is used to repeatedly and sufficiently treat the oxytitanium phthalocyanine until the intensity of the diffraction peak specified in the present invention is reached. do. In this way, the crystalline oxytitanium phthalocyanine of the present invention can be obtained. To explain the photoreceptor of the present invention in more detail, the photoreceptor of the present invention is a laminated type photoreceptor in which a charge generation layer and a charge transfer layer are laminated, and at least
It consists of a conductive support, a charge generation layer, and a charge transfer layer. The charge generation layer and the charge transfer layer usually have a structure in which the charge transfer layer is laminated on the charge generation layer, but the structure may be reversed. In addition to these, intermediate layers such as adhesive layers and blocking layers, and layers for improving electrical properties and mechanical properties such as protective layers may be provided. As the conductive support, any of those employed in well-known electrophotographic photoreceptors can be used. Specifically, metal drums and sheets made of aluminum, stainless steel, copper, etc., or laminates and vapor deposits of these metal foils can be used. Furthermore, plastic films, plastic drums, etc., which are coated with conductive substances such as metal powder, carbon black, copper iodide, and polymer electrolytes together with suitable binders, are also available.
Examples include paper and paper tubes. Also included are plastic sheets and drums that contain conductive substances such as metal powder, carbon black, and carbon fibers and are rendered conductive. Also included are plastic films and belts treated with conductive metal oxides such as tin oxide and indium oxide. The charge generation layer formed on these conductive supports comprises the oxytitanium phthalocyanine particles of the present invention, a binder polymer and, if necessary, an organic photoconductive compound,
It is obtained by coating and drying a coating liquid obtained by dissolving or dispersing a dye, an electron-withdrawing compound, etc. in a solvent. As binders, polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic esters, methacrylic esters, vinyl alcohol, ethyl vinyl ether, polyvinyl acetal, polycarbonate,
Examples include polyester, polyamide, polyurethane, cellulose ester, cellulose ether, phenoxy resin, silicon resin, and epoxy resin. The ratio of oxytitanium phthalocyanine and binder polymer is not particularly limited, but is generally 5 to 500 parts by weight, preferably 20 to 300 parts by weight, based on 100 parts by weight of oxytitanium phthalocyanine.
Parts by weight of binder polymer are used. The thickness of the charge generation layer is 0.05 to 5 μm, preferably
The thickness should be 0.1 to 2 μm. Charge carriers are injected from the charge generation layer.
The charge transport layer contains a carrier transport medium with high carrier injection and transport efficiency. As the carrier transfer medium, high molecular compounds having a heterocyclic compound or condensed polycyclic aromatic compound in the side chain such as poly-N-vinylcarbazole and polystyrylanthracene are used, and low molecular compounds such as pyrazoline and imidazole are used. , oxazole,
Heterocyclic compounds such as oxadiazole, triazole, and carbazole, triarylalkane derivatives such as triphenylmethane, triarylamine derivatives such as triphenylamine, phenylenediamine derivatives, N-phenylcarbazole derivatives, stilbene derivatives, Examples include hydrazone compounds, and particularly compounds with high electron donating properties substituted with electron donating groups such as substituted amino groups and alkoxy groups, or aromatic ring groups having these substituents. Furthermore, a binder polymer may be used in the charge transfer layer if necessary. The binder polymer is preferably a polymer that has good compatibility with the carrier transfer medium and does not cause crystallization or phase separation of the carrier transfer medium after coating film formation; examples thereof include styrene, vinyl acetate, and chloride. Polymers and copolymers of vinyl compounds such as vinyl, acrylic esters, methacrylic esters, butadiene, polyvinyl acetal, polycarbonate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose ester, cellulose ether, phenoxy resin, silicon Examples include resins and epoxy resins. When the carrier transfer medium is a polymer compound, it is not necessary to use a binder polymer, but it may be mixed to improve flexibility. In the case of low-molecular compounds, binder polymers are used for film-forming properties, and the amount used is usually 100 parts by weight of the carrier transfer medium.
It ranges from 50 to 3000 parts by weight, preferably from 70 to 1000 parts by weight. In addition to the above, various additives can be used in the charge transfer layer to improve the mechanical strength and durability of the coating film. Such additives include well-known plasticizers,
Various stabilizers, fluidity imparting agents, crosslinking agents, etc. may be mentioned. [Effects of the Invention] The electrophotographic photoreceptor of the present invention obtained in this manner and having a charge generation layer in which crystalline oxytitanium phthalocyanine is dispersed in a binder polymer has high sensitivity, low residual potential, and high chargeability. Moreover, since the variation due to repetition is small and the charging stability, which affects image density, is particularly good, it can be used as a highly durable photoreceptor. Also 750
Since it has high sensitivity in the region of ~800 nm, it is particularly suitable as a photoreceptor for semiconductor laser printers. [Example] The present invention will be described in more detail below with reference to Examples, Comparative Examples, and Application Examples. Production Example 1 97.5 g of phthalodinitrile is added to 750 ml of α-chloronaphthalene, and then 22 ml of titanium tetrachloride is added dropwise under a nitrogen atmosphere. After the dropwise addition, the temperature was raised, and the mixture was allowed to react at 200 to 220°C for 3 hours while stirring, and then allowed to cool.
