[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05310989A - Polyethylenic porous film - Google Patents

Polyethylenic porous film

Info

Publication number
JPH05310989A
JPH05310989A JP4111820A JP11182092A JPH05310989A JP H05310989 A JPH05310989 A JP H05310989A JP 4111820 A JP4111820 A JP 4111820A JP 11182092 A JP11182092 A JP 11182092A JP H05310989 A JPH05310989 A JP H05310989A
Authority
JP
Japan
Prior art keywords
polyethylene
film
molecular weight
porous
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4111820A
Other languages
Japanese (ja)
Inventor
Katsuhiko Sugiura
克彦 杉浦
Keishin Handa
敬信 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP4111820A priority Critical patent/JPH05310989A/en
Publication of JPH05310989A publication Critical patent/JPH05310989A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To obtain a separator for cells and batteries having self locking properties in overheating. CONSTITUTION:The objective polyethylenic porous film is a porous film composed of an ultra-high-molecular weight polyethylene having >=500,000 viscosity- average molecular weight (MV) and characterized by providing >=1000sec/100cc air permeability in heat treatment at a temperature above the melting point of the polyethylene.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリエチレン多孔膜に関
する、詳しくは、気体、液体およびイオン透過性に優
れ、高温での膜形状維持性が優れている超精密濾過膜お
よび電池セパレター用膜に敵したポリエチレン多孔膜に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyethylene porous membrane, and more particularly, it is suitable for ultra-fine filtration membranes and membranes for battery separators, which are excellent in gas, liquid and ion permeability and maintain shape of the membrane at high temperature. Polyethylene porous membrane.

【0002】[0002]

【従来の技術】携帯用小型機器の発達にともない小型で
高性能な電池が求められるようになってきた。リチウム
電池は最も卑な金属であるリチウムを使うことにより発
生起電圧が高く小型高性能電池用電極材としては非常に
有用である。しかしリチウムは反応性が高く取扱を間違
えると大きな事故となる。リチウム電池においても過去
に発火事故などの事例が発生しており安全性確保は重要
課題である。
2. Description of the Related Art With the development of small portable devices, small size and high performance batteries have been required. The lithium battery is highly useful as an electrode material for a small and high-performance battery because it has a high electromotive voltage due to the use of the base metal, lithium. However, since lithium is highly reactive, mishandling causes a serious accident. As for lithium batteries, cases such as ignition accidents have occurred in the past, and ensuring safety is an important issue.

【0003】[0003]

【発明が解決しようとする課題】セパレーターに高温膜
形状維持特性が不足していると、短絡事故などで短時間
に大電流が流れ、リチウム電池は発熱し、熱によるセパ
レーター破損での内部短絡による爆発、発火事故などが
発生する危険性がある。セパレーターには電池内部温度
が上昇した時、セパレーターの孔が熱により自動的に閉
塞する性質(自己閉塞性)と高温になっても膜形状を維
持し電極を隔てておく性質(高温膜形状維持特性)が必
要とされる。
If the separator does not have sufficient high-temperature film shape retention characteristics, a large current will flow in a short time due to a short-circuit accident, etc., and the lithium battery will generate heat, causing internal short circuit due to damage to the separator due to heat. There is a risk of explosion and fire accident. When the internal temperature of the battery rises in the separator, the pores of the separator are automatically closed by heat (self-closing property) and the property of maintaining the film shape and separating the electrodes even at high temperatures (maintaining the high temperature film shape) Characteristics) are required.

【0004】ポリプロピレン製セパレーター膜は高温で
の形状維持性に優れているが、特にリチウム電池セパレ
ーターとして使用する際、自己閉塞性を発現する温度が
約175℃でありリチウムの発火温度180℃と接近し
ており危険である。また、セパレーター膜においては通
常強度向上のために延伸を行うが、延伸した膜は高温膜
形状維持特性が低くポリエチレン製では150〜160
℃、ポリプロピレン製では180℃近辺で破断し、電極
の隔離性に問題を生じる。
The polypropylene separator film is excellent in shape retention at high temperature, but when used as a lithium battery separator, the temperature at which self-closing property is exhibited is about 175 ° C., which is close to the ignition temperature of lithium of 180 ° C. And dangerous. In addition, the separator film is usually stretched to improve the strength, but the stretched film has a low high-temperature film shape retention property, and is 150 to 160 when made of polyethylene.
In the case of polypropylene made of ℃ or polypropylene, it breaks at around 180 ℃, causing a problem in the isolation property of the electrode.

