JPH05319895A - Nonmagnetic ceramics for magnetic head - Google Patents
Nonmagnetic ceramics for magnetic headInfo
- Publication number
- JPH05319895A JPH05319895A JP4127304A JP12730492A JPH05319895A JP H05319895 A JPH05319895 A JP H05319895A JP 4127304 A JP4127304 A JP 4127304A JP 12730492 A JP12730492 A JP 12730492A JP H05319895 A JPH05319895 A JP H05319895A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- thermal expansion
- magnetic head
- ceramics
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Heads (AREA)
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
- Thin Magnetic Films (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【産業上の技術分野】本発明は、例えばコンピュータの
周辺装置であるフロッピーディスク装置,ハードディス
ク装置,或いはVTR等の磁気ヘッドに用いられる磁気
ヘッド用非磁性セラミックスに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-magnetic ceramic for a magnetic head used for a magnetic head of a floppy disk device, a hard disk device, a VTR, etc., which is a peripheral device of a computer, for example.
【0002】[0002]
【従来の技術】コンピュータ,VTR,或いはオーディ
オ機器(主にカセットデッキ)等の磁気記録媒体を対象
にして情報の書込み,読み出しを行う読取り装置は磁気
ヘッドを備えている。その磁気ヘッドは、磁性材料であ
るフェライトと非磁性材料のセラミックスとをガラスボ
ンディングして製造される。又、特に薄膜磁気ヘッドの
場合、磁性又は非磁性のセラミックス基板上へ磁性薄膜
を蒸着,或いはスパッタリングにより成膜して製造され
る。更に、金属磁性膜を非磁性セラミックス基板で挾み
込んだ積層型ヘッドも開発されている。2. Description of the Related Art A reader for writing and reading information on a magnetic recording medium such as a computer, a VTR, or an audio device (mainly a cassette deck) has a magnetic head. The magnetic head is manufactured by glass-bonding ferrite, which is a magnetic material, and ceramics, which is a non-magnetic material. Further, particularly in the case of a thin film magnetic head, it is manufactured by forming a magnetic thin film on a magnetic or non-magnetic ceramic substrate by vapor deposition or sputtering. Furthermore, a laminated head in which a metal magnetic film is sandwiched between non-magnetic ceramic substrates has also been developed.
【0003】一方、近年において開発研究が顕著なデジ
タル対応型磁気ヘッドは、記録媒体の高密度記録化への
技術推移に伴って、一層の小型化,高密度記録化,高品
質化が要求されている。この為、記録媒体の特性に適応
させるべく、フェライトには大きな飽和磁束密度を有す
ることが要求されている。フェライトに高飽和磁束密度
の磁気特性を持たせる為には、必然的に熱膨張係数の大
きな組成領域にて製造する必要がある。On the other hand, in recent years, the digital-compatible magnetic head, which has been remarkably developed and researched, is required to be further downsized, high-density recording, and high quality in accordance with the technological transition to high-density recording of the recording medium. ing. Therefore, ferrite is required to have a large saturation magnetic flux density in order to adapt to the characteristics of the recording medium. In order to give ferrite the magnetic characteristics of high saturation magnetic flux density, it is necessary to manufacture it in a composition region having a large thermal expansion coefficient.
【0004】又、薄膜磁気ヘッドは、高飽和磁束密度で
あって、高熱膨張係数(130〜140×10-7/℃)
を有するパーマロイやセンダスト等の金属磁性薄膜をセ
ラミックス基板上へ成膜して製造される。このような薄
膜磁気ヘッドを製造する場合、異種材料同士を接着,蒸
着,或いはスパッタリングにより接合する工程を要する
が、このとき、構成材料の熱膨張係数を近似なものと
し、接合時に発生する歪を最小にすることが必要にな
る。Further, the thin film magnetic head has a high saturation magnetic flux density and a high coefficient of thermal expansion (130 to 140 × 10 −7 / ° C.).
It is manufactured by depositing a metal magnetic thin film of permalloy, sendust, or the like having the above-mentioned properties on a ceramic substrate. When manufacturing such a thin-film magnetic head, a process of bonding different materials by adhesion, vapor deposition, or sputtering is required. At this time, the thermal expansion coefficient of the constituent materials should be approximate, and the strain generated during bonding should be reduced. It needs to be minimized.