α− heated at 100 to 130℃ and then heated to 100℃
Washed with 200 ml of chloronaphthalene. The obtained crude cake was suspended washed with 300 ml of α-chloronaphthalene, then 300 ml of methanol at room temperature, and then hot washed several times with 800 ml of methanol for 1 hour, and the obtained cake was suspended in 700 ml of water. The mixture was made cloudy and hot suspension washing was performed for 2 hours. The pH was below 1. Hot water washing with liquid
This was repeated until the pH reached 6-7. After this, in 700 ml of N-methylpyrrolidone (manufactured by Mitsubishi Chemical Industries, Ltd.),
Hot suspension washing was carried out at 140-145°C for 2 hours, and this operation was repeated 4 times. Next, hot suspension washing was carried out twice with 800 ml of methanol. The yield was 76.6g. The elemental analysis values of the obtained oxytitanium phthalocyanine were as follows. Elemental analysis value (C 32 H 16 N 8 TiO) C H N Calculated value (%) 66.68 2.80 19.44 Actual value (%) 66.35 3.00 19.42 Cl Ash content (as TiO 2 ) Calculated value (%) 0 13.86 Actual value (%) 0.49 13.80 The X-ray diffraction spectrum of this oxytitanium phthalocyanine is shown in Figure-1. As is clear from Figure 1, the Bragg angle (2θ±
0.2°), there is no peak from 4° to 8°, 9.3°, 10.6°
,
13.2°, 15.1°, 15.7°, 16.1°, 20.8°, 23.3°, 26
.3°,
There is a strong diffraction peak at 27.1°, of which the peak at 26.3° is the strongest. This crystal type is designated as type I. In order to show that this crystal form was generated during the manufacturing process, an X-ray diffraction spectrum of a sample at an intermediate stage was measured. Figure 2 shows the spectrum of the sample (mold) after hot water suspension washing. In Figure 2, there is a sharp peak at 27.3°, but the other peaks are broad, indicating that the crystallinity has been disturbed by the hydrolysis reaction. When this crystal state is heated and washed with N-methylpyrrolidone, the molecules are rearranged, and as shown in Figure 1, the peak at 26.3°, which was not in Figure 2, becomes the strongest peak. −2 to 7° to 8°
The broad peak in the crystalline form disappeared and changed to form I, which is the crystal form of the present invention. Next, in order to measure the absorption spectra of these oxytitanium phthalocyanines, a dispersion of oxytitanium phthalocyanine was prepared by the method described in Example 1, which will be described later, and applied to a polyester film with a thickness of 100 μm and dried. A dispersed layer of phthalocyanine pigment was formed and the absorption spectrum was measured. The absorption spectrum of type I crystal is shown in Figure 3.
Figure 4 shows the absorption spectrum of the crystal type. Production Example 2 In Production Example 1, the reaction temperature was set to 225°C,
Oxytitanium phthalocyanine was produced in the same manner as Production Example 1 except that the reaction was carried out for 3 hours. When the X-ray diffraction spectrum of this sample was measured, as shown in Figure 5, almost the same spectrum as the sample of Production Example 1 (Figure 1) was obtained. However, weak peaks were observed at 2θ = 6.7° and 7.6°.
The ratios of these peak intensities to the strongest peak at 26.3° were 1.4% and 2.6%, respectively. Production Example 3 Hydrothermal treatment was carried out in the same manner as in Production Example 1 to obtain crystalline oxytitanium phthalocyanine. 5 g of this oxytitanium phthalocyanine was hot washed in 100 ml of quinoline at a temperature of 140 to 145° C. for 2 hours. This operation was performed four times. Further, hot washing was carried out twice in methanol at 60 to 65°C for 1 hour. X of the obtained oxytitanium phthalocyanine
The line diffraction spectrum is shown in Figure 6. This crystal form shows a spectrum similar to the type. Bratzg angle
Weak peaks are seen at 6.9° and 7.6°. The intensity ratio of these peaks to the 26.3° peak is 2.2%, respectively.
It was 2.0%. Production example 4 (comparative example) 46g of phthalodinitrile was converted into α-chloronaphthalene.
After pouring into 250ml and heating and dissolving, 10ml of titanium tetrachloride was added dropwise and stirred at 150℃ for 30 minutes.
Then, the temperature was gradually raised and the mixture was heated and stirred at 220°C for 2 hours. Thereafter, the reaction system was allowed to cool while stirring, and when the temperature of the reaction system dropped to 100°C, it was heated, and then a hot methanol suspension and a hot water boiling suspension (the pH of the reaction system was 1 or less) were added to each. After one time, thermal suspension was carried out at 120°C for 1 hour with N-methylpyrrolidone, and after heating, the suspension was heated and filtered with methanol, and then dried under reduced pressure to obtain 29.5 g of oxytitanium phthalocyanine as a blue powder. . The elemental analysis values of this compound were as follows. Elemental analysis value (C 32 H 16 N 8 TiO) C(%) H(%) N(%) Cl(%) Calculated value 66.68 2.80 19.44 − Actual value 66.49 3.02 19.35 0.85 In addition, the X-ray diffraction spectrum is shown in the figure − 7. Diffraction peaks are seen at Bragg angles of 7.0° and 7.6°. The intensity ratios of these peaks to 26.3° were 10.9% and 23.6%, respectively. Production Example 5 (Comparative Example) Oxytitanium phthalocyanine was prepared in exactly the same manner as Production Example 1, except that the solvent shown in Table 1 was used instead of N-methylpyrrolidone as the solvent for hot washing after hot water washing. was produced, and the powder X-ray diffraction spectrum of the oxytitanium phthalocyanine was measured. In the obtained X-ray diffraction spectrum,
Table 1 shows the results of reading the Bragg angles (2θ±0.2) of the four diffraction peaks in order from the one with the highest intensity.