【0005】[0005]

【課題を解決するための手段】そこで発明者らはかかる
問題点を解決すべく鋭意検討を行った結果、低温閉塞性
が高く、高温膜形状維持特性を改良した上でセパレータ
ーとしての基本的な特性を満足した膜を発明するに至っ
た。本発明は即ち粘度平均分子量(Mv)500,00
0以上の超高分子量ポリエチレンからなる多孔膜で
(a)厚さ10〜50μm、(b)透気度20〜100
0秒/100cc、(c)空孔率25〜80%、(d)
破断点強度が縦方向、横方向とも100Kg/cm2
上、(e)バブルポイント(BP値)、2〜5Kg/c
2、(f)透水量100リットル/hr・m2・atm
以上、(g)0.091μmのスチレンラテックス粒子
を50%以上阻止するポリエチレン多孔膜であって、該
ポリエチレンの融点以上200℃以下の温度で熱処理し
た時、透気度が1000秒/100cc以上となること
を特徴とするポリエチレン多孔膜である。
The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, have a high low-temperature occluding property, improve the high-temperature film shape-maintaining property, and have a basic structure as a separator. The inventors have invented a film satisfying the characteristics. The present invention has a viscosity average molecular weight (Mv) of 500,00.
A porous film composed of 0 or more ultra high molecular weight polyethylene (a) thickness 10 to 50 μm, (b) air permeability 20 to 100
0 sec / 100 cc, (c) Porosity 25-80%, (d)
Breaking strength is 100 Kg / cm 2 or more in both the vertical and horizontal directions, (e) Bubble point (BP value), 2 to 5 Kg / c
m 2 , (f) Water permeability 100 liter / hr ・ m 2・ atm
As described above, (g) a polyethylene porous film that blocks 50% or more of 0.091 μm styrene latex particles, and has an air permeability of 1000 seconds / 100 cc or more when heat-treated at a temperature of not less than the melting point of polyethylene and not more than 200 ° C. The polyethylene porous membrane is characterized by

【0006】以下本発明を詳細に説明する。本発明のポ
リエチレン多孔膜の厚さは10〜50μmであり、更に
好ましくは15〜30μmである。10μmより薄い膜
は絶対強度が小さく、製膜時の破断や電池加工後の膜破
れなどが発生しやすく好ましくない。また、50μmを
超えた膜厚では透水量が小さくなったり、電池内に占め
るセパレーターの割合が大きくなり電池の容量低下を起
こすなど問題がある。透気度は20〜1000秒/10
0ccであり好ましくは50〜300秒/100ccで
ある。透気度が20秒/100cc未満だと膜表面積に
占める孔の割合(開孔率)が大きくなり膜の強度が低下
する。1000秒/100ccより大きいとイオンの透
過抵抗が大きくなりセパレーターとして使用できなくな
る。
The present invention will be described in detail below. The polyethylene porous membrane of the present invention has a thickness of 10 to 50 μm, more preferably 15 to 30 μm. A film thinner than 10 μm is not preferable because the absolute strength is small, and breakage during film formation or film breakage after battery processing is likely to occur. Further, when the film thickness exceeds 50 μm, there are problems that the amount of water permeation becomes small and the ratio of the separator occupying in the battery becomes large and the capacity of the battery decreases. Air permeability is 20 to 1000 seconds / 10
It is 0 cc and preferably 50 to 300 seconds / 100 cc. If the air permeability is less than 20 seconds / 100 cc, the ratio of pores to the surface area of the film (opening ratio) increases and the strength of the film decreases. If it is more than 1000 seconds / 100 cc, the permeation resistance of ions becomes so large that it cannot be used as a separator.

【0007】しかし該ポリエチレンの融点(通常135
℃程度)以上で、通常は200℃以下の温度に1〜2分
程度加熱されることによって1000秒/100cc以
上となりイオン電流を遮断することができ、電池が短絡
事故など発熱しても安全に電極反応を止めることが出来
る。透気度が1000秒/100ccより大きくなるこ
とは濾過膜としては濾過抵抗が大きくなりすぎ実用的で
ない。
However, the melting point of the polyethylene (usually 135
(About ℃) or higher, usually 1000 ℃ / 100cc or more by heating to a temperature of 200 ℃ or less for about 1 to 2 minutes, it is possible to cut off the ionic current, and it is safe even if the battery heats up due to a short circuit accident. The electrode reaction can be stopped. If the air permeability is greater than 1000 sec / 100 cc, the filtration resistance is too high for a filtration membrane, which is not practical.