【0005】ところで、上述した如く、磁性体と一体で
構成されることにより磁気ヘッドに備えられる非磁性セ
ラミックス材料には、CaTiO3 系,BaTiO
3 系,Znフェライト系,或いはAl2 O3 −TiC系
のものが使用されている。By the way, as described above, the non-magnetic ceramic material provided in the magnetic head by being integrally formed with the magnetic material includes CaTiO 3 system and BaTiO 3 .
3 series, Zn ferrite series, or Al 2 O 3 —TiC series are used.
【0006】[0006]
【発明が解決しようとする課題】従来の磁気ヘッド用非
磁性セラミックス材料の場合、熱膨張係数(α)が(7
5〜120)×10-7/℃の値の範囲にあるものが多
く、130×10-7/℃以上の熱膨張係数を有する非磁
性セラミックスを製造することは非常に困難になってい
る。In the case of the conventional non-magnetic ceramic material for magnetic head, the coefficient of thermal expansion (α) is (7).
Many of them are in the range of 5 to 120) × 10 −7 / ° C., and it is very difficult to produce nonmagnetic ceramics having a coefficient of thermal expansion of 130 × 10 −7 / ° C. or more.
【0007】これに対し、磁性材料の熱膨張係数(α)
は上述した如く(130〜140×10-7/℃)と比較
的高くなっている。それ故、現状の磁気ヘッドは熱膨張
係数が近似でない材料構成により製造せざるを得なく、
接合時に発生する歪を充分に抑制できないという問題が
ある。On the other hand, the thermal expansion coefficient (α) of the magnetic material
Is relatively high as described above (130 to 140 × 10 −7 / ° C.). Therefore, the current magnetic head has to be manufactured with a material configuration having a coefficient of thermal expansion that is not approximate,
There is a problem that the strain generated at the time of joining cannot be sufficiently suppressed.
【0008】又、こうした事情により、一般に磁気ヘッ
ド用非磁性セラミックスには下記の如く諸特性が要求さ
れる。即ち、1)高密度で気孔が少ないこと,2)耐摩
耗特性に優れていること,3)加工性に優れているこ
と,4)熱膨張係数が磁性体のそれと近似であること,
5)抵抗率が大きいこと,6)物理的,化学的に安定で
あること等である。Under these circumstances, the nonmagnetic ceramics for magnetic heads are generally required to have the following characteristics. That is, 1) high density and few pores, 2) excellent wear resistance, 3) excellent workability, 4) thermal expansion coefficient is similar to that of magnetic material,
5) High resistivity, 6) Physically and chemically stable, etc.
【0009】本発明は、このような問題点を解決すべく
なされたもので、第1の技術的課題は、熱膨張係数の大
きな磁性体に適応すべく、熱膨張係数が大きいと共に、
摩耗特性に優れ、且つ加工性の良い磁気ヘッド用非磁性
セラミックを提供することにある。The present invention has been made to solve such a problem, and the first technical problem is to have a large thermal expansion coefficient in order to adapt to a magnetic material having a large thermal expansion coefficient.
An object of the present invention is to provide a non-magnetic ceramic for a magnetic head which has excellent wear characteristics and good workability.
【0010】又、本発明の第2の技術的課題は、熱膨張
係数を組成比で調整し得ると共に、機械的強度及び加工
性に優れ、しかも製造を容易に行い得る高密度非磁性セ
ラミックスを提供することにある。A second technical object of the present invention is to provide a high density non-magnetic ceramics which can adjust the coefficient of thermal expansion by a composition ratio, is excellent in mechanical strength and workability, and can be easily manufactured. To provide.
【0011】[0011]
【課題を解決するための手段】本発明によれば、(20
〜80)モル%のMgO及び残部NiOより成る主成分
100重量部に対し、TiO2 を(0.1〜5)wt%
添加すると共に、Nd2 O3 ,Pm2 O3 ,Eu
2 O3 ,及びGd2 O3 のうちの少なくとも一種を
(0.1〜10)wt%添加して生成した磁気ヘッド用
非磁性セラミックスが得られる。According to the present invention, (20
˜80) mol% MgO and the balance NiO to 100 parts by weight of the main component (0.1 to 5) wt% TiO 2.