【表】
実施例 1
製造例1で製造したオキシチタニウムフタロシ
アニン0.4g、ポリビニルブチラール0.2gを4−
メトキシ−4−メチル−2−ペンタノン30gと共
に、サンドグラインダーで分散し、この分散液を
ポリエステルフイルム上に蒸着したアルミ蒸着層
の上にフイルムアプリケータにより乾燥膜厚が
0.3g/m2となる様に塗布、乾燥し、電荷発生層
を形成した。
この電荷発生層の上に、4−N,N−ジエチル
アミノベンズアルデヒドジフエニルヒドラゾン90
部とポリカーボネート樹脂(三菱化成工業社製、
ノバレツクス7025A)100部から成る膜厚17.5μm
の電荷移動層を積層し、積層型の感光層を有する
電子写真感光体を得た。
この感光体の感度として半減露光量(E1/2)
を静電複写紙試験装置(川口電機製作所製モデル
SP−428)により測定した。すなわち、暗所でコ
ロナ電流が22μAになる様に設定した印加電圧に
よるコロナ放電により感光体を負帯電し、次いで
5luxの照度の白色光により露光し、表面電位が−
450Vから−225Vに半減するに要した露光量(E
1/2)を求めた所、0.57lux・secであつた。この
ときの感光体の帯電圧(初期の表面電位)は−
746V、暗減衰は23V/sec、露光10秒後の表面電
位(残留電位)は−5Vであつた。次に、この感
光体を帯電後、暗減衰0.4秒、400luxの白色光を
2.0秒露光するサイクルにより繰返し特性の評価
を行なつた。2000回繰返し後の帯電圧は、初期の
95%、残留電位は−9Vであつた。
実施例 2
実施例1の電荷移動層において、4−N,N−
ジエチルベンズアルデヒドジフエニルヒドラゾン
の代りにう、N−メチル−3−カルバゾールカル
バデヒドジフエニルヒドラゾン70部とp−ニトロ
ベンゾイルオキシベンザルマロニトリル2部を用
い、膜厚を13μmとする他は実施例1と同様にし
て積層型感光層を有する感光体を得た。この感光
体の初期の感度は0.65lux・sec、帯電圧は−
618V、暗減衰は10V/sec、残留電位は−18Vで
あつた。又、コロナ電流50μAの条件での帯電圧
は−963Vであつた。
2000回繰返し後の帯電圧は初期の100.5%とほ
とんど変動がなくえ、きわめて安定していた。残
留電位は−38Vであつた。半減露光量として、表
面電位が−400Vから−200Vに半減するに要する
露光量を測定した所、初期で0.60lux・sec、2000
回後で0.61lux・secとほとんど変動がなかつた。
島津ボシユロム回折格子形強力モノクロメータ
にて分光した光で露光して分光感度を測定した。
図−8に測定した分光感度曲線を示す。図−8の
縦軸は感度として半減露光量の逆数を、横軸は波
長を示す。図−8から明らかな様に、750〜800n
mの半導体レーザ光領域では、ほぼ同じ感度であ
り、半導体レーザのロツト振れや温度による発振
波長の変動に体しても感度は安定していることを
示している。
800nmの光に対する半減露光量は0.39μJ/cm2と
きわめて高感度である。
この様に、本発明の結晶型(型)のオキシチ
タニウムフタロシアニンは、帯電性が良好であ
り、暗減衰、残留電位が小さく、750〜800nmの
半導体レーザ光領域で高感度である。しかも、繰
返し使用によつても帯電圧がほとんど変動せず、
きわめて安定していることがわかつた。
実施例 3
実施例2において用いたオキシチタニウムフタ
ロシアニンの代りに、製造例2で製造したオキシ
チタニウムフタロシアニンを用いる他は実施例2
と同様にして感光体を作製した。
この感光体の初期の感度は0.69lux・sec、帯電
圧は−605V、暗減衰は12V/sec、残留電位は−
21Vであつた。又コロナ電流50μAの条件での帯
電圧は930Vであつた。
2000回繰返し後の帯電圧は初期の100.3%とほ
とんど一定であり、残留電位は−40Vであつた。
この様に、本実施例いのオキシチタニウムフタ
ロシアニンはX線回折スペクトルで6.7°、7.6°に
ごく弱い回折ピークが観測されているが、電気特
性には大きな影響がなく、感光体作製時のロツト
振れの範囲内の変動しか示さず、きわめて良好な
性能を示した。
実施例 4
実施例2において用いたオキシチタニウムフタ
ロシアニンの代りに、製造例3で製造したオキシ
チタニウムフタロシアニンを用いる他は、実施例
2と同様にして感光体を作製した。
この感光体の初期の感度は0.77lux・sec、帯電
圧は−595V、暗減衰は13V/sec、残留電位は−
27Vであつた。
2000回繰返し後の帯電圧は初期の100.0%とほ
とんど変動がなかつた。
比較例 1
実施例2で用いたオキシチタニウムフタロシア
ニンの代りに、製造例1で得られた型の結晶型
のオキシチタニウムフタロシアニンを用いて感光
体を作製し、電気特性を測定した。これらの結果
を表2に示す。
表から明らかな様に、本発明の結晶型である
型に比べ、型は帯電圧が低く、しかも暗減衰や
残留電位も大きい。さらに、印加電圧(コロナ電
流)を高くしても帯電圧の上昇度が小さく、飽和
帯電圧が低いことを示している。
帯電圧の安定性は感光体の耐久性に大きく影響
する。実用化できるレベルは、この評価で90%以
上のものと考えられ、比較例のサンプルは実用化
するには不十分である。
この様に、本発明の電子写真用感光体は特定の
結晶型のオキシチタニウムフタロシアニン分散層
を電荷発生層とすることにより、帯電性が良好
で、高感度であり、暗減衰、残留電位が小さく、
特に繰返し安定性にすぐれた、耐久性のある感光
体であり、特に半導体レーザ用感光体に適してい
る。[Table] Example 1 0.4 g of oxytitanium phthalocyanine produced in Production Example 1 and 0.2 g of polyvinyl butyral were mixed into 4-
Disperse the dispersion with 30 g of methoxy-4-methyl-2-pentanone using a sand grinder, and apply the dispersion liquid to the aluminum vapor deposited layer on the polyester film using a film applicator to reduce the dry film thickness.