【0008】空孔率は25〜80%である。空孔率が2
5%未満だと孔構造が緻密すぎて濾過やイオン透過に不
都合を生じる。80%より大きいと単位体積中に占める
ポリエチレンの量が小さくなりすぎ強度が低下して好ま
しくない。破断点強度は縦、横どちらの方向にも100
Kg/cm2以上が必要である。これ未満だと膜製造時
や濾過膜をカートリッジ加工する際などに破断しやすく
作業性が悪くなる。バブルポイントは2〜5Kg/cm
2以上である。バブルポイントが2Kg/cm2未満だと
孔構造が疎となり実用的でない。また5Kg/cm2
り大きいと孔構造が緻密すぎて濾過やイオン透過の抵抗
となり好ましくない。
The porosity is 25 to 80%. Porosity is 2
If it is less than 5%, the pore structure is too dense, which causes problems in filtration and ion permeation. If it is more than 80%, the amount of polyethylene occupying the unit volume becomes too small and the strength is lowered, which is not preferable. Breaking strength is 100 in both vertical and horizontal directions
Kg / cm 2 or more is required. If it is less than this range, the film is likely to be broken at the time of membrane production or when the filtration membrane is processed into a cartridge, resulting in poor workability. Bubble point is 2 to 5 kg / cm
2 or more. If the bubble point is less than 2 Kg / cm 2 , the pore structure becomes sparse and it is not practical. On the other hand, if it is larger than 5 kg / cm 2 , the pore structure becomes too dense and resistance to filtration and ion permeation is not preferable.

【0009】透水量は100〜1500リットル/hr
・m2・atmである。透水量が100リットル/hr
・m2・atm未満だと濾過速度が遅く実用的でない。
1500リットル/hr・m2・atmより大きいと孔
構造が疎となり電池セパレーターとして使用したとき電
極同志が接触する危険がある。0.091μmのスチレ
ンラテックス粒子は50%以上を阻止する必要がある。
50%未満だと濾過性能の点で十分に不要粒子を濾過で
きない。
Water permeability is 100-1500 liters / hr
・ M 2・ atm. Water permeability is 100 liters / hr
・ If it is less than m 2 · atm, the filtration rate is too slow to be practical.
If it is more than 1500 liters / hr · m 2 · atm, the pore structure becomes sparse and there is a risk that the electrodes contact each other when used as a battery separator. Styrene latex particles of 0.091 μm need to block 50% or more.
If it is less than 50%, unnecessary particles cannot be sufficiently filtered in terms of filtration performance.

【0010】本発明の多孔膜を得るのに好ましい方法と
しては、超高分子量ポリエチレンと可塑剤からなる組成
物を溶融押出してシートを得、ついて該シートから可塑
剤を除去してして得られる多孔シートが供される。また
熱処理には加熱ロール法、またはテンター方式等を用い
ることができる。このようにして得られた多孔膜の構造
はフィブリルからなる網目状構造を有しているのが特徴
である。
A preferred method for obtaining the porous membrane of the present invention is obtained by melt extruding a composition comprising ultrahigh molecular weight polyethylene and a plasticizer to obtain a sheet, and then removing the plasticizer from the sheet. A porous sheet is provided. A heat roll method, a tenter method, or the like can be used for the heat treatment. The structure of the porous film thus obtained is characterized in that it has a network structure composed of fibrils.

【0011】本発明に使用されるポリエチレンは重量平
均分子量が500,000以上であるいわゆる超高分子
量ポリエチレンであり、特に粘度平均分子量が1×10
6〜3.0×106のものが好ましい。また該ポリエチレ
ンを50%以上含み分子量5×105〜2×106の他の
ポリオレフィン、変性ポリオレフィンを含んでもよい。
The polyethylene used in the present invention is a so-called ultra-high molecular weight polyethylene having a weight average molecular weight of 500,000 or more, and particularly a viscosity average molecular weight of 1 × 10.
6 to 3.0 × 10 6 is preferable. Further, other polyolefin having a molecular weight of 5 × 10 5 to 2 × 10 6 and a modified polyolefin containing 50% or more of the polyethylene may be contained.

【0012】分子量が低すぎると可塑剤と均一混練する
ことが困難で微細孔構造を有する多孔膜を得ることがで
きない。また安定したシート成形が不可能となる。次に
可塑剤としてはポリエチレンとの相溶性がよく、沸点が
該ポリエチレンの溶融成形温度(〜250℃)以上でし
かもシート成形中に蒸散が起こりにくい様、蒸気圧が低
いことが必要条件である。
If the molecular weight is too low, it is difficult to uniformly knead with the plasticizer, and a porous membrane having a fine pore structure cannot be obtained. In addition, stable sheet formation becomes impossible. Next, the plasticizer has good compatibility with polyethylene, has a boiling point higher than the melt-forming temperature of polyethylene (up to 250 ° C), and has a low vapor pressure so that evaporation does not easily occur during sheet molding. ..