While adding Nd 2 O 3 , Pm 2 O 3 , Eu
2 O 3, and at least one of Gd 2 O 3 (0.1~10) is non-magnetic ceramic for a magnetic head that is prepared by adding wt% is obtained.
【0012】[0012]
【作用】本発明の非磁性セラミックスは、熱膨張係数の
大きな酸化物MgO及びNiOが全体(全率)で固溶す
ると、安定な均一成分を作ることに留意したものであ
る。本発明者等は、先ず非磁性セラミックスの主成分で
あるMgO及びNiOの成分比の検討を行った結果、熱
膨張係数(α)がα≧130×10-7/℃の値を示すも
のは、MgO成分が80モル%以下で得られることを解
析した。The non-magnetic ceramic material of the present invention is noted that when the oxides MgO and NiO having a large coefficient of thermal expansion are solid-dissolved as a whole (total ratio), a stable uniform component is formed. The inventors of the present invention first examined the composition ratios of MgO and NiO, which are the main components of non-magnetic ceramics, and found that those having a coefficient of thermal expansion (α) of α ≧ 130 × 10 −7 / ° C. , It was analyzed that the MgO component was obtained at 80 mol% or less.
【0013】ここで、MgO成分が20モル%より少な
い(即ち、NiOが80モル%を越える)と、透磁率が
2を越えてしまい、磁気ヘッド用非磁性セラミックとし
ては不適当となる。又、MgOを(20〜80)モル%
としただけでは、熱膨張係数の方は130×10-7/℃
以上となるが、1400℃の焼結温度条件下では、気孔
率が大きくなって緻密化が不充分となるばかりでなく、
硬度も低くなってしまうので、磁気ヘッド用セラミック
ス材としては不適当となることが判った。If the MgO component is less than 20 mol% (that is, NiO exceeds 80 mol%), the magnetic permeability exceeds 2, which is unsuitable as a nonmagnetic ceramic for a magnetic head. Also, MgO is (20-80) mol%
The coefficient of thermal expansion is 130 × 10 -7 / ° C.
As described above, under the sintering temperature condition of 1400 ° C., not only the porosity becomes large and the densification becomes insufficient, but
It has been found that the hardness is also low, which makes it unsuitable as a ceramic material for magnetic heads.
【0014】そこで、本発明者等は、非磁性セラミック
スの主成分であるMgO及びNiOに対し、TiO2 を
添加し、且つNd2 O3 ,Pm2 O3 ,Eu2 O3 ,G
d2O3 の少なくとも一種を添加することにより、これ
らの問題点を改善できることを見い出した。即ち、ここ
で副成分として、TiO2 を(0.1〜5)wt%の範
囲で添加すると、セラミックスの硬度増強が図られ、更
に焼結促進効果及び結晶の微細化に効果を有するNd2
O3 ,Pm2 O3 ,Eu2 O3 ,Gd2 O3 の少なくと
も一種を(0.1〜10)wt%の範囲で添加すると、
セラミックスの気孔率,硬度の改善が図られるのであ
る。Therefore, the present inventors have added TiO 2 to MgO and NiO, which are the main components of non-magnetic ceramics, and added Nd 2 O 3 , Pm 2 O 3 , Eu 2 O 3 , and G.
It has been found that these problems can be improved by adding at least one of d 2 O 3 . That is, when TiO 2 is added in the range of (0.1 to 5) wt% as an auxiliary component, the hardness of ceramics is enhanced, and Nd 2 which has an effect of promoting sintering and miniaturization of crystals is further added.
When at least one of O 3 , Pm 2 O 3 , Eu 2 O 3 and Gd 2 O 3 is added in the range of (0.1-10) wt%,
The porosity and hardness of ceramics can be improved.