It was coated at a concentration of 0.3 g/m 2 and dried to form a charge generation layer. On this charge generation layer, 4-N,N-diethylaminobenzaldehyde diphenylhydrazone 90
and polycarbonate resin (manufactured by Mitsubishi Chemical Industries, Ltd.)
Novarex 7025A) 17.5 μm thick film consisting of 100 parts
Charge transfer layers were laminated to obtain an electrophotographic photoreceptor having a laminated type photosensitive layer. The sensitivity of this photoreceptor is the half-decreased exposure amount (E1/2)
Electrostatic copying paper testing device (model manufactured by Kawaguchi Electric Seisakusho)
SP-428). That is, the photoreceptor is negatively charged by corona discharge with an applied voltage set so that the corona current is 22 μA in a dark place, and then
Exposure to white light with an illuminance of 5 lux, and the surface potential is -
Exposure required to halve from 450V to -225V (E
1/2) was found to be 0.57 lux・sec. At this time, the charged voltage (initial surface potential) of the photoreceptor is -
The voltage was 746V, the dark decay was 23V/sec, and the surface potential (residual potential) after 10 seconds of exposure was -5V. Next, after charging this photoreceptor, white light of 400 lux was applied for 0.4 seconds of dark decay.
Repeatability characteristics were evaluated using a 2.0 second exposure cycle. The charging voltage after 2000 repetitions is the initial
95%, residual potential was -9V. Example 2 In the charge transfer layer of Example 1, 4-N, N-
Example 1 except that 70 parts of N-methyl-3-carbazolecarbadehyde diphenylhydrazone and 2 parts of p-nitrobenzoyloxybenzalmalonitrile were used instead of diethylbenzaldehyde diphenylhydrazone, and the film thickness was 13 μm. A photoreceptor having a laminated photosensitive layer was obtained in the same manner as above. The initial sensitivity of this photoreceptor is 0.65lux・sec, and the charged voltage is −
The voltage was 618V, the dark decay was 10V/sec, and the residual potential was -18V. Furthermore, the charged voltage under the condition of a corona current of 50 μA was -963V. After 2000 repetitions, the charged voltage was 100.5% of the initial value, with almost no fluctuation, and was extremely stable. The residual potential was -38V. When we measured the amount of exposure required for the surface potential to be halved from -400V to -200V, the initial value was 0.60lux・sec, 2000
There was almost no change at 0.61lux・sec after the cycle. The spectral sensitivity was measured by exposure to light separated by a Shimadzu Boschulom diffraction grating type strong monochromator.
Figure 8 shows the measured spectral sensitivity curve. In FIG. 8, the vertical axis represents the reciprocal of the half-decrease exposure amount as the sensitivity, and the horizontal axis represents the wavelength. As is clear from Figure 8, 750 to 800n
In the semiconductor laser light region of m, the sensitivity is almost the same, indicating that the sensitivity is stable even when the oscillation wavelength fluctuates due to the swing of the semiconductor laser and the temperature. The half-decrease exposure amount for light of 800 nm is 0.39 μJ/cm 2 , which is extremely high sensitivity. As described above, the crystal type oxytitanium phthalocyanine of the present invention has good charging properties, low dark decay and residual potential, and high sensitivity in the semiconductor laser light region of 750 to 800 nm. Moreover, the charging voltage hardly changes even after repeated use.
It turned out to be extremely stable. Example 3 Example 2 except that the oxytitanium phthalocyanine produced in Production Example 2 was used instead of the oxytitanium phthalocyanine used in Example 2.