【0013】さらに、製品の途中段階で得られるポリエ
チレンと可塑剤からなるシートの安定性、取扱の容易さ
を考慮すると具体的には流動パラフィン、固形パラフィ
ン、ステアリルアルコール、セチルアルコール等が望ま
しい。特に常温で固体であるものは取扱上非常に有用で
ある。これら可塑剤と超高分子量ポリエチレンとは通常
のミキサーで混合された後、一旦溶融混練により均一混
練、ペレット化した後シート成形に供されるが、特にス
テアリルアルコールは細かい顆粒状の製品を使用するこ
とができ、粉末状である超高分子量ポリエチレンと機械
的なブレンドをすることが容易であり、このまま押出機
供給部に供給することにより安定した押出成形が可能で
ある。さらに本組成に熱安定剤、酸化防止剤、着色剤な
どを添加しても構わない。
Further, in consideration of the stability of a sheet made of polyethylene and a plasticizer obtained in the intermediate stage of the product and the ease of handling, liquid paraffin, solid paraffin, stearyl alcohol, cetyl alcohol and the like are specifically desirable. In particular, those that are solid at room temperature are very useful for handling. These plasticizers and ultra-high-molecular-weight polyethylene are mixed in an ordinary mixer, then once melt-kneaded, uniformly kneaded, pelletized, and then subjected to sheet forming. In particular, stearyl alcohol uses fine granular products. In addition, it is easy to mechanically blend with the powdery ultra-high molecular weight polyethylene, and stable extrusion molding is possible by directly feeding the powder to the extruder feeding section. Further, a heat stabilizer, an antioxidant, a coloring agent, etc. may be added to the composition.

【0014】超高分子量ポリエチレンと可塑剤との混合
の比率は通常、重量比で超高分子量ポリエチレン/可塑
剤=10/90〜40/60であり、好ましくは15/
85〜35/65の範囲である。ポリエチレンの比率が
低すぎると、押出機における押出状態が不安定となり良
好なシートを得ることができない。またポリエチレンの
比率が高すぎると粘度が大きくなり過ぎ、ダイス部分で
の流れが不安定となり安定したシートを得ることが不可
能となる。これら組成物を一旦溶融混練してペレット化
したものはシート成形時に該ポリエチレンと可塑剤の分
級を防止することができ成形安定性の向上につながる。
The mixing ratio of ultrahigh molecular weight polyethylene and plasticizer is usually ultrahigh molecular weight polyethylene / plasticizer = 10/90 to 40/60, preferably 15 /
The range is 85 to 35/65. If the proportion of polyethylene is too low, the extruded state in the extruder becomes unstable and a good sheet cannot be obtained. On the other hand, if the proportion of polyethylene is too high, the viscosity becomes too high, and the flow at the die becomes unstable, making it impossible to obtain a stable sheet. A composition obtained by once melt-kneading these compositions into pellets can prevent the polyethylene and the plasticizer from being classified during sheet molding, which leads to improvement in molding stability.

【0015】シートの成形はポリエチレンと可塑剤を溶
融混練したペレットまたはポリエチレンと可塑剤を機械
的にブレンドした混合物を押出機に供給し、次に均一な
溶融状態とし、適宜選択されたダイスからシート状に押
し出すことによって行う。通常Tダイ成形品シートの厚
みは0.03〜0.5mmでり、好ましくは0.03〜
0.08mmである。
The sheet is formed by feeding pellets obtained by melt-kneading polyethylene and a plasticizer or a mixture obtained by mechanically blending polyethylene and a plasticizer to an extruder, and then bringing the mixture into a uniform molten state, and then a sheet is formed from an appropriately selected die. It is done by extruding into a shape. Usually, the thickness of the T-die molded product sheet is 0.03 to 0.5 mm, preferably 0.03 to 0.5 mm.
It is 0.08 mm.

【0016】この際、シートに延伸を加えず、分子配向
をなるべく起こさないように成形する事が望ましい。次
に行う可塑剤の除去(抽出)は可塑剤の溶解度が高く、
易揮発性溶剤による抽出法が望ましい。易揮発性溶剤と
してはペンタン、ヘキサン、ヘプタン等の炭化水素系、
塩化メチレン、クロロホルム、四塩化炭素、三フッ化エ
タン等のハロゲン化炭化水素系、メタノール、エタノー
ル、プロパノール等のアルコール系が挙げられ、全量可
塑剤を除去し、その後乾燥により揮発性溶剤を除去する
ことにより多孔性のシートを得る。この多孔性シートに
残存する可塑剤含有率は1重量%未満にするのが好まし
い。可塑剤の除去は除去効率をよくするため常温以上で
行うのが望ましい。
At this time, it is desirable that the sheet is not stretched and molded so as not to cause molecular orientation as much as possible. The removal (extraction) of the plasticizer performed next has a high solubility of the plasticizer,
An extraction method using an easily volatile solvent is preferable. Hydrocarbon solvents such as pentane, hexane, heptane, etc.
Examples include halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, ethane trifluoride, alcohols such as methanol, ethanol, propanol, etc. to remove all plasticizers, and then to remove volatile solvents by drying. Thus, a porous sheet is obtained. The content of the plasticizer remaining in this porous sheet is preferably less than 1% by weight. It is desirable to remove the plasticizer at room temperature or higher in order to improve the removal efficiency.