【0015】このように副成分の添加範囲が制限される
理由は、TiO2 が0.1wt%より少ないと硬度が小
さくなり、又5wt%を越えると熱膨張係数が小さくな
るからであり、更にNd2 O3 ,Pm2 O3 ,Eu2 O
3 ,Gd2 O3 の少なくとも一種が0.1wt%より少
なくても、或いは10wt%を越えても気孔率が大きく
なってしまうからである。The reason why the range of addition of the subcomponents is limited is that if the content of TiO 2 is less than 0.1 wt%, the hardness becomes small, and if it exceeds 5 wt%, the thermal expansion coefficient becomes small. Nd 2 O 3 , Pm 2 O 3 , Eu 2 O
This is because the porosity becomes large even if the content of at least one of 3 and Gd 2 O 3 is less than 0.1 wt% or exceeds 10 wt%.
【0016】[0016]
【実施例】以下に実施例を挙げ、本発明の磁気ヘッド用
非磁性セラミックスについて詳細に説明する。最初に非
磁性セラミックスの製造工程を簡単に説明する。EXAMPLES The nonmagnetic ceramics for magnetic heads of the present invention will be described in detail below with reference to examples. First, the manufacturing process of non-magnetic ceramics will be briefly described.
【0017】先ず、市販の原料であるMgO,NiO,
TiO2 ,Nd2 O3 ,Pm2 O3,Eu2 O3 ,及び
Gd2 O3 を準備し、これらの各成分を表−1に示す組
成比となるようにそれぞれ秤量し、分散媒にアルコール
を用いてボールミルにて混合した。First, commercially available raw materials MgO, NiO,
TiO 2, Nd 2 O 3, Pm 2 O 3, Eu 2 O 3, and prepares a Gd 2 O 3, were weighed each of these components so that the composition ratio shown in Table 1, in the dispersion medium Mix with a ball mill using alcohol.
【0018】[0018]
【表1】 [Table 1]
【0019】尚、ここでMgO及びNiOは主成分であ
り、TiO2 ,Nd2 O3 ,Pm2O3 ,Eu2 O3 ,
及びGd2 O3 は何れも副成分である。Here, MgO and NiO are the main components, and TiO 2 , Nd 2 O 3 , Pm 2 O 3 , Eu 2 O 3 ,
And Gd 2 O 3 are both subcomponents.
【0020】引き続き、混合体を乾燥させた後、空気中
にて1200℃の温度で2時間仮焼し、再びボールミー
ルにて粉砕した。ここで、粉砕後の粉末の平均粒径は
1.2μmである。Subsequently, the mixture was dried, then calcined in the air at a temperature of 1200 ° C. for 2 hours, and then pulverized again with a ball meal. Here, the average particle size of the powder after pulverization is 1.2 μm.
【0021】更に、混合体粉末にバインダーを1wt%
添加して造粒を行った後、2ton/cm2 の圧力にて
成形を行い、空気中にて1400℃の温度で3時間焼結
を行った。この結果、相対密度97%以上の密度を有す
る焼結体には、アルミナルツボ内に設置し、Arガス雰
囲気にて温度1300℃,圧力1000kg/cm2,
保持時間を2時間とする条件下で熱間静水圧プレス(H
IP)処理を行った。Further, 1 wt% of binder is added to the powder mixture.
After adding and granulating, molding was performed at a pressure of 2 ton / cm 2 , and sintering was performed in air at a temperature of 1400 ° C. for 3 hours. As a result, a sintered body having a relative density of 97% or more was installed in an alumina crucible, and the temperature was 1300 ° C. and the pressure was 1000 kg / cm 2 in an Ar gas atmosphere.
Hot isostatic pressing (H
IP) treatment.
【0022】表1に示すNo.1〜No.13の各試料
非磁性セラミックスは、以上の工程より得られたもので
ある。又、表1にはこれらの各試料非磁性セラミックス
に関し、それぞれ温度範囲100〜400[℃]におけ
る熱膨張係数,500g荷重条件下により測定したビッ
カース硬度,抗折強度,平均粒径,気孔率,及び透磁率
を測定した特性結果を記している。但し、透磁率は(外
径φ)10×(内径φ)6×(厚さ)2[mm]のトロ
イダルコアを準備して磁気ヘッドを構成し、周波数1k
Hzの条件下にて測定したものである。No. 1 shown in Table 1 1-No. Each non-magnetic ceramic sample 13 was obtained by the above steps. Table 1 shows the coefficient of thermal expansion in the temperature range of 100 to 400 [° C.], the Vickers hardness, the bending strength, the average grain size, the porosity, which are measured under the load condition of 500 g, for each of the sample non-magnetic ceramics. And the characteristic results of measuring the magnetic permeability are shown. However, a magnetic head is constructed by preparing a toroidal core having a magnetic permeability of (outer diameter φ) 10 × (inner diameter φ) 6 × (thickness) 2 [mm] and a frequency of 1 k.