A photoreceptor was produced in the same manner as described above. The initial sensitivity of this photoreceptor is 0.69lux・sec, the charged voltage is -605V, the dark decay is 12V/sec, and the residual potential is -
It was 21V. Furthermore, the charged voltage was 930 V under the condition of a corona current of 50 μA. The charged voltage after 2000 repetitions was almost constant at 100.3% of the initial value, and the residual potential was -40V. As described above, although very weak diffraction peaks are observed at 6.7° and 7.6° in the X-ray diffraction spectrum of the oxytitanium phthalocyanine of this example, there is no major effect on the electrical properties, and the It exhibited very good performance, with only fluctuations within the range of runout. Example 4 A photoreceptor was produced in the same manner as in Example 2, except that the oxytitanium phthalocyanine produced in Production Example 3 was used instead of the oxytitanium phthalocyanine used in Example 2. The initial sensitivity of this photoreceptor is 0.77lux・sec, the charging voltage is -595V, the dark decay is 13V/sec, and the residual potential is -
It was 27V. The charged voltage after 2000 repetitions remained 100.0% of the initial value with almost no fluctuation. Comparative Example 1 A photoreceptor was prepared using crystalline oxytitanium phthalocyanine of the type obtained in Production Example 1 instead of the oxytitanium phthalocyanine used in Example 2, and its electrical properties were measured. These results are shown in Table 2. As is clear from the table, compared to the crystal type of the present invention, the type has a lower charging voltage and also has a higher dark decay and residual potential. Furthermore, even if the applied voltage (corona current) is increased, the degree of increase in the charged voltage is small, indicating that the saturation charged voltage is low. The stability of charging voltage greatly affects the durability of the photoreceptor. The level that can be put to practical use is considered to be 90% or more in this evaluation, and the sample of the comparative example is insufficient for practical use. As described above, the electrophotographic photoreceptor of the present invention has good charging properties, high sensitivity, and low dark decay and residual potential by using a specific crystal type oxytitanium phthalocyanine dispersion layer as a charge generation layer. ,
It is a durable photoreceptor with particularly excellent repeat stability, and is particularly suitable as a photoreceptor for semiconductor lasers.
【表】
*1 コロナ電流値
*2 初期の帯電圧に対する2000回後の帯
電圧の割合
比較例 2
実施例1において、製造例1で製造したオキシ
チタニウムフタロシアニンの代りに製造例4で製
造したオキシチタニウムフタロシアニンを使用す
るほかは同様にして電子写真感光体を得た。
この感光体を使用してE1/2を求めたところ
1.0lux・secであつた。また、このときの帯電圧
は−520V、暗減衰は21V/sec、露光10秒後の表
面電位は−27Vであつた。又、コロナ電流50μA
での帯電圧は−770Vであつた。
次に、この感光体を帯電後、暗減衰0.4秒、
400luxの白色光を2.0秒露光するサイクルにより
繰返し特性の評価を行なつた。2000回繰返し後の
帯電圧は、初期の85%、残留電位は−54Vであつ
た。[Table] *1 Corona current value
*2 Comparative example of the ratio of charging voltage after 2000 cycles to the initial charging voltage 2 Same as Example 1 except that oxytitanium phthalocyanine manufactured in Production Example 4 was used instead of oxytitanium phthalocyanine produced in Production Example 1. An electrophotographic photoreceptor was obtained. E1/2 was determined using this photoreceptor.
It was 1.0lux・sec. Further, the charging voltage at this time was -520V, the dark decay was 21V/sec, and the surface potential after 10 seconds of exposure was -27V. Also, corona current 50μA
The charged voltage was -770V. Next, after charging this photoreceptor, the dark decay time was 0.4 seconds.
Characteristics were repeatedly evaluated using a cycle of exposure to 400 lux white light for 2.0 seconds. After 2000 repetitions, the charged voltage was 85% of the initial value and the residual potential was -54V.
図−1および図−3は、製造例1で得られた本
発明の結晶型オキシチタニウムフタロシアニンの
X線回折スペクトルおよび吸収スペクトルを示
す。図−2および図−4は、製造例1における熱
水懸洗後のサンプルのX線回折スペクトルおよび
吸収スペクトルを示す。図−5および図−6は、
製造例2および製造例3で得られた本発明の結晶
型オキシチタニウムフタロシアニンのX線回折ス
ペクトルを示す。図−7は、製造例4で得られた
オキシチタニウムフタロシアニンのX線回折スペ
クトルを示す。図−8は、実施例2で得られた感
光体の分光感度曲線を示す。
Figures 1 and 3 show the X-ray diffraction spectrum and absorption spectrum of the crystalline oxytitanium phthalocyanine of the present invention obtained in Production Example 1. FIG. 2 and FIG. 4 show the X-ray diffraction spectrum and absorption spectrum of the sample after hot water suspension washing in Production Example 1. Figure-5 and Figure-6 are
1 shows X-ray diffraction spectra of crystalline oxytitanium phthalocyanine of the present invention obtained in Production Example 2 and Production Example 3. FIG. 7 shows the X-ray diffraction spectrum of oxytitanium phthalocyanine obtained in Production Example 4. FIG. 8 shows the spectral sensitivity curve of the photoreceptor obtained in Example 2.