【0017】上記多孔シートはそのままでも十分多孔化
しセパレーターとして使用することが可能であるが、さ
らに温度による収縮を防止するために熱処理をすること
が出来る。工業的には加熱ロール法、テンター法等があ
り、熱処理温度は高温の方が望ましいが、該ポリエチレ
ンの融点以上になると孔が閉塞して透気度が大幅に上昇
して好ましくない。加熱ロール法の場合、融点以下、好
ましくは130℃以下で熱処理を行うのが好ましい。
The above-mentioned porous sheet can be sufficiently porous and used as a separator as it is, but it can be further heat-treated in order to prevent shrinkage due to temperature. Industrially, there are a heating roll method, a tenter method, and the like, and it is desirable that the heat treatment temperature is high. However, if the temperature is higher than the melting point of the polyethylene, the pores are blocked and the air permeability is greatly increased, which is not preferable. In the case of the heating roll method, it is preferable to perform the heat treatment at a melting point or lower, preferably 130 ° C. or lower.

【0018】[0018]

【実施例】以下、本発明を実施例を挙げて詳細に説明す
るが、本発明はその要旨を越えない限り下記の実施例に
限定されるものではない。実施例における試験方法は次
の通りである。 1.透気度(単位;秒/100cc) JIS P81
17 2.空孔率(%)=空孔容積/多孔膜容積×100% 3.破断強度(単位;Kg/cm2) JIS K67
81 4.バブルポイント(BP) JIS K3832 5.透水量(単位;リットル/hr・m2・atm)
アミコン社製 8010型セルを使用し、差圧1kg/c
2温度23℃にて測定 6.孔径測定(スチレンラテックス阻止率) ダウ社製
重量平均粒径0.091μm、0.212μmのスチ
レンラテックス粒子を水に分散させ、アミコン社製80
10型セルをしようして差圧1Kg/cm2にて透過試
験を実施しその前後のスチレンラテックス濃度をUV計
で測定してその阻止率を次の式で求めた。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. The test method in the examples is as follows. 1. Air permeability (unit: second / 100cc) JIS P81
17 2. Porosity (%) = pore volume / porous membrane volume × 100% 3. Breaking strength (unit: Kg / cm 2 ) JIS K67
81 4. Bubble point (BP) JIS K3832 5. Permeability (unit: liter / hr ・ m 2・ atm)
Using Amicon 8010 type cell, differential pressure 1kg / c
Measured at m 2 temperature of 23 ° C. 6. Pore Size Measurement (Styrene Latex Rejection Rate) Dow's weight average particle diameters of 0.091 μm and 0.212 μm styrene latex particles are dispersed in water to obtain 80 from Amicon.
A 10-type cell was used to conduct a permeation test at a differential pressure of 1 kg / cm 2, and the styrene latex concentration before and after the permeation test was measured with a UV meter, and the blocking rate was determined by the following formula.

【0019】[0019]

【数1】阻止率(%)=(透過前の濃度−透過後の濃
度)/( 透過前の濃度)×100 実施例1 粘度平均分子量2×106のポリエチレンパウダー(融
点135℃)20重量部と粒状のステアリルアルコール
80重量部のドライブレンド物を押出機に供給して24
0℃で混練しながら連続的に幅550mm、ダイクリア
ランス0.2mmのTダイより押し出して厚さ0.07
mmのシートを得た。
## EQU1 ## Rejection rate (%) = (concentration before permeation−concentration after permeation) / (concentration before permeation) × 100 Example 1 Polyethylene powder having a viscosity average molecular weight of 2 × 10 6 (melting point 135 ° C.) 20 weight Parts and granulated stearyl alcohol 80 parts by weight of dry blend were fed to the extruder for 24
While kneading at 0 ° C, it is continuously extruded from a T-die with a width of 550 mm and a die clearance of 0.2 mm to a thickness of 0.07.
A sheet of mm was obtained.