It is measured under the condition of Hz.
【0023】特性結果によれば、試料No.1〜No.
7までの本発明として適当な各試料非磁性セラミックス
と、試料No.8〜No.13までの比較例のものとの
比較から明らかなように、MgOが80モル%を越える
(No.13)と熱膨張係数が低下し、又MgOが20
モル%より少ない(No.12)と透磁率が大きくなる
ことが判る。又、TiO2 が0.1wt%より少ない場
合(No.11)は硬度が低下し、5.0wt%を越え
る場合(但し、表1には含まれない)は熱膨張係数の低
下する。According to the characteristic results, the sample No. 1-No.
Each sample non-magnetic ceramics suitable for the present invention up to 7 and sample No. 8 to No. As is clear from comparison with the comparative examples up to 13, when MgO exceeds 80 mol% (No. 13), the coefficient of thermal expansion decreases, and when MgO is 20%.
It can be seen that the magnetic permeability increases when the amount is less than mol% (No. 12). Further, when the content of TiO 2 is less than 0.1 wt% (No. 11), the hardness decreases, and when it exceeds 5.0 wt% (however, not included in Table 1), the thermal expansion coefficient decreases.
【0024】更に、Nd2 O3 ,Pm2 O3 ,Eu2 O
3 ,及びGd2 O3 の少なくとも一種以上が0.1wt
%より少ない場合(No.8及びNo.10)は、気孔
率と平均粒径とが大きく、これに伴い、硬度や抗折強度
も低下していることが判る。一方、10.0wt%を越
えた場合(No.13)も気孔率が大きく、硬度も低下
していることが判る。Further, Nd 2 O 3 , Pm 2 O 3 and Eu 2 O
3 and at least one of Gd 2 O 3 is 0.1 wt.
When it is less than 10% (No. 8 and No. 10), it is understood that the porosity and the average particle size are large, and the hardness and the bending strength are also reduced accordingly. On the other hand, when it exceeds 10.0 wt% (No. 13), it is found that the porosity is large and the hardness is lowered.
【0025】以上の特性結果により、本発明の非磁性セ
ラミックスとして適当な組成条件は、MgOが(20〜
80)モル%で、残部NiOより成る主成分100重量
部に対し、TiO2 を(0.1〜5.0)wt%添加す
ると共に、Nd2 O3 ,Pm2 O3 ,Eu2 O3 ,及び
Gd2 O3 のうちの少なくとも一種を(0.1〜10.
0)wt%添加すれば良いことが判った。From the above characteristic results, MgO (20 to 20) is a suitable composition condition for the non-magnetic ceramics of the present invention.
80) mol% and TiO 2 (0.1-5.0) wt% was added to 100 parts by weight of the main component consisting of the balance NiO, and Nd 2 O 3 , Pm 2 O 3 , and Eu 2 O 3 were added. , And Gd 2 O 3 (0.1-10.
It was found that 0) wt% should be added.
【0026】結果として、このようにして生成された非
磁性セラミックスは、熱膨張係数(α)がα>130×
10-7/℃を有し、微細組織で機械特性に優れた高密度
非磁性セラミックとなることが判った。As a result, the nonmagnetic ceramic thus produced has a coefficient of thermal expansion (α) of α> 130 ×
It was found that a high density non-magnetic ceramic having a fine structure having a fine structure of 10 −7 / ° C. was obtained.
【0027】[0027]
【発明の効果】以上に述べた通り、本発明によれば、従
来の技術では製造困難であった熱膨張係数が130×1
0-7/℃以上の高密度非磁性セラミックスが容易に得ら
れるようになる。この非磁性セラミックスは、機械的強
度,摩耗特性,及び加工性に優れる他、組成比に許容範
囲を有するので、熱膨張係数を組成比により調整するこ
とができ、製造を簡易に行い得るという長所がある。As described above, according to the present invention, the coefficient of thermal expansion which is difficult to manufacture by the conventional technique is 130 × 1.