Claims (1)
がバインダーポリマー中に分散した電荷発生層
と、電荷移動層が積層した感光層を有する電子写
真用感光体において、オキシチタニウムフタロシ
アニンがそのX線回折スペクトルにおいて、ブラ
ツク角(2θ±0.2°)9.3°、10.6°、13.2°、15.1°
、
15.7°、16.1°、20.8°、23.3°、26.3°27.1°に強い
回折
ピークを示し、この内ブラツク角26.3°の回折ピ
ークの強度が最も強く、かつ、ブラツク角4〜8°
の回折ピークの強度がブラツク角26.3の回折ピー
クの強度に対して5%以下の強度であることを特
徴とする電子写真用感光体。1 In an electrophotographic photoreceptor having a photosensitive layer including a charge generation layer in which at least oxytitanium phthalocyanine is dispersed in a binder polymer and a charge transport layer, oxytitanium phthalocyanine has a black angle (2θ±) in its X-ray diffraction spectrum. 0.2°) 9.3°, 10.6°, 13.2°, 15.1°
,
It shows strong diffraction peaks at 15.7°, 16.1°, 20.8°, 23.3°, 26.3°, 27.1°, and among these, the diffraction peak at a black angle of 26.3° has the strongest intensity, and at a black angle of 4 to 8°.
An electrophotographic photoreceptor characterized in that the intensity of the diffraction peak at a Black angle of 26.3 is 5% or less of the intensity of the diffraction peak at a Black angle of 26.3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20554185A JPS6267094A (en) | 1985-09-18 | 1985-09-18 | Crystalline oxytitanium phthalocyanine and photosensitive material for electrophotography |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20554185A JPS6267094A (en) | 1985-09-18 | 1985-09-18 | Crystalline oxytitanium phthalocyanine and photosensitive material for electrophotography |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63279663A Division JPH0791486B2 (en) | 1988-11-05 | 1988-11-05 | Crystalline oxytitanium phthalocyanine and electrophotographic photoreceptor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6267094A JPS6267094A (en) | 1987-03-26 |
JPH0531137B2 true JPH0531137B2 (en) | 1993-05-11 |
Family
ID=16508599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20554185A Granted JPS6267094A (en) | 1985-09-18 | 1985-09-18 | Crystalline oxytitanium phthalocyanine and photosensitive material for electrophotography |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6267094A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6291120B1 (en) | 1999-05-14 | 2001-09-18 | Sharp Kabushiki Kaisha | Electrophotographic photoreceptor and coating composition for charge generating layer |
US6322940B1 (en) | 1999-01-08 | 2001-11-27 | Sharp Kabushiki Kaisha | Electrophotographic photoreceptor and electrophotographic image forming process |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0639575B2 (en) * | 1986-07-11 | 1994-05-25 | 山陽色素株式会社 | Method for producing titanyl phthalocyanine crystal |
JPH0789230B2 (en) * | 1987-09-25 | 1995-09-27 | コニカ株式会社 | Photoconductor |
JPH0823705B2 (en) * | 1987-09-25 | 1996-03-06 | コニカ株式会社 | Photoconductor |
JPH0786692B2 (en) * | 1987-09-25 | 1995-09-20 | コニカ株式会社 | Photoconductor |
JP2563813B2 (en) * | 1987-11-04 | 1996-12-18 | 新電元工業 株式会社 | Method for manufacturing electrophotographic photoreceptor |
JP2748120B2 (en) * | 1988-04-12 | 1998-05-06 | コニカ株式会社 | Electrophotographic photoreceptor |
JPH0791486B2 (en) * | 1988-11-05 | 1995-10-04 | 三菱化学株式会社 | Crystalline oxytitanium phthalocyanine and electrophotographic photoreceptor |
JP2821765B2 (en) * | 1989-06-08 | 1998-11-05 | コニカ株式会社 | Electrophotographic photoreceptor |
JPH03200790A (en) * | 1989-06-23 | 1991-09-02 | Konica Corp | Titanylphthalocyanine |
JPH0715067B2 (en) * | 1989-07-21 | 1995-02-22 | キヤノン株式会社 | Oxytitanium phthalocyanine, method for producing the same, and electrophotographic photoreceptor using the same |
JP2701231B2 (en) * | 1989-07-31 | 1998-01-21 | キヤノン株式会社 | Electrophotographic photoreceptor and image forming method using the electrophotographic photoreceptor |
JP2584682B2 (en) * | 1990-03-20 | 1997-02-26 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor using titanyl phthalocyanine crystal |
JPH0463476A (en) * | 1990-07-03 | 1992-02-28 | Mitsubishi Kasei Corp | Image reading element |
DE69124061T2 (en) * | 1990-10-24 | 1997-05-15 | Canon Kk | Process for the preparation of crystalline oxytitanium phthalocyanine |
US5290928A (en) * | 1990-11-22 | 1994-03-01 | Fuji Xerox Co., Ltd. | Process for preparing oxytitanium phthalocyanine hydrate crystal |
US5393629A (en) * | 1991-04-26 | 1995-02-28 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor |
JPH04372663A (en) * | 1991-06-21 | 1992-12-25 | Fuji Xerox Co Ltd | Phthalocyanine crystal mixture and electrophotographic photoreceptor prepared thereform |
US5246807A (en) * | 1991-08-05 | 1993-09-21 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, and electrophotographic apparatus, device unit, and facsimile machine employing the same |
DE69225766T2 (en) * | 1991-10-25 | 1998-12-03 | Canon K.K., Tokio/Tokyo | Electrophotographic photosensitive member, electrophotographic machine, device unit and facsimile machine using the same |
JPH05186702A (en) * | 1992-01-13 | 1993-07-27 | Fuji Xerox Co Ltd | Mixed crystal of dihalogenotin phthalocyanone with halogenogallium phthalocyanine and electrophotographic photoreceptor comprising the same |