【0020】このシートを60℃のイソプロピルアルコ
ール浴でステアリルアルコールを抽出し、ポリエチレン
製多孔膜を得た。この膜の物性は (a)膜厚 47μm (b)透気度 105秒/100cc (c)空孔率 67% (d)破断点強度 170Kg/cm2(縦方向)、1
20Kg/cm2(横方向) (e)バブルポイント 3.4Kg/cm2 (f)透水量 400リットル/hr・m2・atm (g)スチレンラテックス阻止率(SR阻止率) 98
%以上 であった。
Stearyl alcohol was extracted from this sheet in an isopropyl alcohol bath at 60 ° C. to obtain a polyethylene porous membrane. The physical properties of this film are as follows: (a) film thickness 47 μm (b) air permeability 105 seconds / 100 cc (c) porosity 67% (d) breaking strength 170 Kg / cm 2 (vertical direction), 1
20 Kg / cm 2 (horizontal direction) (e) Bubble point 3.4 Kg / cm 2 (f) Water permeability 400 liters / hr · m 2 · atm (g) Styrene latex blocking rate (SR blocking rate) 98
% Or more.

【0021】この膜を熱風循環オーブン中150℃で1
分間加熱したものの透気度は測定不能(1200秒/1
00cc以上)であった。さらにこの膜を175℃で1
分間加熱処理しても膜形状は保持されたままだった。 実施例2 実施例1で得られた膜厚47μmのポリエチレン製多孔
膜を表面温度120℃の加熱ピンチロールを用いて30
秒間熱処理して33μmの膜を作成し、多孔膜を得た。
この膜の物性を表−1に示す。 比較例1 粘度平均分子量4.5×105のポリエチレン(融点1
28℃)を使用する以外実施例1と同様に行い膜を作成
した。この膜の0.091μmスチレンラテックス除去
率は45%となった。 比較例2 実施例1で作成した多孔膜を表面温度140℃(融点+
5℃)の加熱ロールを用いて30秒間熱処理を行った。
この膜の物性を表−1に示す。
This membrane was placed in a hot air circulation oven at 150 ° C. for 1 hour.
The air permeability of the sample heated for 1 minute cannot be measured (1200 seconds / 1
00cc or more). Furthermore, this membrane is 1
The film shape was maintained even after the heat treatment for a minute. Example 2 The polyethylene porous film having a film thickness of 47 μm obtained in Example 1 was heated to 30 ° C. using a heating pinch roll having a surface temperature of 120 ° C.
It was heat-treated for a second to form a 33 μm film, and a porous film was obtained.
The physical properties of this film are shown in Table 1. Comparative Example 1 Polyethylene having a viscosity average molecular weight of 4.5 × 10 5 (melting point 1
A film was prepared in the same manner as in Example 1 except that (28 ° C.) was used. The 0.091 μm styrene latex removal rate of this film was 45%. Comparative Example 2 The surface temperature of the porous film prepared in Example 1 was 140 ° C. (melting point +
Heat treatment was performed for 30 seconds using a heating roll at 5 ° C.
The physical properties of this film are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明によれば低温閉塞性に優れ、しか
も高温まで膜形状を保持した多孔膜を作成することが出
来る。この膜により安全性に優れた電池用セパレーター
を供することが出来る。
EFFECTS OF THE INVENTION According to the present invention, it is possible to prepare a porous film which is excellent in low-temperature occluding property and retains the film shape even at high temperatures. This membrane can provide a battery separator with excellent safety.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 粘度平均分子量(Mv)500,000
以上の超高分子量ポリエチレンからなる多孔膜で(a)
厚さ10〜50μm、(b)透気度20〜1000秒/
100cc、(c)空孔率25〜80%、(d)破断点
強度が縦方向、横方向とも100Kg/cm2以上、
(e)バブルポイント(BP値)2〜5Kg/cm2
(f)透水量100リットル/hr・m2・atm以
上、(g)0.091μmのスチレンラテックス粒子を
50%以上阻止するポリエチレン多孔膜であって、該ポ
リエチレンの融点以上200℃以下の温度で熱処理した
時、透気度が1000秒/100cc以上となることを
特徴とするポリエチレン多孔膜
1. Viscosity average molecular weight (Mv) 500,000
A porous membrane made of the above ultra high molecular weight polyethylene (a)
Thickness 10 to 50 μm, (b) Air permeability 20 to 1000 seconds /
100 cc, (c) Porosity 25 to 80%, (d) Breaking point strength is 100 Kg / cm 2 or more in both the longitudinal and transverse directions,
(E) Bubble point (BP value) 2 to 5 Kg / cm 2 ,
(F) A polyethylene porous membrane which blocks 50% or more of styrene latex particles having a water permeation rate of 100 liter / hr · m 2 · atm or more and (g) 0.091 μm at a temperature of not less than the melting point of polyethylene and not more than 200 ° C. A porous polyethylene membrane characterized by having an air permeability of 1000 seconds / 100 cc or more when heat-treated.
【請求項2】 175℃で熱処理した時、膜形状を維持
していることを特徴とする請求項1に記載のポリエチレ
ン多孔膜
2. The polyethylene porous film according to claim 1, wherein the film shape is maintained when heat-treated at 175 ° C.
【請求項3】 濾過膜として使用することを特徴とする
請求項1に記載のポリエチレン多孔膜
3. The polyethylene porous membrane according to claim 1, which is used as a filtration membrane.
【請求項4】 電池セパレーターとして使用することを
特徴とする請求項1に記載のポリエチレン多孔膜
4. The polyethylene porous membrane according to claim 1, which is used as a battery separator.
JP4111820A 1992-04-30 1992-04-30 Polyethylenic porous film Pending JPH05310989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4111820A JPH05310989A (en) 1992-04-30 1992-04-30 Polyethylenic porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4111820A JPH05310989A (en) 1992-04-30 1992-04-30 Polyethylenic porous film