High density non-magnetic ceramics of 0 -7 / ° C or higher can be easily obtained. This non-magnetic ceramic is excellent in mechanical strength, wear characteristics, and workability, and has an allowable composition ratio. Therefore, the thermal expansion coefficient can be adjusted by the composition ratio, and the manufacturing can be easily performed. There is.
【0028】又、本発明による非磁性セラミックスは、
それに要求される諸特性を充分に満足させるものとなる
ので、高飽和磁束密度を有するMnZnフェライト,パ
ーマロイ,センダスト等の金属磁性薄膜との間の接合に
最適な材料となる。これにより、信頼性や品質の高い磁
気ヘッドの製造に大きく寄与することができる。The non-magnetic ceramic according to the present invention is
Since it satisfies the various properties required for it, it is an optimum material for joining with metallic magnetic thin films such as MnZn ferrite, permalloy, and sendust having a high saturation magnetic flux density. This can greatly contribute to the manufacture of a magnetic head with high reliability and quality.
Claims (1)
NiOより成る主成分100重量部に対し、TiO2 を
(0.1〜5)wt%添加すると共に、Nd2 O3 ,P
m2 O3 ,Eu2 O3 ,及びGd2 O3 のうちの少なく
とも一種を(0.1〜10)wt%添加して生成したこ
とを特徴とする磁気ヘッド用非磁性セラミックス。1. To 100 parts by weight of a main component consisting of (20 to 80) mol% MgO and the balance NiO, (0.1 to 5) wt% of TiO 2 is added, and Nd 2 O 3 and P are added.
A non-magnetic ceramic for a magnetic head, which is produced by adding (0.1 to 10) wt% of at least one of m 2 O 3 , Eu 2 O 3 , and Gd 2 O 3 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4127304A JPH05319895A (en) | 1992-05-20 | 1992-05-20 | Nonmagnetic ceramics for magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4127304A JPH05319895A (en) | 1992-05-20 | 1992-05-20 | Nonmagnetic ceramics for magnetic head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05319895A true JPH05319895A (en) | 1993-12-03 |
Family
ID=14956642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4127304A Pending JPH05319895A (en) | 1992-05-20 | 1992-05-20 | Nonmagnetic ceramics for magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05319895A (en) |
-
1992
- 1992-05-20 JP JP4127304A patent/JPH05319895A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61158862A (en) | Magnetic head slider material | |
US5302560A (en) | Process for the production of magnetic head sliders | |
US5432016A (en) | Magnetic head slider material | |
JPH05319895A (en) | Nonmagnetic ceramics for magnetic head | |
JP2832863B2 (en) | Non-magnetic ceramics for magnetic heads | |
KR0142702B1 (en) | Nonmagnetic ceramic substrate for magnetic head and the manufacturing method | |
JP3152740B2 (en) | Non-magnetic ceramics | |
JPH0798687B2 (en) | Non-magnetic ceramics for magnetic heads | |
JP3825079B2 (en) | Manufacturing method of non-magnetic ceramics | |
US5242865A (en) | Non-magnetic substrate of magnetic head | |
JP3085619B2 (en) | Non-magnetic ceramics | |
JP3322228B2 (en) | Tools for firing | |
JP3309040B2 (en) | Non-magnetic ceramics and method for producing the same | |
KR0137076B1 (en) | Non-magnetic ceramic substrate for magnetic head | |
JPS597130B2 (en) | Method for manufacturing thin film magnetic head substrate | |
US5404259A (en) | Magnetic head having high wear resistance and non-magnetic substrate used in the magnetic head | |
JPH0122229B2 (en) | ||
JPS63134559A (en) | Non-magnetic ceramics for magnetic head | |
JPH0329739B2 (en) | ||
JPH09249454A (en) | Ceramic for magnetic head | |
JPH0373043B2 (en) | ||
JPS60204669A (en) | Non-magnetic ceramic material for magnetic head | |
JPH0612611A (en) | Nonmagnetic ceramics for magnetic head | |
JPS6259069B2 (en) | ||
JPH1079308A (en) | Hematite material for magnetic head and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20000920 |