US5384625A (en) * | 1992-12-28 | 1995-01-24 | Canon Kabushiki Kaisha | Image forming method |
JP3185479B2 (en) * | 1993-06-04 | 2001-07-09 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor |
KR0156755B1 (en) * | 1993-11-29 | 1998-12-15 | 미따라이 하지메 | Electrophotographic photosensitive member, electrophotographic apparatus including same and electrophotographic apparatus unit |
TW382078B (en) * | 1994-06-10 | 2000-02-11 | Canon Kk | Electrophotographic photosensitive member, electrophotographic apparatus including same and electrophotographic apparatus unit |
JPH08209023A (en) | 1994-11-24 | 1996-08-13 | Fuji Electric Co Ltd | Titaniloxyphthalocyanine crystal, its production and photosensitizer for electrophotography |
JP2704373B2 (en) * | 1995-07-26 | 1998-01-26 | コニカ株式会社 | Reversal development method |
US5874570A (en) * | 1995-11-10 | 1999-02-23 | Fuji Electric Co., Ltd. | Titanyloxyphthalocyanine crystals, and method of preparing the same |
DE69717021T2 (en) * | 1996-08-08 | 2003-07-31 | Canon K.K., Tokio/Tokyo | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus using the same |
JP3569422B2 (en) * | 1996-12-26 | 2004-09-22 | シャープ株式会社 | Crystalline oxotitanyl phthalocyanine, electrophotographic photoreceptor using the same, and image forming method |
US6245472B1 (en) | 1997-09-12 | 2001-06-12 | Canon Kabushiki Kaisha | Phthalocyanine compounds, process for production thereof and electrophotographic photosensitive member using the compounds |
US6225015B1 (en) | 1998-06-04 | 2001-05-01 | Mitsubishi Paper Mills Ltd. | Oxytitanium phthalocyanine process for the production thereof and electrophotographic photoreceptor to which the oxytitanium phthalocyanine is applied |
EP0997783B1 (en) | 1998-10-28 | 2005-12-14 | Sharp Kabushiki Kaisha | Electrophotographic photoreceptor containing oxotitanylphthalocyanine |
DE69925228T2 (en) | 1998-12-01 | 2006-02-23 | Canon K.K. | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US6258498B1 (en) | 1998-12-25 | 2001-07-10 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, and process cartridge and electrophotographic photosensitive member |
JP2000206714A (en) * | 1999-01-07 | 2000-07-28 | Fuji Denki Gazo Device Kk | Electrophotographic photoreceptor and electrophotographic device having same |
US6335132B1 (en) | 1999-06-25 | 2002-01-01 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus including the photosensitive member |
JP3453330B2 (en) | 1999-09-01 | 2003-10-06 | シャープ株式会社 | Electrophotographic photoreceptor |
WO2001050199A1 (en) | 1999-12-31 | 2001-07-12 | Cheil Industries Inc. | Electrophotographic photoreceptors |
US6465143B2 (en) | 2000-01-31 | 2002-10-15 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
DE60141786D1 (en) | 2000-01-31 | 2010-05-27 | Canon Kk | Process for the preparation of phthalocyanine crystals |
JP2001296684A (en) * | 2000-04-11 | 2001-10-26 | Mitsubishi Chemicals Corp | Toner and method for image forming |
JP4212784B2 (en) | 2000-05-09 | 2009-01-21 | 株式会社リコー | Electrophotographic photosensitive member, method for producing the same, electrophotographic method, electrophotographic apparatus, and process cartridge for electrophotographic apparatus |
KR100532914B1 (en) * | 2000-08-21 | 2005-12-02 | 삼성전자주식회사 | New titanium oxide phthalocyanine polymorph, producing method thereof and method for producing organic photoconducting drum using thereof |
JP4849385B2 (en) | 2000-10-24 | 2012-01-11 | 保土谷化学工業株式会社 | Phthalocyanine composition, method for producing the same, and electrophotographic photosensitive member using the same |
DE60229457D1 (en) | 2001-01-31 | 2008-12-04 | Canon Kk | Electrophotographic apparatus and process cartridge |
DE60238461D1 (en) | 2001-03-30 | 2011-01-13 | Canon Kk | Production method of an electro-sensitive element |
NZ514500A (en) | 2001-10-11 | 2004-06-25 | Deep Video Imaging Ltd | A multiplane visual display unit with a transparent emissive layer disposed between two display planes |
US6773856B2 (en) | 2001-11-09 | 2004-08-10 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
EP1731575A4 (en) | 2004-03-04 | 2009-03-04 | Mitsubishi Chem Corp | Phthalocyanine composition, and photoconductive material, electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image-forming apparatus each employing the composition |
KR101260595B1 (en) | 2005-10-26 | 2013-05-06 | 미쓰비시 가가꾸 가부시키가이샤 | Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus |
WO2007108488A1 (en) | 2006-03-20 | 2007-09-27 | Mitsubishi Chemical Corporation | Phthalocyanine crystal, electrophotographic photoreceptor utilizing the same, electrophotographic photoreceptor cartridge and image forming apparatus |
JP4668121B2 (en) | 2006-05-12 | 2011-04-13 | 株式会社リコー | Image forming apparatus |
JP4825167B2 (en) | 2007-05-11 | 2011-11-30 | 株式会社リコー | Electrophotographic photosensitive member, image forming apparatus, and process cartridge |
JP5049059B2 (en) * | 2007-06-25 | 2012-10-17 | 株式会社リコー | Electrophotographic photosensitive member, and image forming apparatus and process cartridge using the same |