Publications (1)

Publication Number Publication Date
JPH05310989A true JPH05310989A (en) 1993-11-22

Family

ID=14570985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4111820A Pending JPH05310989A (en) 1992-04-30 1992-04-30 Polyethylenic porous film

Country Status (1)

Country Link
JP (1) JPH05310989A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767200A3 (en) * 1995-10-05 1998-01-07 Mitsubishi Chemical Corporation High-strength porous film and process for producing the same
JPH1027597A (en) * 1996-07-10 1998-01-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH11300180A (en) * 1998-02-20 1999-11-02 Mitsubishi Chemical Corp Porous resin membrane
JP2002265658A (en) * 2001-03-09 2002-09-18 Asahi Kasei Corp Highly permeable microporous film
JP2002343429A (en) * 2001-05-22 2002-11-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2004323820A (en) * 2003-04-11 2004-11-18 Asahi Kasei Chemicals Corp Polyolefin microporous membrane and method for producing the same
EP1657766A1 (en) 2004-11-08 2006-05-17 Nitto Denko Corporation Reactive polymer-supported porous film for battery separator, method for producing the porous film and electrode/porous film assembly
US7318984B2 (en) 2002-05-17 2008-01-15 Nitto Denko Corporation Adhesive composition-supporting separator for battery and electrode/separator laminate obtained by using the same
WO2009123220A1 (en) 2008-03-31 2009-10-08 日東電工株式会社 Cell separator and cell using the same
EP2282365A1 (en) 2002-11-13 2011-02-09 Nitto Denko Corporation Partially crosslinked adhesive-supported porous film for battery separator and its use
EP2306553A1 (en) 2003-04-09 2011-04-06 Nitto Denko Corporation Adhesive-carrying porous film for cell separator and its application
JP2012003841A (en) * 2010-06-14 2012-01-05 Hiramatsu Sangyo Kk Battery separator material, method of manufacturing battery separator, battery separator, and secondary battery
US8092935B2 (en) 2004-09-30 2012-01-10 Nitto Denko Corporation Reactive polymer-carrying porous film and process for producing the same
WO2012102241A1 (en) * 2011-01-27 2012-08-02 三菱樹脂株式会社 Polyolefin resin porous film, and non-aqueous electrolyte cell separator using same
JP2014218563A (en) * 2013-05-07 2014-11-20 帝人株式会社 Base material for liquid filter
US9142818B2 (en) 2008-03-31 2015-09-22 Nitto Denko Corporation Battery separator and battery using the same
US11338250B2 (en) * 2013-05-07 2022-05-24 Teijin Limited Substrate for liquid filter

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767200A3 (en) * 1995-10-05 1998-01-07 Mitsubishi Chemical Corporation High-strength porous film and process for producing the same
US5759678A (en) * 1995-10-05 1998-06-02 Mitsubishi Chemical Corporation High-strength porous film and process for producing the same
JPH1027597A (en) * 1996-07-10 1998-01-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH11300180A (en) * 1998-02-20 1999-11-02 Mitsubishi Chemical Corp Porous resin membrane
JP2002265658A (en) * 2001-03-09 2002-09-18 Asahi Kasei Corp Highly permeable microporous film
JP2002343429A (en) * 2001-05-22 2002-11-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US7318984B2 (en) 2002-05-17 2008-01-15 Nitto Denko Corporation Adhesive composition-supporting separator for battery and electrode/separator laminate obtained by using the same
EP2282365A1 (en) 2002-11-13 2011-02-09 Nitto Denko Corporation Partially crosslinked adhesive-supported porous film for battery separator and its use
US8357260B2 (en) 2002-11-13 2013-01-22 Nitto Denko Corporation Partially crosslinked adhesive-supported porous film for battery separator and its use
EP2306553A1 (en) 2003-04-09 2011-04-06 Nitto Denko Corporation Adhesive-carrying porous film for cell separator and its application
JP2004323820A (en) * 2003-04-11 2004-11-18 Asahi Kasei Chemicals Corp Polyolefin microporous membrane and method for producing the same
US8092935B2 (en) 2004-09-30 2012-01-10 Nitto Denko Corporation Reactive polymer-carrying porous film and process for producing the same
EP1657766A1 (en) 2004-11-08 2006-05-17 Nitto Denko Corporation Reactive polymer-supported porous film for battery separator, method for producing the porous film and electrode/porous film assembly
US8911648B2 (en) 2004-11-08 2014-12-16 Nitto Denko Corporation Reactive polymer-supported porous film for battery separator, method for producing the porous film, method for producing battery using the porous film, and electrode/porous film assembly
WO2009123220A1 (en) 2008-03-31 2009-10-08 日東電工株式会社 Cell separator and cell using the same
US9142818B2 (en) 2008-03-31 2015-09-22 Nitto Denko Corporation Battery separator and battery using the same
US9142817B2 (en) 2008-03-31 2015-09-22 Nitto Denko Corporation Battery separator and battery using the same
JP2012003841A (en) * 2010-06-14 2012-01-05 Hiramatsu Sangyo Kk Battery separator material, method of manufacturing battery separator, battery separator, and secondary battery
KR101271299B1 (en) * 2011-01-27 2013-06-04 미쓰비시 쥬시 가부시끼가이샤 Polyolefin resin porous film, and non-aqueous electrolyte cell separator using same
CN102858858A (en) * 2011-01-27 2013-01-02 三菱树脂株式会社 Polyolefin resin porous film, and non-aqueous electrolyte cell separator using same
WO2012102241A1 (en) * 2011-01-27 2012-08-02 三菱樹脂株式会社 Polyolefin resin porous film, and non-aqueous electrolyte cell separator using same
US9419266B2 (en) 2011-01-27 2016-08-16 Mitsubishi Plastics, Inc. Polyolefin resin porous film, and non-aqueous electrolyte cell separator using same
JP2014218563A (en) * 2013-05-07 2014-11-20 帝人株式会社 Base material for liquid filter
US11338250B2 (en) * 2013-05-07 2022-05-24 Teijin Limited Substrate for liquid filter

Similar Documents

Publication Publication Date Title
JPH05310989A (en) Polyethylenic porous film
JP4121846B2 (en) Polyolefin microporous membrane and production method and use thereof
EP2750216B1 (en) Battery separator
JP4494637B2 (en) Polyolefin microporous membrane and method for producing the same
JP4195810B2 (en) Polyolefin microporous membrane and production method and use thereof
JP5250262B2 (en) Polyolefin microporous membrane and method for producing the same, battery separator and battery
KR100667052B1 (en) Microporous Polyolefin Membrane And Method For Producing The Same
JP5250263B2 (en) Polyolefin microporous membrane and method for producing the same, battery separator and battery
TWI305215B (en) Polyolefin microporous membrane and separator for battery
EP0977801A1 (en) Temperature-sensitive microporous film
JPH05234578A (en) Separator for battery using organic electrolyte and its manufacture
JPWO2006137535A1 (en) Method for producing polyolefin microporous membrane
JP3113287B2 (en) Polyethylene microporous membrane with low fuse temperature
WO1993001623A1 (en) Separator of battery wherein organic electrolyte is used and production thereof
JP2000017100A (en) Preparation of polyethylene micro-porous membrane
JP4271750B2 (en) Microporous membrane and method for producing the same
JP4460668B2 (en) Polyolefin microporous membrane and method for producing the same
JP3699562B2 (en) Polyolefin microporous membrane and method for producing the same
WO2019163935A1 (en) Porous polyolefin film
JP3682120B2 (en) Composite membrane for battery separator and battery separator
JP5450944B2 (en) Polyolefin microporous membrane, battery separator and battery
JP3948762B2 (en) Zinc bromine secondary battery separator
JP3252016B2 (en) Method for producing polyolefin microporous membrane
JPH06182918A (en) Polyethylene laminated porpous film and its manufacture
JPH06234181A (en) Polyolefin porous laminated body