JP5032912B2 (en) * | 2007-08-07 | 2012-09-26 | 株式会社リコー | Electrophotographic photosensitive member, image forming apparatus using the same, and process cartridge for image forming apparatus |
JP5402279B2 (en) | 2008-06-27 | 2014-01-29 | 株式会社リコー | Electrophotographic photoreceptor, method for producing the same, and image forming apparatus using the same |
JP5553198B2 (en) | 2008-11-26 | 2014-07-16 | 株式会社リコー | Electrophotographic photoreceptor, image forming apparatus using the same, and process cartridge for image forming apparatus |
US8206880B2 (en) | 2009-06-05 | 2012-06-26 | Ricoh Company, Ltd. | Electrophotographic photoreceptor, and image forming apparatus and process cartridge therefor using the photoreceptor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5949544A (en) * | 1982-09-16 | 1984-03-22 | Asahi Chem Ind Co Ltd | Electrophtographic organic receptor |
JPS59166959A (en) * | 1983-03-14 | 1984-09-20 | Nippon Telegr & Teleph Corp <Ntt> | Laminated type electrophotographic sensitive body |
JPS59214034A (en) * | 1983-05-19 | 1984-12-03 | Sumitomo Chem Co Ltd | Manufacture of electrophotographic sensitive body |
-
1985
- 1985-09-18 JP JP20554185A patent/JPS6267094A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5949544A (en) * | 1982-09-16 | 1984-03-22 | Asahi Chem Ind Co Ltd | Electrophtographic organic receptor |
JPS59166959A (en) * | 1983-03-14 | 1984-09-20 | Nippon Telegr & Teleph Corp <Ntt> | Laminated type electrophotographic sensitive body |
JPS59214034A (en) * | 1983-05-19 | 1984-12-03 | Sumitomo Chem Co Ltd | Manufacture of electrophotographic sensitive body |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6322940B1 (en) | 1999-01-08 | 2001-11-27 | Sharp Kabushiki Kaisha | Electrophotographic photoreceptor and electrophotographic image forming process |
US6291120B1 (en) | 1999-05-14 | 2001-09-18 | Sharp Kabushiki Kaisha | Electrophotographic photoreceptor and coating composition for charge generating layer |
Also Published As
Publication number | Publication date |
---|---|
JPS6267094A (en) | 1987-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0531137B2 (en) | ||
US4664997A (en) | Crystalline oxytitanium phthalocyanine and photoreceptor for use in electrophotography | |
JPH028256A (en) | Crystalline type oxytitanium phthalocyanine and electrophotographic sensitive substance | |
US5059355A (en) | Process for preparation of crystalline oxytitanium phthalocyanine | |
DE60026203T2 (en) | A reaction product, a process for the production thereof, the electrophotographic photoconductor containing the product, an electrophotographic apparatus employing the same, and a process cartridge for this electrophotographic apparatus | |
JPH0228265A (en) | Phthalocyanine crystal, its production and photosensitive material for electrophotography reduced by using the same crystal | |
JPH03128973A (en) | Oxytitanium phthalocyanine, its preparation, and electrophotographic photoreceptor made by using it | |
EP0180930B1 (en) | Crystalline oxytitanium phthalocyanine and photoreceptor for use in electrophotography | |
JP2801426B2 (en) | Oxytitanium phthalocyanine, method for producing the same, and electrophotographic photoreceptor using the same | |
JP2001115054A (en) | Titanylphthalocyanine compound and electrophotographic sensitizer using the same | |
JPH06271786A (en) | Phthalocyanine composition, its preparation, and electrophotographic photoreceptor and coating fluid for charge generating layer which are made by using the same | |
EP0810481A2 (en) | Electrophotographic photoreceptor | |
JP2861090B2 (en) | Manufacturing method of electrophotographic photoreceptor | |
JP2864622B2 (en) | Method for producing oxytitanium phthalocyanine crystal | |
JP3451751B2 (en) | Manufacturing method of electrophotographic photoreceptor | |
JP4062455B2 (en) | Electrophotographic photoreceptor | |
JPH04181260A (en) | Electrophotographic sensitive body, electrophotographic apparatus, and facsimile using same | |
JP3603478B2 (en) | Method for producing oxytitanium phthalocyanine and electrophotographic photoreceptor using the same | |
JP3453953B2 (en) | Method for producing oxytitanium phthalocyanine and electrophotographic photoreceptor using the same | |
JPH05320167A (en) | Titanylphthalocyanine crystal and electrophotographic receptor using the same | |
JP3453856B2 (en) | Method for producing oxytitanium phthalocyanine and method for producing electrophotographic photoreceptor using the same | |
JP2867563B2 (en) | Manufacturing method of electrophotographic photoreceptor | |
JP3454021B2 (en) | Method for producing oxytitanium phthalocyanine and electrophotographic photoreceptor using the same | |
JPH0570709A (en) | Chlorinated indium phthalocyanine, its production, and electrophotographic photoreceptor containing the same | |
JP2737976B2 (en) | Electrophotographic photoreceptor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |